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Introduction 

Harmful gasses monitoring is of importance, especially in 
industry applications where the risk is high. Of the different 
harmful and toxic gases, ammonia (NH3) is one of the most 
intensive and even in lower concentrations can cause damage 
to the respiratory system [1]. Monitoring ammonia (NH3) 
concentrations is of importance in different areas, as it is toxic in 
water [2] and also important for monitoring the concentration in 
breath [3], for early health problems diagnosis or even as a first 
indicator for liver and kidney health check. Sources of pollution of 
air are the agriculture industry, livestock [4], transportation and 
food processing plants [5], and microelectronics (for example, in 
the production of silicon nitride by chemical vapor deposition, 
NH3 is one of the precursors) [6]. 

NH3 can be detected by using sensors based on nanomaterials 
[7]. One of these nanomaterials are MXenes. MXenes are a class 
of 2D nanomaterials and are being explored for increasing the 
sensitivity of other nanomaterial-based sensors for harmful gases. 
MXenes are produced by selective etching of crystal MAX phase, 
where M is a transition metal, A is aluminum or silicon, and X is 
carbon or nitrogen. After etching the aluminum or silicon from the 
MAX phase, left is the MX layered structure from nanosheets, for  

 
example, titanium carbide (Ti3C2) (Figure1). As such, the strengths 
of MXenes, important for use in sensing applications, are high 
electric conductivity and high surface area [8].

MXenes are terminated with -OH, -O, -F groups, depending 
on the etching method of the A elements in the MAX phase, and 
because of these groups, the target molecules of interest can bind 
more easily on the surface, which increases the sensitivity of the 
materials [10] [11]. By incorporating them with semiconducting 
nanomaterials, such as nanosheets [8], nanorods [12] or 
quantum dots [13], it is possible to increase sensitivity toward 
harmful gasses compared to pristine MXenes or semiconducting 
nanomaterials.

These nanomaterials can be used as sensing layers in 
resistive sensors, which means that the electrical resistance of the 
nanomaterials changes when in contact with specific molecules. 
The change in resistance is measured and the concentration of the 
molecules in question can be determined.

Resistive sensors’ electrical resistance increases or decreases 
under the influence of the target molecules, depending on the 
interactions between the target molecules and the sensing layer, 
and on the sensing layer’s type of conductivity.
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The response of the sensors is given in percentage change of 
the resistance, calculated by the formula:

                                      (1)

where  is the resistance in air and  is the resistance of the 
sensor when exposed to the influence of NH3. 

Increasing the response of sensors is of interest for 
broadening their possible applications, so they can be used both 
in the industry environment and for healthcare through the 
monitoring of biomarkers. Improving the sensitivity of a sensor 

towards a target gas can be done by UV illumination, where the 
UV photons generate conduction electrons which play a role in 
the sensing mechanism [14], surface functionalization with metal 
nanoparticles (NPs), where the affinity toward the target gas can 
be increased, depending on the metal, and also possible creation 
of a barrier between the metal NPs and the sensing layer which 
can impact the sensing mechanism [15], or by combining different 
materials, utilizing their properties, such as large surface area and 
conductivity, to make composites with improved sensitivity and 
stability compared to its self-standing components [16].

Figure 1: FESEM image of Ti3C2Tx MXene [9]

In this paper, different approaches, incorporating MXenes 
with sensing materials and comparison of the responses of the 
sensors are briefly reviewed to conclude best candidates for 
precise monitoring of NH3 in the environment but also in human 
breath.

Discussion on MXene/nanomaterials composites

Mxenes/Au/Pt

	 A sensing layer made from Ti3C2Tx MXenes and Au or 
Pt nanoparticles, where the resistance of the material increases 
under the influence of NH3 molecules has been reported [17]. The 
sensing mechanism has been explained by the fact that oxygen, 
in the adsorption process on the sensor surface, takes electrons 
from the material and becomes a negatively charged species, 
as a result a hole accumulation layer forms and the material’s 
resistance is changed. After the reaction between the present NH3 

molecules and the oxygen, the electrons go back to the material 
and thus the resistance of the sensor changes again. Another 
important fact is that Au and Pt particles help with their catalytic 
roles toward the NH3 gas. Also of importance is the reported 
Schottky barrier formation between the Au or Pt particles and 
the MXenes by which the depletion region has an effect on the 
sensing mechanism. Good selectivity has been reported toward 
NH3 and after a high number of bending cycles, the response of 
both structures decreases slowly, indicating stability for possible 

applications in flexible sensors. 

Mxenes/GaN

Another approach has been reported by fabricating a GaN 
nanorods-Ti3C2Tx composite for the sensing material [11]. N-type 
behavior of the composite has been reported, which means 
that the GaN nanorods dominate the sensing mechanism?. A 
heterojunction is formed between the p-type МXenes and n-type 
GaN, and by the reaction of NH3 with the adsorbed oxygen, 
electrons are given back to the material with which the depletion 
layer becomes narrower and thus the resistance of the material 
decreases. The reported lower detection limit of the composite 
is 20 times lower than that of GaN nanorods and with a 3.4 
times higher response than that of self-standing MXenes. These 
structures have good stability after aging, where the response 
variation is under 4.8 % after 90 days. 

Mxenes/WS2

Fabrication of composite between Ti3C2Tx MXene and WS2 
nanosheets has been reported, where both components are p-type 
in the composite, and by the reactions of NH3 with oxygen, when 
the electrons are given back to the material they recombine with 
holes increasing the resistance of the sensor [8]. The reported 
structures have higher selectivity toward NO2 than NH3, which is 
confirmed by DFT simulations, where the calculated adsorption 
energies are -1.64 eV for NO2 and -1.2eV for NH3. 
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Mxenes/SnO2

In another work, sensors prepared with Ti3C2Tx MXenes and 
SnO2 quantum dots have been reported, where the resistance 
increases under the influence of NH3 molecules [13]. An increase 
in response by 13.35% at 50 ppm of Ti3C2Tx Mxenes by sputtering 
of a SnO2 layer over them has been reported. The resistance of this 
composite also increases [18]. A decrease in response time has 
been reported by these approaches, compared to pristine MXenes. 
However, in another study, fabrication of composite has been 
reported by using the same materials, namely Ti3C2Tx MXenes and 
SnO2 quantum dots, where the resistance of the material decreases 
when NH3 molecules are adsorbed [19]. This is in agreement 
with the n-type SnO2 nanoparticles, and the difference can be 
due to the different concentrations of SnO2 in the composite, and 
possible differences in the sizes of the quantum dots in both 
studies. This ratio determines which material is dominating the 
sensing process. Here, the sensing mechanism is also explained by 
returning electrons to the conduction band when NH3 reacts with 
the adsorbed oxygen. Also, it has been reported that by adjusting 
the concentrations of the components of the composite, a higher 
response or wider detection range can be achieved. 

Mxenes/In2O3

A strong response has been reported from a sensor produced 
with In2O3 microtubes and Ti3C2Tx MXene. The structure also 
has very fast response and recovery times, good stability and 

selectivity towards NH3 [20]. The proposed mechanism is the 
same, meaning that the NH3 molecules react with O2

- species 
and by doing so, trapped electrons from the conduction band of 
the material are given back, which increases the conductance of 
the material. Another approach has been reported by creating a 
composite with Ti3C2Tx MXenes and In2O3 NPs [21], with very good 
selectivity towards NH3, and with increase in resistance under 
the influence of NH3, and explained reason is that in this case the 
sensing mechanism depends on the MXenes. Another composite 
of Ti3C2Tx MXenes and In2O3 NPs with high response and very good 
selectivity has been reported [22].

Mxenes/Na2Ti3O7-PANI

 Another strong response has been reported by preparing a 
sensitive material with МXenes, sodium titanate nanofibers and 
encapsulating the composite with polyaniline (PANI), with good 
stability, where PANI is the reason for the increased moisture 
resistance and has an effect on the stability of the structure [23]. 
The surface structure of the Ti3C2Tx-Na2Ti3O7-PANI is fibrous, and 
the surface has a very large area, which partly can contribute 
toward the increased response because of the increased available 
active sites where the reaction of the sensing mechanism can take 
place.

In Table 1 the reviewed reported responses and their response 
and recovery times of the different materials under the given 
conditions are compared.

Table 1:  Response in percent and response and recovery times of different MXene composites.

Material Concentration Response/ recovery time Response Ref.

Au- Ti3C2Tx
Pt- Ti3C2Tx

100 ppm 87/217s 16% (RH=0%); 14.5% (RH=30%)
8.2% (RH=0%); 7% (RH=30%) [17]

GaN- Ti3C2Tx 100 ppm 21/23s 51% (RH=20% to 80%) [12]

WS2- Ti3C2Tx 5 ppm -/- 29% (RH = 33%) [8]

SnO2- Ti3C2Tx 100 ppm 34/-s 10.4% (RH=40%) [13]

SnO2- Ti3C2Tx 100 ppm 109/342s 41% (RH = 40 to 55%) [19]

SnO2- Ti3C2Tx 50 ppm 24.9/86.5 s 13.35 % (RH=45%) [18]

In2O3- Ti3C2Tx 100 ppm 1/3.25s 180% (RH = 24.8%) [20]

In2O3- Ti3C2Tx 30 ppm 42/209s 63.8 % (RH = 40%) [21]

In2O3- Ti3C2Tx 20 ppm 60/300s 100.7% (RH=35%) [22]

Ti3C2Tx-Na2Ti3O7-PANI 100 ppm 231.2/165.4s 185.44% (RH=45%) [23]

Table abbreviations: Ref. (Reference); RH (Relative Humidity).

The structures’ behavior under humidity makes them 
potentially applicable in monitoring NH3 from human breath. 
Increased NH3 concentrations in blood can be a marker for health 
problems, such as problems with liver function. It is a byproduct 
of protein metabolism and if the levels are high, it is an indicator of 
problems with the NH3 metabolism in the body, as it is converted 

to urea slower [24]. Another example of why NH3 measuring is 
important is in monitoring hemodialysis [25].

If the humidity and temperature of the environment have an 
effect on the sensors’ response, breath detection of NH3 with such 
sensors becomes a little more complicated. For that reason, the 
sensors’ response depending on the humidity and temperature 
should be measured precisely. In addition, calibration of the 
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sensor is needed, or for better precision, a sensor for RH and 
temperature in close proximity with the NH3 sensor should be 
used, and by knowing the NH3 sensors’ response dependence 
on RH and temperature, correct concentrations of NH3 can be 
calculated independent of these factors, and false positives 
or negatives avoided. Another important criterion for breath 
detection is the response time of the sensor, as it should be short 
so that the measurement does not inconvenience the patient by 
needing multiple exhales.

By these criteria, the most applicable materials for breath 
NH3 detection are In2O3/MXene and PANI/MXene. PANI/MXene 
composite has been reported to have an increased response to 
NH3 with RH increase, that means if it is closer to the mouth of 
the patient it should be in contact with more H2O molecules which 
will increase its sensitivity, which means it makes it the suitable 
for measuring NH3 levels in human breath, however, the response 
time is longer compared to In2O3/MXene (Table 1). The fastest 
response times and the high response of In2O3(microtubes)/
MXene makes this composite most suitable for sensors for human 
breath analysis, from the reviewed works. However, more tests 
are needed for different combinations of RH, temperatures above 
room temperature, closer to body temperature and aging, so that 
the potential materials can be characterized for the intended 
environment.

Conclusion

MXenes are proven to be of importance in the fabrication 
of sensors for harmful gasses operating at room temperatures, 
as they are conductive and with a high surface-to-volume ratio, 
thus having the potential for increased sensitivity when used as a 
composite material as compared to the pure self-standing MXenes 
and semiconducting nanoparticles. A comparative review has 
been done of some of the nanocomposites with MXenes reported 
recently considering their sensitivity toward ammonia. They show 
high potential for further research and development of sensing 
composite materials. One of the main mechanisms for sensing is 
oxygen adsorption and electron trapping from the materials when 
they are exposed to air. When ammonia molecules react with the 
adsorbed oxygen species, the trapped electrons are transferred 
back to the material. As a consequence the resistance of the 
material changes, depending on the type of junctions between 
the components and the dominating component in the sensing 
mechanism of the composite material. For breath analysis, it was 
concluded that In2O3/MXene was the most suitable material due 
to the fastest response and recovery times compared to the other 
reviewed materials.
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