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Introduction 

Over the past decade, our understanding of the human gastro-
intestinal (GI) microbiome has expanded significantly, with new 
insights into the trillions of microorganisms residing in the gut 
[1]. These microbes, including bacteria, viruses, and fungi, inter-
act closely with the host environment and are essential to human 
health, participating in digestion, breakdown of polysaccharides, 
vitamin synthesis, and protection against pathogens [2,3]. They 
also play a significant role in immune regulation and commu-
nication with host cells [4,5]. Disruption of the gut microbiome  

 
(dysbiosis) is now recognized as a key factor in many diseases, 
not only in classic infections but also in obesity, diabetes, liver 
disorders, and cancer [2,4,6]. Consequently, the gut microbiota 
has emerged as a promising target for new diagnostic and ther-
apeutic approaches. While bacteria are the most abundant and 
well-studied constituents of the microbiome, the gut also harbors 
important populations of viruses (the virome) and fungi (the my-
cobiome), both of which contribute to mucosal barrier function 
and gut homeostasis [7-9]. Research has focused predominantly 
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on the bacterial fraction, largely because viruses and fungi are less 
abundant and more complex to identify using standard laboratory 
methods [10-12]. However, advances in sequencing and bioinfor-
matics are beginning to shed light on the roles of these previously 
overlooked communities. This review examines the current un-
derstanding of the gut virome and mycobiome in human health 
and disease, with an emphasis on their roles in gut homeostasis, 

immune modulation, and disease mechanisms. This study precise-
ly reviewed publications addressing the composition, function, or 
clinical implications of the intestinal virome or mycobiome, prior-
itizing recent and mechanistic work.. This synthesis highlights key 
knowledge gaps, advances in methodology, and future directions 
for research and clinical application.

Figure 1:  Influence of the microbiome on immune and intestinal cells.

Methodology

In this review, a narrative search of PubMed, Scopus, and Goo-
gle Scholar using the terms “gut virome”, “gut mycobiome”, “viral 
microbiome”, “fungal microbiome”, and “microbiome dysbiosis in 
health and disease” was performed. Additionally, other informa-
tion with respect to study aims was also collected. No date limits 
were imposed to capture both foundational and contemporary 
work; however, preference was given to studies published within 
the past decade and those offering mechanistic insights or clin-
ically applicable findings, and pros and cons were discussed ac-
cordingly.

Gut virome: composition, function, and clinical 
significance

Definition and components of the Gut Virome 

The gut virome often described as the “dark matter” of the gut 
microbiome [13], is a genetically diverse and complex microbial 
community. Various body sites, including the blood, nasal passag-
es, skin, conjunctiva, oral cavity, vagina, and gastrointestinal (GI) 
tract, each harbor their own distinct populations of viruses [14] 
The virome comprises eukaryotic viruses that primarily infect hu-

man cells, prokaryotic viruses known as bacteriophages (phages), 
and archaeal viruses [15,16]. In the human gut, bacteriophages 
are by far the most abundant, outnumbering eukaryotic viruses, 
and are the predominant viral group present [17,18]. Fecal sam-
ples contain between 10⁹ and 10¹⁰ viral particles per gram, re-
flecting the remarkable density and persistence of these phages 
within the gut environment [13]. Although eukaryotic viruses are 
less prevalent, they have been the focus of significant research 
due to their role in intestinal diseases. Additionally, the human 
genome contains rare endogenous retroviruses, which can influ-
ence disease processes by altering gene expression and immune 
regulation [19].

Role in Gut Homeostasis The human gut virome plays a vital 
role in both human health and ecological biology [20]. Coloniza-
tion of the gut virome begins at birth. It gradually stabilizes into 
adulthood, with each individual developing a unique virome pro-
file influenced by factors such as age, antibiotic use, and underly-
ing health conditions [21]. Even the mode of delivery can shape 
the initial virome composition: newborns delivered vaginally 
have a more diverse gut virome compared to those delivered by 
cesarean section, with Caudoviricetes, Microviridae, and Anellovi-
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ridae among the most abundant viruses detected [22]. Moreover, 
specific changes in the virome have been linked to various dis-
ease states, including inflammatory bowel disease, diabetes, hy-
pertension, AIDS, colorectal cancer, and acute malnutrition [17]. 
These associations reflect the complex, multifaceted interactions 
between the virome, particularly bacteriophages, and the gut bac-
teriome, which together contribute to microbial colonization, eco-
logical balance, and host health through dynamic host-pathogen 
interactions [23].

Gut virome in Disease

Although research into the gut virome remains in its early 
stages, emerging evidence reveals that disruptions in viral com-
munity composition and reduced diversity can impair intestinal 
barrier function. A notable pathogenic mechanism involves virus-
es crossing the gut epithelium, especially in conditions with in-
creased permeability, which may trigger immune responses and 
contribute to autoimmune, infectious, and inflammatory diseases 
such as inflammatory bowel disease (IBD) [14,24]. The patho-
genesis of IBD is multifactorial, involving genetic susceptibility, 
immune activation, and environmental influences—including the 
gut microbiota [25,26]. Animal studies further suggest that cer-
tain eukaryotic viruses can interact with host genetic risk factors 
to modify intestinal disease risk [27]. In healthy individuals, the 
dominant gut phages are double-stranded DNA (dsDNA) Caudovi-
rales and single-stranded DNA (ssDNA) Microviridae [28]. When 
exposed to environmental stressors like nitric oxide or antibiot-
ics, phages may switch to the lytic cycle, causing bacterial lysis 
and spreading infectious virions within the gut [29]). Increased 
Caudoviricetes abundance has been observed in both ulcerative 
colitis and Crohn’s disease, while overall phage diversity is low-
er in Crohn’s [30,31]. Distinct virome changes are also noted in 
metabolic and inflammatory diseases. For example, shifts in the 
gut phagosome have been reported in obesity, type 1 and type 2 
diabetes [32,33] though whether these are causal or simply reflect 
broader dysbiosis is unclear. Notably, the human gut microbiome 
accounts for a significant portion of resting energy expenditure, 
and disturbances in its composition may contribute to metabol-
ic dysfunction [34]. In pregnant women with early-onset diabe-
tes, increased levels of tobamoviruses and picobirnaviruses have 
been detected; these changes may serve as biomarkers of immune 
alterations, though their precise roles and host targets remain un-
certain [21]. COVID-19, caused by SARS-CoV-2, further illustrates 
the clinical relevance of the gut virome. The virus infects the gas-
trointestinal tract via the ACE2 receptor, and patients even those 
with mild disease show reduced virome diversity and an increase 
in inflammation-associated viral genes [21,35]. While short-term 
changes are well described, the long-term impact on gut health 
requires further study. Ultimately, the virome, along with the bac-
teriome and mycobiome, forms a tightly interconnected network 
in the gut. Disruptions in one component can reshape the entire 
microbial ecosystem and influence host immunity and disease 
risk. For example, changes in phage populations can affect bac-

terial evolution, while virome alterations have been implicated in 
autoimmunity, such as rheumatoid arthritis, where distinct shifts 
in specific bacteriophages have been observed in at-risk individ-
uals [7,8].

Challenges and advances in virome research

Bioinformatics challenges in viral metagenomics stem primar-
ily from the phenomenon known as “viral dark matter,” which re-
fers to the 40–90% of gut viruses in a sample that remains uniden-
tified and unexplored [36]. This uncharacterized genetic material 
holds substantial potential for discoveries; for instance, analysis 
of this dark matter led to the identification of crAssphage, now 
known as one of the most common bacteriophages in the human 
gut. Addressing this gap requires the development of improved 
computational tools. Methods such as hidden Markov models, 
which detect distant similarities in viral proteins, are being used 
to classify unknown viruses. Advances in machine learning and 
artificial intelligence, including neural networks, further improve 
classification accuracy. Experimentally, culturing more viruses 
in the laboratory will generate valuable reference data and help 
reduce the number of unclassified sequences [37].  As a result, 
advancing our understanding of the gut virome is crucial for un-
covering its role in human health. Research on the gut virome re-
mains limited, mainly due to incomplete reference libraries and 
technological hurdles [38]. Many intestinal viruses remain unclas-
sified, but ongoing improvements in metagenomic technologies, 
including the combination of short-read and long-read sequenc-
ing, are expected to overcome these barriers [39]. Enhanced, 
cost-effective, and sensitive sequencing methods now allow for 
more comprehensive characterization of the human virome, en-
compassing double-stranded DNA (dsDNA), single-stranded DNA 
(ssDNA), and RNA virus-like particles [14]. This progress supports 
the exploration of diverse gut bacteriophage populations and aids 
in the discovery of novel viral genomes [40]. To support these ef-
forts, several human gut virome databases have been established, 
including the Gut Virome Database (GVD), the Cenote Human 
Virome Database (CHVD), the Metagenomic Gut Virus Database 
(MGV), and the Gut Phage Database (GPD) [41]. Most well-known 
databases encompass the Gut Virome Database (GVD), Cenote Hu-
man Virome Database (CHVD), Metagenomic Gut Virus Database 
(MGV), and Gut Phage Database (GPD). These resources have sig-
nificantly expanded our understanding of gut viral diversity, pro-
viding accurate and informative datasets that serve as guidelines 
for future studies [42].

The Gut Mycobiome: Diversity, Function, and Pathogen-
ic Potential

The human gut microbiome the collection of microorganisms 
in the gastrointestinal tract - is increasingly recognized as a key 
player in the pathogenesis of various diseases, including inflam-
matory bowel disease (IBD) [43], type 2 diabetes [44], hyper-
tension [45], and colorectal cancer [46]. Both bacteria and fungi 
contribute to host metabolism, with research highlighting asso-
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ciations between microbial populations and metabolic outcomes 
in conditions like diabetes [47] and cholesterol metabolism [48]. 
Lifestyle factors such as diet and physical activity substantially in-

fluence the gut microbial community, as demonstrated in animal 
models and human cohort studies [49,50].

Figure 2:  Virome and bacteriome interaction in Gut hemostasis.

The gut microbiota behaves in a metabolically active man-
ner, operating symbiotically with the gut mucosa to contribute to 
metabolic, immunological, and protective functions [51]. Current 
research no longer focuses solely on enumerating the abundance 
and diversity of gut microbes but rather on how they contribute 
to overall health. Most nutrients for the gut microbiota are de-
rived from dietary carbohydrates, fermented by colonic bacteria 
such as Bacteroides, Roseburia, Bifidobacterium, Fecalibacterium, 
and Enterobacteria to produce short-chain fatty acids (SCFAs) 
[52,53]. The microbiota also synthesizes essential vitamins (K 
and B groups) and conjugated linoleic acid (CLA), which have an-
ti-inflammatory, antiatherogenic, and immunomodulatory effects 
[54]. Additionally, specific bacteria, including Bacteroides intesti-
nalis, Bacteroides fragilis, and E. coli, transform primary bile ac-
ids into secondary bile acids, such as deoxycholic and lithocholic 
acid [55]. The gut microbiome’s influence on drug metabolism 
has long been recognized; for example, the microbial metabolite 
p-cresol inhibits acetaminophen metabolism, and microbial activ-
ities can increase toxicity from drugs like irinotecan, resulting in 
side effects such as diarrhea and inflammation [56-58].

Maintaining the balance of the gut microbiota requires the 
mucosal immune system to tolerate commensals while preventing 
the overgrowth of pathogens. This is achieved through a dual-lay-
er mucus barrier produced by goblet cells, which shields the ep-
ithelium from microbes. The inner mucus layer is dense and typ-
ically free from microorganisms, while the outer layer provides 
nutrients and stability to the mucin polymers, thereby support-
ing barrier integrity [59-61]. Both innate and adaptive immune 
components, including gut-associated lymphoid tissues, effector 

T cells, and innate lymphoid cells, work in conjunction with the 
microbiota to modulate [62] immune responses [63].

Currently, there is a convincing body of evidence that sup-
ports the role of the gut microbiota in maintaining the structure 
and function of the gastrointestinal tract. Bacteroides thetaiotao-
micron is reported to induce expression of the small proline-rich 
protein 2A (sprr2A), which is required to maintain desmosomes 
at the epithelial villus [64]. External and host factors can induce 
dysbiosis in the gut microbiome, impairing host wellness and po-
tentially leading to harmful microbial-derived products or metab-
olites, causing various diseases in local, systemic, or remote or-
gans, and requiring microbiome-based therapy [65].

Clostridium difficile, a Gram-positive anaerobe and member 
of the Firmicutes, produces toxins A and B that damage colonic 
epithelial barrier integrity, causing an inflammatory response and 
cell death [66,67]. C. difficile infection (CDI)-associated symptoms 
include diarrhea, pseudomembranous colitis, sepsis, and death in 
severe cases [68].

Another example of gut microbiome-associated disease is IBD. 
IBD is a group of multifactorial, idiopathic, persistent, and recur-
ring gastrointestinal inflammations. Two common forms of IBD 
are celiac Disease (CD) and ulcerative colitis (UC) [69]. CD and UC 
inflammations, causing relapsing diarrhea, fever, and abdominal 
pain, are increasing globally, affecting 1.4 million and 2.2 million 
individuals in America and Europe, respectively [70]. IBD is a 
complex disease influenced by host and environmental factors, 
with gut microbiota and host factors potentially intertwining to 
contribute to its development [65].
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The gut microbiome, a key factor in host metabolism regula-
tion, has been linked to obesity, a global health hazard affecting 
over 600 million people. Obesity is associated with high energy 
intake, metabolic syndrome, obesity-related disorders, low-grade 
inflammation, and premature mortality [71].

Composition of the Gut Mycobiome Common Fungal 
Species

Animal models reveal the role of intestinal fungi, particularly 
Candida, in energy harvest and host metabolism. Candida albicans 
and Candida parapsilosis have been studied extensively, showing 
contrasting effects on metabolic hormones and obesity develop-
ment, highlighting the need for further research [62,72,73].

The human gut mycobiome is typically dominated by com-
mensal yeasts such as Saccharomyces cerevisiae, Malassezia 
restricta, and Candida albicans, which coexist with bacteria to 
support digestion, modulate immune function, and prevent the 
overgrowth of pathogens. Analysis of stool samples from healthy 
individuals in the Human Microbiome Project showed that fungal 
diversity is lower than bacterial diversity, with yeast, particularly 
Saccharomyces, Malassezia, and Candida, being the most prevalent 
genera. The persistence of particular fungal species across mul-
tiple individuals suggests the existence of a core gut mycobiome 
[62,74].

Mycobiome-Host Interactions Cross-talk between fun-
gi, bacteria, and immune system

Role in digestion and metabolism 

Bacterial-fungal interactions in the host are shaped by im-
mune responses, with certain microbial colonizers inducing 
significant immunological changes that influence the balance of 
other microbes [75]. For example, Bacteroides thetaiotaomicron 
activates innate immune genes in mice, which suppresses colo-
nization by Candida albicans. Overall, studies indicate that both 
bacterial and fungal species can have important effects on the host 
immune system [76].

Recognition of fungi by the immune system

The host’s immune response to fungi relies on immune cells 
detecting molecular patterns through pattern recognition recep-
tors (PRRs), including Toll-like receptors, C-type lectin receptors, 
and NOD-like receptors. Phagocytosed fungi can activate NOD-like 
receptors (NLRs), triggering inflammation [77,78]. Mutations in 
the Dectin-1 gene increase susceptibility to Candida tropicalis in-
vasion and worsen colitis in both mice and humans, while muta-
tions in Dectin-2 are linked to higher rates of Candida glabrata 
infection [79]. deficiencies in TLR4 and TLR2 signaling impact 
systemic candidiasis outcomes. Specifically, TLR4 deficiency leads 
to an increased C. albicans burden in the kidneys, while blocking 
TLR2 reduces inflammatory cytokine production, including TNF-α 
and IL-1β [80,81]. Other receptors, including MelLec, pentraxins, 
MBL, and MDA5, are also involved in fungal recognition, such as 
binding to Aspergillus fumigatus conidia, recognizing galactoman-

nan and mannan, and mediating immune responses to systemic 
Candida albicans infection [82,83].

Immune system-mycobiota interaction

Research indicates that fungi play a crucial role in immune 
system maturation, as their presence enhances circulating gran-
ulocyte levels in mice residing in natural environments [84]. This 
builds on earlier work indicating that mice colonized with a “wild-
mouse microbiota” exhibit immune responses to immunothera-
py that more closely resemble those of humans [85]. Fungi, and 
the mycobiome in general, are vital for immune system develop-
ment and homeostasis but can also play a role in inflammatory 
and pathogenic conditions. For example, Candida and Malassezia, 
especially C. albicans, can exacerbate gut inflammation [86]. Fun-
gal dysbiosis and increased colonization by C. albicans have been 
linked to IBD in humans, underscoring the importance of under-
standing the mycobiome’s role in immune system development 
[87].

Gut Mycobiome in Disease

Crohn’s disease

Crohn’s disease (CD) is a chronic, severe inflammatory con-
dition that most often affects the terminal ileum and can cause 
irreversible damage throughout the gastrointestinal tract, leading 
to significant reductions in quality of life [88]. Its pathogenesis in-
volves a combination of genetic, epigenetic, immunological, and 
microbiological factors, as well as environmental triggers like 
smoking, diet, stress, and infections. Overgrowth of microbes, 
such as Mycobacterium avium and adherent-invasive Escherichia 
coli (AIEC), may also play a role [89]. Current evidence suggests 
that dysbiosis—an alteration in the gut microbiome may be either 
a cause or a consequence of CD, with affected patients displaying 
reduced microbial community complexity compared to healthy 
individuals [90]. Faecalibacterium prausnitzii, a Firmicutes bacte-
rium with proposed anti-inflammatory effects, has been found at 
lower levels in CD patients and may be linked to a higher risk of 
disease recurrence [91,92].

Irritable bowel syndrome (IBS)

Irritable bowel syndrome (IBS) is a common functional gas-
trointestinal disorder that, although rarely life-threatening, im-
poses a substantial socioeconomic burden and significantly re-
duces quality of life [93]. IBS is diagnosed based on persistent and 
recurrent symptoms, and while treatment focuses on symptom 
relief, atypical presentations can complicate management over 
time [94]. The pathogenesis of IBS is increasingly linked to mi-
cro-dysbiosis alterations in the gut microbial community with 
more than 70% of patients showing reduced diversity and distinct 
microbial profiles compared to healthy controls. Notably, IBS is of-
ten associated with increased levels of facultative anaerobes, such 
as Streptococcus species, and decreased levels of Lactobacilli and 
Bifidobacteria. Many studies also report an elevated fecal Firmic-
utes/Bacteroidetes ratio among IBS patients [95].
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Colorectal cancer (CRC)

Colorectal cancer (CRC) ranks as the fourth leading cause of 
cancer mortality worldwide. It arises from a combination of genet-
ic and environmental influences, with the gut microbiota playing a 
key role in promoting a tumor-friendly environment. Experimen-
tal models, such as those using APC mutations, demonstrate the 
role of the microbiome in colorectal carcinogenesis [96]. There is 
a complex, bidirectional relationship between the gut microbiome 
and CRC: gut fungi interact with the host immune system, modu-
lating immunity and potentially contributing to conditions such 
as IBD, asthma, and cancer [97]. The bacterial microbiome also 
influences host metabolism by shaping immune cell populations 
and inflammatory tone, with intestinal fungi potentially affecting 
host energy balance through their immunomodulatory properties 
[98].

Challenges and Future Directions in Mycobiome 
Research Fungal metagenomics and biomarker 
discovery

While advances in metagenomics and experimental tech-
niques have expanded our understanding of the mycobiome, sig-
nificant technical and conceptual challenges remain. Low fungal 
biomass and lack of control over data sources contribute to vari-
ability in study results, particularly when investigating the myco-
biome’s role in cancer [99]. Many studies do not provide detailed 
protocols for sample contamination control, highlighting the need 
for more rigorous sample collection and larger, well-defined co-
horts. Current fungal databases are limited by inconsistent spe-
cies nomenclature and insufficient data; therefore, harmonization 
of bioinformatics analysis tools is necessary for improved data 
comparability [100]. The reproducibility and accuracy of pan-can-
cer mycobiome analyses have not been fully validated, making fu-
ture research with improved coordination, robust data sharing, 
and standardized denoising procedures essential for their valida-
tion. Study design, specimen source, population characteristics, 
cancer type, pathological subtype, and environmental factors can 
all affect study outcomes and interpretations [62]. High inter-in-
dividual variability is common in mycobiome studies and may 
contribute to immune-mediated disorders driven by rare fungal 
species. However, this variability could also offer insights for pre-
dicting individualized disease changes [101]. Future cancer my-
cobiome research should prioritize causality, collaborative work, 
and mechanistic understanding. While correlation studies are 
valuable, experimental validation through controlled experiments 
and extensive model validation is essential for establishing causal 
links between fungi and cancer [102]. Animal models and other 
experimental systems can help simulate cancer environments, 
validate microbiome profiles, and assess the effects of fungi on 
tumor development. New technologies also allow the spatial dis-
tribution of fungal communities within tumor tissues to be stud-
ied [103]. Inter-kingdom interactions between fungi and bacteria 
have been documented in cancer, suggesting that communities of 

multiple microbial species, rather than individual ones, may col-
lectively drive ecological dysbiosis [104]. Most research to date 
relies on metagenomics, but integrating meta-transcriptomics 
and meta-proteomics in a multi-omics approach could lead to the 
identification of more reliable biomarkers [105]. Clinical studies 
indicate that combining chemotherapy or immunotherapy with 
microbiome modulation may enhance cancer management. How-
ever, mycobiome research has yet to be translated into clinical 
therapeutic interventions for humans [106].

Gut Virome-Mycobiome Interactions: The Unexplored 
Cross-Talk

Influence on bacterial microbiome

The gut virome, particularly bacteriophages, interacts with 
gut bacteria, shaping the gut microbiota [107] and altering bacte-
rial gene expression, impacting the host’s immune response [108]. 
This interaction also leads to microbial imbalances, such as in IBD 
[109]. Although the gut mycobiome is significantly smaller than 
the bacterial population, it has a substantial impact on bacterial 
colonies by producing metabolites that inhibit bacterial growth 
and by competing with bacteria for nutrients and space [110]. The 
virome can also transfer antimicrobial resistance genes to bacte-
rial pathogens, enabling them to develop drug resistance [111]. 
Interactions between the virome and mycobiome can be either 
synergistic or antagonistic. For example, phage-induced bacteri-
al lysis, supported by fungal metabolites, releases nutrients that 
may promote fungal growth, illustrating the complex dynamics 
that shape gut ecology [112]. These multi-kingdom interactions 
among viruses, fungi, and bacteria are essential for maintaining 
the structure and function of the gut microbiome. Disruptions in 
these interactions can lead to microbial imbalances, which in turn 
affect host health and increase disease susceptibility [111].

Implications for gut inflammation and systemic diseas-
es

Imbalance in the gut microbiota including disruptions in the 
virome and mycobiome-can drive systemic inflammation and is 
implicated in diseases such as rheumatoid arthritis and systemic 
lupus erythematosus [113]. Dysbiosis of the virome can trigger 
immune responses that promote gut inflammation and contrib-
ute to IBD, characterized by a loss of microbial diversity and the 
accumulation of specific bacterial groups, such as the Rumino-
coccus gnavus clade and E. coli [109,114,115]. Alterations in the 
mycobiome, particularly the overgrowth of Candida, can further 
escalate gut inflammation and disease by stimulating the host 
immune system [116]. The virome and mycobiome also regulate 
the production of microbial-derived metabolites, which can affect 
host metabolism. Their dysbiosis can lead to chronic low-grade 
inflammation, contributing to metabolic syndromes such as obe-
sity and type 2 diabetes mellitus [117]. Additionally, the gut mi-
crobiota influences lung diseases-for example, lipopolysaccharide 
stimulation in atopic asthma and gut injury or inhibited epithelial 
growth in pneumonia. Recent findings suggest that altering the 
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gut microbiota can lead to metabolites that promote inflamma-
tion in distant organs such as the lungs and bone marrow. The 
mycobiome not only affects local gut inflammation but can also 

contribute to systemic inflammation by releasing metabolites that 
impact distant tissues and organs.

Figure 3: Gut Virome-Mycobiome Interactions and Their Impact on Gut Microbial Dynamics: This diagram illustrates how 
interactions between the gut virome and mycobiome influence bacterial populations. Bacteriophage-mediated bacterial lysis 
releases nutrients that promote fungal growth, while fungal metabolites further modulate bacterial dynamics.

Potential therapeutic targets

Emerging therapeutic strategies now focus on developing 
microbiome-modulating drugs, such as those targeting bacterio-
phage-host interactions, as new treatments for chronic gastroin-
testinal diseases [108]. Diet remains a central factor in regulating 
the gut microbiome; for example, a fiber-rich diet in patients with 
type 2 diabetes mellitus (T2DM) has been shown to improve insu-
lin sensitivity by promoting beneficial gut fermenters and enhanc-
ing glucose metabolism. Similarly, supplementation with flaxseed 
mucilage in obese women resulted in changes to the gut microbi-
ome and improvements in glycemic control [118]. Bacteriophage 
therapy represents another promising approach, demonstrating 
efficacy in treating antibiotic-resistant bacterial infections in clin-
ical settings [119]. Modulating the gut mycobiome with antifungal 
agents has also been shown to reduce inflammation in conditions 
such as Crohn’s disease and ulcerative colitis [109]. Targeting 
the virome, particularly bacteriophages, to restore microbial 
ecosystem balance has been linked to symptom improvement in 
inflammatory bowel disease [107]. Microbiota transplantation 
is another strategy, with evidence showing that transferring gut 
microbiota from healthy donors can alleviate both gastrointesti-
nal and behavioral symptoms in patients with autism spectrum 
disorder [118]. Combining virome and mycobiome modulation 
therapies offers a synergistic approach to reestablishing microbi-
al balance and treating inflammatory conditions [120].

 Current and future therapeutic approaches.

Virome-Based Therapies

The “human virome” encompasses all viruses present on or 
within the human body, including those responsible for acute, 
persistent, or latent infections, as well as endogenous retrovirus-
es integrated into the genome [121]. While microbiome research 
has historically centered on bacterial communities due to well-es-
tablished techniques for bacterial study, the archaeal, eukarya, 
and viral components have received less attention [122]. Recent 
advancements in high-throughput sequencing and bioinformatics 
have expanded and standardized virome research, bringing new 
insight into the gut virome’s role in health and disease [123,124]. 

As the relationship between gut dysbiosis and disease be-
comes clearer, targeted manipulation of the gut virome is emerging 
as a therapeutic focus. Approaches such as prebiotics, probiotics, 
synbiotics, fecal microbiota transplantation (FMT), phage therapy, 
and fecal virome transplantation (FVT) are increasingly explored. 
Phage therapy stands out for its ability to specifically target and 
eliminate pathogenic bacteria, making it especially valuable for 
infections caused by invasive or drug-resistant organisms [123]. 
Phage therapy and FVT are now being studied as promising alter-
natives for treating Clostridioides difficile infections, particularly 
those involving resistant strains. Given the risks associated with 
broad-spectrum antibiotic therapy, complementary strategies 
such as FMT, FVT, and phage-based interventions are being adopt-
ed to treat, prevent, and reduce the recurrence of CDI [125]. 

As virome research and bioinformatics advance, improved 
databases and analytical tools are enabling the achievement of 
strain-level resolution, thereby facilitating more accurate iden-
tification of dysbiosis-associated viral communities [124]. Thus, 
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virome-based therapies represent a rapidly growing frontier in 
microbiome interventions, with significant potential for treating 

a broad range of diseases

Figure 4: Impact of Gut Microbial Dysbiosis on Systemic and Neurological Diseases: Gut microbial dysbiosis is linked to 
systemic diseases like rheumatoid arthritis and systemic lupus erythematosus. It also contributes to respiratory conditions such as 
asthma and neurodevelopmental disorders like autism spectrum disorder.

Phage therapy for gut dysbiosis 

A balanced gut microbiome is essential for maintaining intes-
tinal barrier integrity and preventing pathogenic invasion [126]. 
Dysbiosis-disruption of microbial composition and function-may 
result from various factors, including diet, toxins, drugs, and 
pathogens [127]. This imbalance alters microbial populations and 
metabolism, disrupts the gut barrier [128] and can lead to various 
inflammatory and systemic diseases [129]. Phage therapy, which 
utilizes bacteriophages to target specific harmful bacteria, has 
emerged as a promising strategy for restoring microbial balance 
[129]. Phages are highly specific to their bacterial hosts, replicate 
using bacterial machinery, and do not persist outside their target 
bacteria [130]. Therapeutic approaches include conventional and 
engineered phages, as well as phage-derived enzymes [131]. The 
gut virome predominantly includes ssDNA phages (Microviridae) 
and dsDNA phages [132]. 

Metagenomic studies have identified crAssphage, a dsDNA 
phage, as highly prevalent in the human gut, present in approxi-
mately half of individuals, and constituting up to 90% of viral DNA 
in stool [133]. Healthy adults tend to share a core set of bacte-
riophages, forming the healthy gut phagosome (HGP), which is 
notably reduced in diseases such as ulcerative colitis and Crohn’s 
disease (by up to 42–54%) [134].

Phage therapy aims to modulate the phageome to beneficially 
influence the bacteriome. This involves selecting or engineering 
phages for specific bacterial targets, preparing effective phage for-
mulations, and establishing appropriate dosing strategies [135]. 
While the introduction of antibiotics historically overshadowed 

phage therapy, the rise of antibiotic resistance has renewed in-
terest in these targeted interventions [136]. Phages offer strain 
specificity, which reduces the risk of complications like antibi-
otic-associated diarrhea and Clostridium difficile infection [137]. 
Their ability to replicate within the host also enables sustained 
therapeutic activity at the site of infection [138]. Recent research 
highlights the potential of phage therapy. For instance, a five-
phage cocktail targeting Klebsiella pneumoniae in IBD models 
reduced inflammation and disease severity [139]. Furthermore, 
the selection of bacteriophages from families such as Leviviridae, 
Microviridae, and Caudovirales (Myoviridae, Siphoviridae, and 
Podoviridae) underlines their broad applicability in clinical con-
texts [140]. Clinical applications use phages from families such as 
Leviviridae, Microviridae, and Caudovirales. Phages can also work 
synergistically with antibiotics, disrupting bacterial biofilms and 
improving antibiotic penetration 140,141,142. Safety and effica-
cy have been demonstrated in human trials. Oral administration 
of T4-like phage cocktails in children with acute bacterial diar-
rhea confirmed the safety of phages [143]. The PHAGE study in 
healthy adults found a four-strain phage cocktail to be safe and 
well-tolerated [144]. Another trial demonstrated that phage sup-
plementation selectively reduced fecal E. coli without affecting 
overall microbiota diversity and was associated with favorable 
shifts, including increased butyrate-producing Eubacterium and 
reduced Clostridium perfringens [145].  Animal studies also con-
firm the efficacy of phages in reducing pathogenic bacteria in 
vivo [146]. Phage therapy can selectively eliminate pathogenic 
species using lytic phages or potentially induce temperate phag-
es in commensals; however, the latter approach is limited by an 
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incomplete understanding of phage induction mechanisms [147]. 
Targeted phage therapies have shown success in models of IBD; 
for example, a seven-lytic-phage cocktail targeting adherent inva-
sive Escherichia coli (AIEC) reduced inflammation and preserved 
non-target commensal strains [148]. Collectively, these studies 
demonstrate the promise of phage therapy as a precise and effec-
tive tool for modulating the gut microbiota and addressing dysbi-
osis. Further research is needed to optimize dosing and better un-
derstand phage-immune system interactions, but phage therapy 
is an emerging alternative to antibiotics for gut health.

Antiviral Interventions for Gut Health

Recent research suggests that antiviral treatments can de-
crease viral loads and have a positive impact on the gut microbio-
ta. Direct-acting antiviral agents (DAAs), for example, are effective 
in eradicating viruses and have been linked to a partial restoration 
of α-diversity and a reduction in potentially pathogenic species; 
however, these benefits are less evident in patients with cirrhosis 
[149]. In inflammatory bowel disease, particularly Crohn’s dis-
ease, an increase in Caudovirales has been linked to reduced bac-
terial diversity, suggesting that virome alterations may contribute 
to intestinal inflammation and dysbiosis [150]. During viral infec-
tions, epithelial and innate immune cells recognize pathogens via 
pattern recognition receptors, activating inflammatory cascades 
that generate type I and III interferons, IL-6, IL-1β, IL-18, and 
TNF-α—key mediators in antiviral defense and leukocyte recruit-
ment [151]. Beyond antiviral drugs, immune modulation with 
probiotics offers additional benefits. Probiotic supplementation 
can strengthen the gut’s antiviral defenses by influencing microbi-
al composition and stimulating interferon production, potentially 
supporting longer-term resistance to infections like COVID-19 
[152]. In HIV, INSTI-based antiretroviral regimens promote better 
recovery of gut microbiota diversity compared to NNRTI-based 
therapies, underscoring the relationship between antiviral treat-
ment and microbiome restoration [153]. Vitamin A supplementa-
tion has also been shown to inhibit murine norovirus replication 
and increase the abundance of Lactobacillus, further enhancing 
antiviral protection [154]. Collectively, these findings highlight the 
multifaceted impact of antiviral interventions not only in reduc-
ing viral pathogens directly but also in supporting a healthier and 
more resilient gut microbiota.

Mycobiome-Targeted Interventions

The healthy gut mycobiome, primarily composed of commen-
sal fungi such as Saccharomyces cerevisiae, Malassezia restricta, 
and Candida albicans, is essential for intestinal homeostasis—
supporting digestion, modulating immunity, and preventing 
pathogenic overgrowth [101].  Disruption of the mycobiome, or 
fungal dysbiosis, has been increasingly linked to a range of dis-
eases, including gastrointestinal, metabolic, neurological, and car-
diovascular disorders [155]. Recognizing its importance, the my-
cobiome is now viewed as a promising target for diagnostics and 
therapy in precision medicine. Strategies to restore mycobiome 

balance include the use of probiotic fungi, antifungal medications, 
dietary modifications, and fecal microbiota transplantation (FMT) 
all of which have shown potential to re-establish a healthy gut en-
vironment [155,156]. Ongoing research into these interventions 
may yield new treatments for mycobiome-associated diseases.

Antifungal Strategies and Probiotics

Fungal infections cause over 1.5 million deaths globally each 
year, particularly in individuals with weakened immune systems 
[157]. The increasing incidence of these infections, combined 
with rising resistance and side effects from conventional anti-
fungal drugs, highlights the urgent need for safer, broad-spec-
trum alternatives [158,159]. Probiotics live microorganisms that 
confer health benefits when administered in adequate amounts 
have emerged as promising antifungal agents by boosting host 
immunity and preventing pathogen colonization [159]. Research 
has demonstrated that specific probiotic strains can inhibit the 
growth of pathogenic fungi. For example, certain probiotics are ef-
fective in preventing and treating dermatophyte infections [160]. 
Lactobacillus reuteri R2, in particular, showed potent antifungal 
activity: its freeze-dried supernatant, at concentrations above 1%, 
completely inhibited the growth and germination of Trichophyton 
tonsurans [161]. Another study found that combining probiotics 
with seaweed extract (Ascophyllum nodosum) produced signif-
icant in vitro antifungal effects against Trichophyton mentagro-
phytes and Candida albicans [162]. 

Additional investigations have highlighted the efficacy of var-
ious probiotic bacteria, including Streptococcus salivarius K12, 
Lactobacillus rhamnosus GR-1, Lactobacillus reuteri RC-14, and 
clinical Lactobacillus isolates, against Candida species [163]. Clini-
cal studies support these findings: In preterm infants, supplemen-
tation with Lactobacillus species has been shown to reduce gas-
trointestinal Candida colonization, decrease late-onset sepsis, and 
improve neurological outcomes [164]. Similarly, a randomized, 
double-blind trial found that probiotic supplementation reduced 
rates of fungal colonization and invasive fungal sepsis, promoted 
earlier initiation of full enteral feeds, and shortened hospital stays 
compared with the placebo [165]. These results support the use 
of probiotics as an antifungal strategy either alone or in combina-
tion with traditional agents—to control fungal infections and help 
maintain a balanced mycobiome.

Holistic Microbiome Modulation

Fecal Microbiota Transplantation (FMT), Including Virome 
and Fungi

Fecal microbiota transplantation (FMT) involves transferring 
the microbiota from the stool of a healthy donor to a patient with 
gut dysbiosis. In addition to bacteria, the human gut contains a 
diverse virome and mycobiome-collections of viruses and fungi, 
respectively [166]. While FMT is primarily used to treat Clostrid-
ioides difficile infection (CDI), recent research highlights the criti-
cal role of the virome and mycobiome in its efficacy.
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CDI patients exhibit an enrichment of bacteriophage Cau-
dovirales, characterized by reduced viral diversity compared to 
healthy individuals. Successful FMT reduces the abundance of 
Caudovirales, and the presence of donor-derived Caudovirales 
in recipients correlates with clinical cure [167]. Donor-derived 
bacteriophages can persist in recipients for up to a year, with 
long-term outcomes influenced by the compatibility between the 
donor and recipient [168]. Refined approaches such as fecal vi-
ral transfer (FVT) and fecal filtrate transplantation (FFT) aim to 
transfer virome components without bacteria, potentially reduc-
ing infection risks. However, the persistence of eukaryotic viruses 
and prophage-encoded virulence factors requires caution [169]. 
Animal studies suggest that FVT can help restore gut homeosta-
sis after antibiotics, with recipient mice regaining pre-antibiotic 
bacteriome profiles more effectively when given viable virome 
transplants [170]. Fungal constituents of FMT are also gaining 
attention for their immunomodulatory and therapeutic roles. In 
patients with ulcerative colitis (UC), FMT-induced remission was 
associated with an increase in beneficial fungi (e.g., Kazachstania 
naganishii, Schizosaccharomyces pombe) and a decrease in patho-
genic fungi, such as Candida [171]. In CDI, the overrepresentation 
of Candida albicans and reduced fungal diversity are common, 
while FMT responders tend to gain donor-derived Saccharomy-
ces and Aspergillus species; non-responders, on the other hand, 
retain high Candida levels [172]. The pre-FMT abundance of Can-
dida spp. in recipients may predict FMT success, and donor feces 
enriched in fungi, such as Filobasidium, are associated with better 
outcomes, possibly due to enhanced anti-inflammatory effects 
[173]. Experimental models further demonstrate that antibiot-
ic-induced dysbiosis promotes fungal overgrowth, which can be 
suppressed by fecal microbiota transplantation (FMT) highlight-
ing the interplay between bacteria and fungi in colonization re-
sistance [174]. These findings underscore the importance of con-
sidering both the virome and mycobiome in FMT. Incorporating 
their dynamics into future FMT strategies may improve therapeu-
tic outcomes, reduce recurrence, and enable more personalized 
microbiota-based interventions.

Personalized Medicine Approaches

Personalized medicine is emerging as a powerful strategy for 
addressing microbiome-related health conditions by tailoring in-
terventions to an individual’s specific microbial and clinical pro-
file. Advances in metagenomics and sequencing technologies now 
enable comprehensive analysis of the gut microbiota, making it 
possible for clinicians to design targeted treatments that consider 
factors such as diet, ancestry, physiology, and microbial signatures 
[175]. These individualized approaches bridge microbiome re-
search and clinical practice, allowing for precise dietary and ther-
apeutic recommendations based on both host and microbial meta-
bolic profiles [176,177]. A personalized strategy typically involves 
a detailed analysis of a patient’s clinical data, gut microbiome, and 
metabolome, identifying shifts in microbial diversity and function. 
This is crucial given the significant intra-individual variability in 
microbiota, which can influence therapeutic responses and create 

drug response biases [178,179]. For example, personalized pro-
biotic regimens based on stool analysis and health history have 
demonstrated increased beneficial bacterial populations and mi-
crobial diversity, resulting in improved outcomes in conditions 
such as diarrhoea and constipation [180]. As omics data are in-
creasingly integrated into clinical care, advances in bioinformatics 
and machine learning are essential for interpreting complex data-
sets. These tools support the development of precision probiotics, 
next-generation prebiotics, and tailored dietary therapies [181]. 
Ultimately, the integration of microbiome-based diagnostics and 
therapeutics with pharmacogenomics and epigenomics marks a 
new frontier in patient care, moving healthcare toward truly per-
sonalized medicine [182].

Conclusion and Future Perspectives

A balanced interplay among gut bacteria, viruses, and fungi 
is fundamental to maintaining gut homeostasis and overall hu-
man health. Disruption of these interactions, through virome or 
mycobiome dysbiosis, leads to microbial imbalances that con-
tribute to the development of disease. Indeed, shifts in virome or 
mycobiome composition are linked to a range of conditions, from 
chronic gut inflammation (e.g., IBD) and autoimmune disorders 
(such as rheumatoid arthritis) to metabolic diseases (obesity and 
type 2 diabetes). Such disturbances compromise mucosal barrier 
integrity, disrupt immune responses, and alter metabolic path-
ways, leading to both local and systemic effects. Looking ahead, 
the gut virome and mycobiome remain less well-characterized 
than the bacteriome, primarily due to persistent technical chal-
lenges. Advances in metagenomic sequencing and bioinformatics 
are beginning to illuminate the vast “viral dark matter” and reveal 
greater fungal diversity. However, incomplete reference databas-
es and high inter-individual variability still hinder progress. Fu-
ture studies should prioritize integrated multi-omics approaches 
to decipher multi-kingdom interactions and their impacts on the 
host, complemented by targeted experiments to establish caus-
ative mechanisms in disease. On the therapeutic front, targeting 
the virome and mycobiome is a promising strategy. Bacteriophage 
therapy and microbiome-modulating drugs are being investigat-
ed for the treatment of antibiotic-resistant infections and chron-
ic gastrointestinal disorders. Antifungal treatments have shown 
benefits in alleviating gut inflammation (as in IBD). Additionally, 
tailored high-fiber diets can beneficially reshape gut microbial 
communities to improve metabolic outcomes. Ultimately, incor-
porating virome and mycobiome insights into microbiome-based 
diagnostics and personalized medicine holds promise for more 
effective disease prevention and treatment.
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