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Introduction

The influenza virus belongs to the Orthomyxoviridae family, 
characterized by an enveloped structure and a negative-sense 
single-stranded RNA genome. In humans, Type A and Type B 
influenza viruses cause significant morbidity and mortality. 
Despite annual vaccination campaigns, the virus is capable of 
evading host immune responses by continually generating new 
strains via antigenic shift, drift, and mutation. These mecha-
nisms enable the virus to establish infection and cause disease 
in susceptible populations [1].

Reactive oxygen species (ROS) are generated as a regular 
byproduct of cellular metabolism and participate in numerous 
biological pathways. However, an imbalance in the cellular re-
dox state can result in oxidative stress, leading to deleterious 
effects such as DNA damage, inflammation, and dysregulation of 
cell proliferation. These consequences reflect the multifaceted 
nature of ROS and highlight the importance of maintaining redox 
homeostasis for proper cellular function [2].

Multiple studies have suggested that influenza viruses in-
duce excessive ROS production, leading to oxidative stress and 
respiratory cell pathophysiology. Despite the virus’s ability to 
generate ROS, various cellular processes are activated to main-
tain a normal redox state during infection. Among these process-
es, the superoxide dismutase (SOD) family plays a crucial role as 
the most significant cellular antioxidant factor.

Notably, research indicates that influenza virus infection  

 
downregulates SOD1 levels, resulting in increased ROS pro-
duction. Prolonged exposure to excessive ROS exacerbates the 
virus’s pathogenesis and contributes to tissue damage. These 
findings highlight the delicate balance between ROS and cellular 
redox state during influenza virus infection and underscore the 
significance of SOD as a key regulator of ROS production [3,4].

Findings

Several studies have shown that influenza viruses cause ox-
idative stress state within the cell [5]. In the following article, 
the possible mechanisms of the virus in inducing oxidative stress 
will be discussed. One mechanism for the Influenza A virus (IAV) 
to increase reactive oxygen species (ROS) is by downregulating 
superoxide anion dismutase 1 (SOD1). Influenza virus PB1-F2 
induces cell death by inactivating matrix metalloproteinases and 
releasing proapoptotic proteins [6]. Through inhibiting SOD1, 
PB1-F2 contributes to alveolar epithelial cells production of mi-
tochondrial ROS. Moreover, PB1-F2-induced ROS cause the in-
flammasome to activate and secrete IL-1β which is one of the 
inflammatory cytokines [3]. Furthermore, PB1-F2 represses 
the mitochondrial internal-membrane potential. PB1-F2 can 
trigger the permeabilization and instability of mitochondrial 
membranes by forming a variety of sized pores in planar lipid 
membranes [7].

The NOX family, which includes the members NOX1 to NOX5, 
DUOX1, and DUOX2, are present in cells and phagosome mem-
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branes [8]. It is seen that following A549 cell lines infection with 
H5N1 IV, NOX was upregulated whereas SOD1, SOD3, CAT, and 
Nrf2 were downregulated [9]. In IV infection, NOX2 and NOX4 
appear to be implicated in the formation of ROS [10,11]. Acti-
vation of DUOX2-induced ROS production in airway cells was 
observed via IFN induction and stimulated the expression of the 
melanoma-associated differentiation gene 5 (MDA5) and the 
double-stranded RNA helicase enzyme RIG-1-like receptor (RIG-
1) [12].

Another mechanism involved in the OS establishment of the 
virus is through an surge in ROS and a decrease in intracellular 
glutathione (GSH). Glucose- 6-phosphate dehydrogenase (G6PD) 
regenerates the reduced form of GSH, which also maintains re-
dox equilibrium. However, Infection with the influenza virus 
leads to a decrease in both the expression and activity of G6PD 
[13]. Moreover, sirtuin 2 (SIRT2) and nuclear factor erythroid 
2-related factor 2 (NRF2) expression were both downregulated 
together with G6PD following infection [14].

The third mechanism involved in OS induction is through 
NS1 protein. In chicken oviduct epithelial cells (COECs) treated 
with NS1 expression plasmids, the quantity of avian influenza 
virus NS1 protein was associated with elevated levels of ROS. It’s 
interesting to note that NS1-transfected COECs showed lower 
superoxide dismutase and catalase activity [2].

However, through the OS state within the cell, MicroRNAs 

(miRNAs) expression is changed. MiRs are one of the important 
noncoding RNAs that regulate a variety of cellular pathways by 
regulating gene expression. Interactions and regulation between 
Ros and miRNA can occur during influenza virus infection [4]. 
Different experimental models demonstrate differential expres-
sion of miRNAs under oxidative stress (mainly miR-9, -21, -220a, 
and -141) [15]. MiR-9 expression is stimulated by IAV through 
OS generation, which augments viral replication and mitochon-
drial dysfunction [4].

As a result of IAV induced ROS, miR-141 expression is en-
hanced to diminish cellular inflammation through the Nrf2 path-
way [16]. In ROS conditions, miR-21 and miR-200a also seem to 
be upregulated which are involved in IAV infected cells-inhibited 
apoptosis [17].

IV infection can decrease downstream molecules of the Nrf2 
pathway, such as SOD1, HO-1, NQO1, and CAT; thus, regulation of 
these molecules has a significant role in elevated ROS following 
IV infection [18,19].

IVs have the ability to control various oxidative-stress sig-
naling pathways, such as PI3K/AKT, NF-κB, and MAPK, which 
ultimately enhance viral replication and contribute to the de-
velopment of disease. Therefore, manipulating these signaling 
pathways may exacerbate the lung damage caused by IV infec-
tion [20] (Figure 1). 

Figure 1: Oxidative stress following influenza infection.  Upon infection, the virus triggers an elevation in free radicals and a 
reduction in antioxidant levels. Virus also leads to a subsequent rise in the quantity of MiR-21, which in turn contributes to the 
further accumulation of free radicals. On the other hand, the upsurge in MiR-9 is a direct consequence of the heightened levels of 
free radicals.
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Discussion

Influenza virus infection is a major cause of respiratory ill-
ness worldwide. The virus infects the respiratory epithelial cells, 
leading to an inflammatory response and tissue damage. One of 
the mechanisms underlying this damage is oxidative stress in-
duction, which occurs due to the excessive production of ROS by 
infected cells.

ROS and RNS are known to damage cellular macromolecules 
and disrupt cellular signaling pathways, leading to cellular dys-
function and death. Moreover, these species are also known to 
activate pro-inflammatory pathways, leading to an exacerbation 
of the inflammatory response. Several studies have demonstrat-
ed the induction of oxidative stress during influenza virus infec-
tion [11,21].

The induction of oxidative stress during influenza virus in-
fection has important implications for disease pathogenesis 
and treatment. For example, antioxidants have been shown to 
reduce oxidative stress, influenza associated complications such 
as pneumonia and improve lung function [22]. Moreover, a re-
cent study showed that treatment with the antioxidant N-ace-
tylcysteine (NAC) reduced viral replication and inflammation in 
mice infected with the H5N1 highly pathogenic influenza virus 
[21,23]. Oxidative stress induction is a key mechanism underly-
ing the pathogenesis of influenza virus infection. Targeting oxi-
dative stress pathways may represent a promising approach for 
the treatment of this disease.

Conclusion

It is evident that augmenting comprehension of the oxidative 
stress mechanism of the influenza virus can yield novel insights 
into the pathogenesis of the virus. Additionally, it can offer a 
therapeutic avenue for curtailing and managing influenza virus 
infection, particularly in cases of highly virulent human avian 
influenza.
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