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Introduction 

 Biologically catalyzed reactions (with enzymes, or living cell 
cultures) can successfully replace complex chemical syntheses, 
being more selective, by using milder reaction conditions, and 
generating less waste. As proved by the recent literature, and the  

 
eBooks EB1-EB3 (Figure 1) of Maria [1-3] respectively, and by 
the under way EB4 of Maria [4] , the developed in-silico (math-
model-based) numerical analysis of such biochemical/biological 
systems turned out to be a beneficial tool (i) to in-silico off-line 
determine optimal operating policies of complex multi-enzymatic 

Abstract

The paper is pointing-out the main aspects reviewed by several eBooks denoted by (EB1-EB4), namely [1-4] respectively. These booklets 
in the Bioinformatics area are focus on the progresses made in the area of deterministic modelling of metabolic cell biochemical processes 
related to the central carbon metabolism (CCM) by using chemical and biochemical engineering (CBE) principles and rules [EB1-EB3], and [5]. 
The works EB1-EB2 reviewed a novel math (kinetic) modelling framework of metabolic pathways and of genetic regulatory circuits (GRC) with 
continuous variable ordinary differential mass balance sets (ODE) based on the process mechanism. Two approaches are discussed: I) the classic 
(default) “Whole-Cell Constant Volume” (WCCV) ODE models, that ignore the cell volume exponential increase during the cell growth, and ii) the 
holistic “whole-cell variable-volume” (WCVV) dynamic ODE models by explicitly accounting for the cell-volume growth, while preserving the cell 
isotonicity (and cell membrane integrity). While EB1-EB2 are focused on detailing the deterministic modelling of the individual gene expression 
regulatory modules (GERM), and of GRC-s in living cells by using the CBE principles, by employing a WCVV approach and rules of the nonlinear 
system control theory (NSCT), the EB3-EB4 are dealing with reviewing the ways to derive deterministic modular structured cell kinetic models 
(MSDKM) (with continuous variables, and based on cellular metabolic reaction mechanisms). These extended MSDKM are further linked to those 
of the bioreactor dynamic models (including macro-scale state variables), thus resulting hybrid structured modular dynamic (kinetic) models 
(HSMDM) proved to successfully solve more accurately difficult bioengineering problems.  

The EB3-EB4 prove, by means of several demonstrative relevant examples the superiority of using MSDKM and HSMDM dynamic math 
models (within the WCVV modelling framework) when solving various bioengineering problems, dealing with: (a) in-silico (math model based) 
off-line optimization of the operating policy of various bioreactors types (e.g. the fed-batch bioreactors), and (b) in-silico design/screening/check 
GMO-s (genetically modified microorganisms) alternatives to be used for improving performances of various industrial bioprocess/bioreactors. 

Abbreviations: ATP: Adenosin-Triphosphate; ADP: Adenosin-Diphosphate; AMP: adenosin-monophosphate; CBE: Chemical and biochemical 
engineering concepts/rules; CBE: Chemical And Biochemical Engineering Concepts/Rules; CCM: Central Carbon Metabolism Of a Cell; G: generic 
gene (DNA); EB1,EB2,EB3,EB4: the eBooks no. 1-4, corresponding to [1-4] respectively ; GERM: individual gene expression regulatory module; 
GMO: Genetically Modified Microorganisms; GRC: Genetic Regulatory Circuits; GRN: Genetic Regulatory Networks; HSMDM: Hybrid Structured 
Modular Dynamic (Kinetic) Models; M: mRNA; MCA: metabolic control analysis; MSDKM: Deterministic 	 Modular Structured Cell 
Kinetic Model; NSCT: Rules Of The Control Theory Of Nonlinear Systems; ODE: Ordinary Differential Equation Set; P: Generic protein; PI: 
Regulatory performance indices of GERM-S; QSS: Quasi steady- state; TF: transcription factors; WCVV: Whole-cell variable volume modeling 
approach; WCCV: Whole cel constant volume kinetic modelling approach
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or biological reactors with a higher precision and predictability, or 
(ii) to in-silico design GMO–s of desired characteristics for various 
uses. This work presents a holistic ‘closed loop’ approach that 
facilitate the control of the in vitro through the in silico development 
of dynamic models for living cell systems, by deriving deterministic 
modular structured cell kinetic models (MSDKM) with continuous 
variables, and based on cellular metabolic reaction mechanisms. 

The ever-increasing availability of experimental (qualitative and 
quantitative) information about the tremendous complexity of 
cell metabolic processes, stored in large bio-omics databanks 
(including genomic, proteomic, metabolomic, fluxomic cell data 
for various microorganisms, see the review of EB3), but also about 
the bioreactors’ operation [3-4, 6] necessitates the advancement 
of a systematic methodology to organise and utilise these data.  

Figure 1: cover of the e Books EB1 -EB3, that is [1-3] respectively, published with [juniper publisher, Irvine, CA(USA).

 This work is aiming to briefly review the concepts and rules 
developed in (EB1-EB4), by proving the feasibility and advantages 
of using the classic but also the novel principles and numerical 
tools of the CBE / NSCT to develop extended cell-scale MSDKM-s 
to adequately simulate the dynamics of reaction pathway modules 
which belong to CCM, and of GRCs/GRNs. These extended MSDKM 
will be further linked to those of the bioreactor dynamic models, 
thus resulting HSMDM structured models proved to successfully 
solve more accurately difficult bioengineering problems (EB3-
EB4).

 In such HSMDM, the cell-scale model part (including nano-
level state variables) is linked to the biological reactor macro-
scale state variables for improving the both model prediction 
quality and its validity range. By contrast, the current (classical/
default) approach in biochemical engineering and bioengineering 
practice for solving design, optimization and control problems 
based on the math models of industrial biological reactors is to 
use unstructured Monod (for cell culture reactor) or Michaelis-
Menten type (if only enzymatic reactions are retained) global 
kinetic models by ignoring a detailed representation of the 
metabolic cellular processes.  

 EB1-EB2 booklets presents some general concepts of CBE, of 
NSCT, and of Bioinformatics used to derive MSDKM and HSMDM 

models, with continuous variables and based on cellular metabolic 
reaction mechanisms. Such extended structured cell math 
(kinetic) models consider, with a degree of detail suitable to the 
each approached case study, the cellular key-metabolic reactions, 
being able to adequately reproduce the cell key-species dynamics. 
These structured MSDKM models can satisfactorily represent 
the key steps of the CCM at a cell scale, by also including GRC-s 
responsible for the CCM syntheses regulation, besides reaction 
modules responsible for the synthesis of cellular metabolites of 
interest for the industrial biosynthesis. Special attention is paid 
to the conceptual and numerical rules used to construct various 
individual GERM-s kinetic models, but also various GRC-s (e.g. 
toggle-switch, amplitude filters, operons expression, etc.) [7-10] 
modular kinetic models from linking individual GERM-s [11,12].  

 At the same time, EB1-EB2 briefly described a novel 
WCVV kinetic modelling framework for metabolic GRC and 
CCM processes, introduced and promoted by the author in 
previous works [13-17]. These works point-out the features 
of the deterministic WCVV models, and their advantages when 
simulating GERM-s, and GRC-s dynamics in living cells, by contrast 
to the classical (default) WCCV modelling framework. Comparison 
is made by using the regulatory performance indices (P.I.-s) of 
GERM-s, inspired from the NSCT. The EB1-EB2, EB4 also present 
rules to link GERM-s when modelling GRC-s. 
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Figure 2:  (top) The hierarchical organization of living cells [EB2]. (middle) The generic protein P synthesis – simplified representations of 
a generic GERM regulatory module (horizontal arrows indicate reactions; vertical arrows indicate catalytic actions; G = gene encoding P; 
M = mRNA; R = repressor; In = inducer; Met = metabolites). See reviews of [EB1-EB4], and [5,9,14,33,49]. (down) The library of individual 
GERM lumped models used to simulate the cross-catalysed synthesis of a generic pair of protein P and its encoding gene G (DNA). 
Horizontal arrows indicate reactions; the vertical arrows indicate catalytic actions; M= mRNA; PP= effectors [EB1-EB2], [14].
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 EB3-EB4 booklets complete the theoretical aspects developed 
in EB1-EB2 by including related rules necessary to construct 
MSDKM and HSMDM models. Also, these booklets prove, by means 
of 5-6 demonstrative relevant examples, the superiority of using 
MSDKM and HSMDM dynamic math models vs. classical (default) 
unstructured/global dynamic models when solving difficult 
bioengineering or bioinformatics problems. As demonstrated, the 
in-silico numerical analysis of biochemical or biological processes 
by using MSDKM or HSMDM models are proved to be not only 
an essential but also an extremely beneficial tool for engineering 
evaluations aiming (i) to determine with a higher accuracy the 
optimal operating policies of complex multi-enzymatic reactors 
[6,18-22], or of bioreactors including the biomass adaptation to 
the variable bioreactor environment over hundreds of cell cycles 
[12,23-26], or even (ii) to easier and quickly simulate and analyse 
the performances/ characteristics of various in-silico design 
GMO-s alternatives, by using the “metabolic flux analysis” (MFA) 
[26-30], together with the gene-knock-out technique) [EB3-EB4], 

and [12,30-32]. 

 By contrast, by considering only the macroscopic key-variables 
of the process (biomass, substrate, and product concentrations), 
the unstructured (apparent, global) math (kinetic) models do 
not adequately reflect the metabolic changes of the bioreactor 
biomass, being inadequate to accurately predict the cellular 
response to the medium disturbances through the self-regulated 
cellular metabolism. Such classical global/unstructured dynamic 
models may be satisfactory for an approximate modeling of the 
biological process, but not for modeling of cellular metabolic 
processes, and they can not make any correlation between 
the bioreactor operation and the continuous adaptation of the 
biomass metabolism to the variable conditions of the bioreactor. 
Even worst, as proved by the author in EB1-EB4 and their previous 
papers [16,17,33,34], such global models may lead to biased and 
distorted conclusions about the GERM’s performances, thus 
making difficult the modular constructions of GRC-s by linking 
individual GERM-s (Figure 4). 

Figure 3: Simplified representation of the CCM pathway in E. coli of [31,78] (the “wild” cell including the PTS-system). Fluxes characterizing 
the membranar transport [Metabolite(e)↔Metabolite(c)] and the exchange with environment have been omitted from the plot. See [31] for 
details and explanations regarding the numbered reactions. Notations: [e]= environment; [c]=cytosol. Adapted from [31] with the courtesy of 
CABEQ Jl. The considered 72 metabolites, the stoichiometry of the 95 numbered reactions, and the net fluxes for specified conditions are 
given by [31]. The pink rectangle indicates the chemical node inducing glycolytic oscillations [7,44].
Notations,+ and - denotes the feedback positive or negative regulatory loops respectively. GLC = glucose; F6P= fructose-6-phosphate; FDP 
= fructose-1,6-biphosphate; see the abbreviation list for species names; V1-V6 = lumped reaction rates indicated by [32]. Species notations 
are explained in the abbreviation list of [32]. 
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Figure 4: Example of linked GERM-s to form GRC-s (genetic switches here) see the reviews of [EB1 – EB4], and [5,9,14,33,49,79].

In general, living cells are organized, self-replicating, 
evolvable, selfadjustable, and responsive biological systems to 
environmental stimuli able to convert raw materials (substrates/
nutrients) from the environment into additional copies of 
themselves. (Figure 5-down/right, and in figure 2-top) 

The structural and functional cell organization, including 
components and reactions, is extremely complex, comprising 
involving O(103-4) components, O(103-4) transcription factors 
(TF-s), activators, inhibitors, and at least one order of magnitude 
higher number of (bio)chemical reactions, all ensuring a fast 
adaptation of the cell to the changing environment [EB1-EB2] 
(Figure 2-top). Relationships between structure, function and 
regulation in complex cellular networks are better understood at 
a low (component) level rather than at the highest-level [35]. 

Cell regulatory and adaptive properties are based on 
homeostatic mechanisms, which maintain quasi-constant (QSS) 
the key-species concentrations and metabolites’ output levels, by 

adjusting the synthesis rates, by switching between alternative 
substrates, or development pathways. Cell regulatory mechanisms 
include allosteric enzymatic interactions and feedback in gene 
transcription networks, metabolic pathways, signal transduction 
and other species interactions [36]. In particular, protein 
synthesis homeostatic regulation includes a multi-cascade control 
of the gene expression with negative feedback loops and allosteric 
adjustment of the enzymatic activity (Figure 2middle/down) 
[EB1-EB4]. 

 Cells have a very complex but hierarchic organization 
(structural, functional, and temporal, Figure 2-top), well described 
by [EB1-EB2]. A central part of such cell models concerns self-
regulation of metabolic processes belonging to the CCM (Figure 
3), via GRC-s (Figure 4). So, one application of such dynamic 
deterministic cell models is the study of GRC-s, for predicting ways 
by which biological systems respond to signals, or environmental 
perturbations. The emergent field of such efforts is the so-called 
“gene circuit engineering” and, a large number of examples have 
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been reported with in-silico re-creation of GRC-s conferring new 
properties to the mutant cells (i.e. desired ‘motifs’ in response to 
external stimuli) [EB1, EB3, EB4], and [37]. Simulation of gene 
expression (GERM-s), and of GRC makes possible in-silico design 

of GMO–s that possess desired properties. By “inserting” the 
design GRCs into host organisms, one may create a large variety of 
GMO–s with minifunctions / tasks in response to external stimuli 
[EB3, EB4]. 

Figure 5: comparison of WCCV vs. WCVV modeling approach in the case of a simple [G(P)1]- GERM see [EB3], and [16,17,33].

“With the aid of recombinant DNA technology, it has become 
possible to introduce specific changes in the cellular genome. 
This enables the directed improvement of certain properties 
of micro-organisms, such as the productivity, which is referred 
to as Metabolic Engineering [27,38,39]. This is potentially a 
great improvement compared to earlier random mutagenesis 
techniques, but requires that the targets for modification are 
known. The complexity of pathway interaction and allosteric 
regulation limits the success of intuition-based approaches, 
which often only take an isolated part of the complete system 
into account. Mathematical models are required to evaluate the 
effects of changed enzyme levels or properties on the system as 
a whole, using metabolic control analysis or a dynamic sensitivity 

analysis” [40]. In this context, GRC dynamic models together 
with the metabolic flux balance analysis (FBA) based on MSDKM 
models are powerful tools for in-silico developing re-design 
strategies of modifying genome and gene expression seeking 
for new properties of the mutant cells in response to external 
stimuli (n.b. a metabolic flux is the enzymatic reaction under QSS 
/homeostatic cell conditions; EB1, [27]). Examples of such GRC 
modulated functions include [EB3, EB4]: 

a)	 toggle-switch, i.e. mutual repression control in two 
gene expression modules, and creation of decision-making branch 
points between on/off states according to the presence of certain 
inducers [EB3], and [9,10,41]
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b)	 hysteretic GRC behaviour, that is a bio-device able 
to behave in a historydependent fashion, in accordance to the 
presence of a certain inducer in the environment [42]

c)	 GRC oscillator producing regular fluctuations in the 
CCM network elements, reporter proteins, and cell GRN nodes, and 
making the GRC to evolve among two or several QSS [7,8,43,44,45] 

d)	 specific treatment of external signals by controlled 
expression such as amplitude filters, noise filters or signal / 
stimuli amplifiers [8,11,12]

e)	 GRC signalling circuits and cell-cell communicators, 
acting as ‘programmable’ memory units [EB3-EB4]. 

Figure 6: comparison of WCCV vs. WCVV modeling approach in the case of a simple [G(P)1] gene expression reg ulatory module (GERM). 
[LEFT-PART] THE WCCV representation is not able to simulate the cell homeostasis (that is the quasi-steady-state QSS of the cell balanced 
growth). Dynamic regulation is very weak and distorted under a WCCV representation adapted after [EB1,EB3,EB4] and [16,17,33].

 The development of dynamic models on a deterministic 
basis to adequately simulate in detail the cell metabolism self-
regulation, cell growth, and replication for such an astronomical 
cell metabolism complexity is practical impossible due to lack of 
structured information and computational limitations. A review 
of some trials is presented by [8,12,32,46], and [EB1-EB4].  

 In spite of such tremendous modelling difficulties, 
development of reduced dynamic models to adequately reproduce 
such complex synthesis related to the central carbon metabolism 
(CCM) [8,32,40,46,47], but also to the genetic regulatory systems 
[EB1], and [11,12,24] tightly controlling the metabolic processes 
reported significant progresses over the last decades in spite of 
the lack of structured experimental kinetic information. Even if 

being rather based on sparse information from various sources 
and unconventional identification / lumping algorithms [48-50], 
such structured deterministic kinetic models have been proved to 
be extremely useful for in-silico design of novel GRC-s conferring 
new properties/functions to the mutant cells, that is desired 
‘motifs’ in response to the external stimuli [EB1-EB4]. 

 In fact, all the rules and algorithms used by the deterministic 
modelling of CCM and GRCs, discussed in the works of Maria [EB1-
EB4], and [11,12,14] belong to the new emergent field of Systems 
Biology. Systems Biology defined as “the science of discovering, 
modelling, understanding and ultimately engineering at the 
molecular level the dynamic relationships between the biological 
molecules that define living organisms” (Leroy Hood, Inst. 
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Systems Biology, Seattle) [51] is one of the modern tools which 
uses advanced mathematical simulation models for in-silico 
design of GMO-s that possess specific and desired functions and 
characteristics. 

To model such a complex metabolic regulatory mechanism 
at a molecular level, two main approaches have been developed 
over decades: structure - oriented analysis, and dynamic 
(kinetic) models [35]. A review of mathematical model types 
used to describe metabolic processes is presented by [EB1-
EB3], and [14,27,46]. From the mathematical point of view, 
various structured (mechanism-based) dynamic models have 
been proposed to simulate the metabolic processes and their 
regulation, accounting for continuous, discrete (Boolean), and/
or stochastic variables, in a modular construction, ‘circuit-like’ 
network, or compartmented simulation platforms [EB1-EB2], 
and [14,36,52]. Each model type presents advantages but also 
limitations. Each theory presenting strengths and shortcomings 
in providing an integrated predictive description of the cellular 
regulatory network.  

 Among all these math modelling alternatives [EB1-EB3], the 
classical approach to develop deterministic dynamic models is 
based on a hypothetical reaction mechanism, kinetic equations, 
and known stoichiometry. This route meets difficulties when the 
analysis is expanded to large-scale metabolic networks, because the 
necessary mechanistic details and standard kinetic data to derive 
the rate constants are difficult to be obtained. However, advances 
in genomics, transcriptomics, proteomics, and metabolomics, 
lead to a continuous expansion of bioinformatic databases, while 
advanced numerical techniques, non-conventional estimation 
procedures, and massive software platforms reported progresses 
in formulating such reliable cell models. Valuable structured 
dynamic models, based on cell biochemical mechanisms, have been 
developed for simulating various CCM-(sub) systems [EB1-EB4]. 
Conventional dynamic models, based on ordinary differential sets 
(ODE) of species mass balance, with a mechanistic (deterministic) 
description of reactions tacking place among individual species 
(proteins, mRNA, intermediates, etc.) have been proved to be a 
convenient route to analyse continuous metabolic / regulatory 
processes and how the cell cope with the continuous perturbations 
from environment.  

 When systems are too large or poorly understood, coarser 
and more phenomenological kinetic models may be postulated 
(e.g. protein complexes, metabolite channelling, etc.). In dynamic 
deterministic models, usually only essential reactions and 
components are retained, the model complexity depending on 
the measurable variables and available information. To reduce the 
structure of such a model, an important problem to be considered 
is the distinction between the qualitative and quantitative process 
knowledge, stability and instability of involved species, the 
dominant fast and slow modes of process dynamics, reaction time 
constants, macroscopic and microscopic observable elements 
of the state vector. Kinetic model reduction/lumping rules are 

presented by Maria [EB1-EB2], and [48,50,53]. Such kinetic 
models can be useful to analyse the regulatory cell-functions, both 
for stationary and dynamic perturbations, to model cell cycles and 
oscillatory metabolic pathways [7,8,43,44,45], and to reflect the 
species interconnectivity or perturbation effects on cell growth 
[EB1, EB2]. Mixtures of ODE kinetic models with discrete states 
(i.e. ‘continuous logical’ models), and of continuous ODE kinetics 
with stochastic terms can lead to promising mixed models able to 
simulate both deterministic and non-deterministic cell processes 
[52]. Representation of metabolic process kinetics is made usually 
by using rate expressions of extended Michaelis-Menten or Hill 
type [EB1-EB2], and [8,9]. To model in detail the cell process 
complexity with deterministic ODE models is a challenging and 
difficult task. The large number of inner cell species, complex 
regulatory chains, cell signalling, motility, organelle transport, 
gene transcription, morphogenesis and cellular differentiation 
cannot easily be accommodated into existing computer 
frameworks. Inherently, any model represents a simplification 
of the real phenomenon, while relevant model parameters are 
estimated based on the how close the model behaviour is to the 
real cell behaviour. A large number of software packages have 
been elaborated allowing the kinetic performance of enzyme 
pathways to be represented and evaluated quantitatively 
[14,54]. Oriented and unified programming languages have been 
developed (SBML, JWS, see [EB1-EB2]) to include the bio-system 
organization and complexity in integrated platforms for cellular 
system simulation (E-Cell, V-Cell, M-Cell, A-Cell, see [EB2], and 
[14]). Continuous variable deterministic models, among other 
advantages, models can perfectly represent the cell response to 
continuous perturbations, and their structure and size can be 
easily adapted based on the available –omics information. Such 
integrated simulation platforms tend to use a large variety of 
biological databanks including enzymes, proteins and genes 
characteristics together with metabolic reactions are reviewed 
by [EB1-EB2]. Among them it is to mention: CRGM-database [55]; 
NIH-database, [56]; EcoCyc [57]; KEGG, [58], etc. 

By applying various modelling routes, successful structured 
models have been elaborated to simulate various regulatory 
mechanisms [EB1- EB4], and [14,42,59-62]. In fact, as mentioned 
by [36], a precondition for a reliable modelling is the correct 
identification of both topological and kinetic properties. As few 
(kinetic) data are present in a standard form, non-conventional 
estimation methods have been developed, by accounting for 
various types of information (even incomplete) and global cell 
(regulatory) properties [36, 48].  

The scope of this paper is to point-out some of the main 
aspects reviewed by the works of Maria [EB1-EB3] (see their 
covers in Figure 1) concerning some novel concepts and (bio)
chemical engineering rules applied to kinetic modelling of 
metabolic processes and, especially the modular modelling of 
gene expression regulatory modules (GERM), GRC-s, and other 
metabolic processes on a deterministic basis by using continuous 
variable dynamic models under the novel WCVV modelling 

http://dx.doi.org/10.19080/CTBEB.2023.21.556057


Current Trends in Biomedical Engineering & Biosciences  

How to cite this article: G. Maria. Comments on several review eBooks promoting a novel kinetic modelling framework of metabolic processes and of 
genetic regulatory circuits in living cells. Curr Trends Biomedical Eng & Biosci. 2023; 21(2): 556057. DOI: 10.19080/CTBEB.2023.21.556057009

framework promoted by Maria [EB1-EB4], and [14]. All the [EB1-
EB4] works of Maria [1-4] are pleading in the favour of developing 
mathematical models on a mechanistic (deterministic) basis 
to characterize the cell metabolic processes, with focussing on 
modelling the dynamics and properties of CCM, GERM, and of GRC 
under the novel WCVV modelling framework. 

GRC comparative modelling using WCVV vs. WCCV  

 This section is aiming to exemplify, in a simple and 
meaningful way, the importance of using a WCVV modelling 
framework compared to the classical (default) WCCV models 
when simulating the main regulatory properties of GERM-s or 
GRC-s, by explicitly accounting for the cell-volume growth, and 
system thermodynamic isotonicity (constant osmotic pressure). 
Exemplification is made for the case of the simplest generic GERM 
model, of [G(P)1] type (see GERM nomenclature in the below 
sections and the subsequent references), with characteristics 
taken form E. coli cells [14,16,17,41,57,63,64], by mimicking 
the cell homeostasis and its response to dynamic perturbations. 
The paper subject importance is very high, as long as a large 
number of cell simulators are developed and used for practical 
applications in the biosynthesis industry, and in medicine. The 
isotonicity constraint is proving to be a natural way to preserve 
the homeostatic properties of the cell system [EB1-EB4], and 
[14,15,33], instead of imposing others constraints, such as 
“the total enzyme activity” and “total enzyme concentration” 
constraints [65,66]. 

 A comparison of model prediction quality in the case of a 
GERM of [G(P)1] type (Figure 2, middle/down) modelled under 
WCCV or WCVV, clearly indicate that WCCV can lead to biased and 
distorted conclusions on GERM regulatory performances (that is 
its response to both stationary or dynamic perturbations), thus 
making difficult the modular construction of GRC-s by linking 
individual GERM-s (Figure 5& 6) [16,17,33]. 

WCCV modelling framework

 For a system of chemical or biochemical reactions conducted 
in a cellular defined volume ’V’ (assumed an open system of 
uniform content), the classical (default) formulation of the 
corresponding (bio)chemical kinetic models based on continuous 
variables (concentration vector ’C’, or number of moles vector 
’n’) implies writing a set of ordinary differential equations (ODE) 
representing the mass balance of the considered system states 
(biological/chemical species index ’j’, taken individually or 
lumped), in the following WCCV (whole-cell constant-volume) 
modelling formulation (with referring to the whole system 
volume)[67]: 

	  	  	      ( )
1

1 ( , , ) , ,VV( )

nr

ij i j
i

dnj nv r k t h c k t
t dt =

= =∑
   1(A)	

 1(B) 
                                       

           Where  Cj = species “j” concentration; nj = species “j” number 

of moles; νij = the stoichiometric coefficient of the species “j” in the 
reaction “i”; ri = reaction “i” rate; nr = number of reactions in the 
analyzed system. The above formulation assumes a homogeneous 
constant volume with no inner gradients or species diffusion 
resistance into the cell. When continuous variable ODE dynamic 
models are used to model cell enzymatic/metabolic processes, 
the default-modelling framework Eq. (1A-B) is that of a constant 
volume and, implicitly, of a constant osmotic pressure (π ) in 
isothermal systems (to ensure the cell membrane integrity), 
according to the assumed fulfilled Pfeffer’s law in diluted solutions 
(i.e. the cytosol system) [13,14,68]

                                                           (2)

Where: T = absolute temperature, R = universal gas constant, 
V = cell (cytosol) volume; π = osmotic pressure; t = time; nj = 
species “j” number of mole ns = number of species in the analyzed 
system. To over come this drawback, some WCCV models 
accounts for the cell-growing rate as a pseudo- ‘decay’ rate of 
key-species (often lumped with the degrading rate) in a so-called 
‘diluting’ rate denoted here by an average Ds [see below eq.(3B) 
and eq.(4A) for its significance]. In fact, by ignoring the direct 
influence of the cell volume increase, the WCCV dynamic model 
cannot ensure the system isotonicity constraint fulfilment because 
the sum of species number of moles doubles over the cell cycle. 
Such a WCCV dynamic model might be satisfactory for modelling 
many cell sub-systems, but not for an accurate modelling of cell 
regulatory / metabolic processes under perturbed conditions, 
or for division of cells [68], distorting the prediction quality, as 
reviewed by [EB1-EB4], and [14,16,17,33]. Other researchers [66] 
tried to preserve the homeostatic properties of the cell system, 
not by imposing the isotonic constraint  Eq. (2), but by means of 
“artificial” cell constraints, such as “the total enzyme activity” and 
“the total enzyme concentration” [65]. 

 WCVV formulation 

The WCVV (“whole cell variable cell volume”) modelling 
formulation is based by a couple of hypotheses, presented in 
this section (Figure 7). Life at its simplest level involves two 
major divisions of interacting molecular species called the cell 
and the environment. The environment consists of molecules 
dissolved in water and largely separated from the cell. In their 
simplest form, cells consist of hydrophilic molecules in aqueous 
volumes (cystosol), encapsulated by semi-permeable hydrophobic 
membranes composed of phospholipids and proteins [EB1-EB4], 
and [14,16,17,33]. 

Cellular components interact to catalyze the synthesis of more 
cells from environmental components called nutrients. Imported 
into the cell and transformed in metabolites. This auto-catalytic 
process is specified by the following overall auto-catalytic global 
lumped reaction: 
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Notations: T = absolute temperature; R = universal gas constant; V= cell (cytosol) volume;  = osmotic pressure;   cj= cell species j 
concentration;  nj = species j number of moles;   rj= j-th reaction rate; t = time; k =rate constant vector.
Figure 7: The WCVV dynamic modelling framework and it’s basic hypotheses [EB1, EB], [14].

As long as excess nutrients are available, this auto-catalysis 
causes cell populations to increase exponentially. The volume of 
a newborn cell doubles during its cell cycle. Cells contain nucleic 
acids (DNA, RNA, or both) and proteins, interrelated through the 
processes of transcription, translation and DNA replication. Taken 
together, these metabolic processes are mutually autocatalytic, as 
shown in the following overall schemes: 

DNA and protein are co-catalysts for RNA synthesis from 
ribo-nucleotides. In turn, RNA and proteins (enzymes) are co-
catalysts for the synthesis of proteins from amino acids, of 
DNA (from the monomeric units called deoxyribonucleotides), 

RNA, and other proteins. The substrates for these processes 
(deoxyribonucleotides, nucleotides, amino acids etc.) are 
metabolites, synthesized from imported environmental nutrients 
through complex metabolic pathways [69].  

 “At this point, it is to strongly emphasize that living cells are 
systems of variable volume. They double their volume during 
the cell cycle. For chemical or biochemical systems of variable-
volume, another formulation is more appropriate, being given by 
Aris [70] for chemical reacting systems. Such CBE modelling tools 
were translated and promoted in developing structured math 
models of cell processes (that is CCM and GRC-s) by Maria [EB1-
EB4], and [5,13,14,15,16,17,33,41]. Such a novel kinetic modelling 
framework of cell systems by also including the cell isotonicity, 
and the variable cell-volume constraints in the so-called WCVV 
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modelling of metabolic dynamic processes (for details, see the 
above references). In mathematical terms, the species mass 
balance Eq.(1) should be re-written in the following form: 

    

                                                                                                             3(A)

Where: C = cell species concentration vector; t = time; k = math 
model constants; ’s’ index = at steady-state; h = cell kinetic model 
functions. The variable “D” is the logarithmic growing rate of the 
cell volume, also known as the “cell dilution rate”. It is defined by 
the following relationship: 

           3(B)

There are two possibilities to calculate the cell dilution ’D’ 
necessary for solving the model Eq. (3A). The simplest, but not 
the accurate one, is to use a value averaged over the whole cell 
cycle, that is:    

(4A)

 By accounting the cell double volume at the end of the cell-
cycle, then the constant Ds can be a-priori evaluated by using the 
following relationship (for cells of known cell cycle): 

                                              (4B)

 The second alternative, and the more rigorous way to evaluate 
the cell dilution ’D’ is those to impose a constraint accounting 
for the cell-volume growth while preserving a constant osmotic 
pressure and membrane integrity. Thus, by derivation of the 
Pfeffer’s law Eq. (2) in respect to V, and by division to V, one 
obtains the ’isotonic’ dilution rate   [EB1], and [14,16,17,33]: 

                                            (5)

 

 It is to observe in Eq. (5) that the cell content dilution rate D i 
is linked to the all species (taken individually or lumped) reaction 
rates via the isotonicity constraint. As species reaction rates 
varies during the cell cycle, it clearly results that formulation  Eq. 
(5) offers a more accurate estimation of the (variable) cell dilution 
at any time. Such a system isotonicity constraint is more ’natural’ 
and eventually includes ”the total enzyme activity” and “ the total 
enzyme concentration”  constraints suggested by Komasilovs et 
al. [66]. 

 In the above relationships eqns.(2, 5), the following notations 
have been used: T = absolute temperature, R = universal gas 
constant, V = cell (cytosol) volume. As revealed by the Pfeffer’s 
law eqn.(2) in diluted solutions [71], and by the eq.(5), the volume 
dynamics is directly linked to the molecular species dynamics 
under isotonic and isothermal conditions. Consequently, the cell 
dilution ’D’ results as a sum of reacting rates of the all cell species 
(individual or lumped). The (RT/π ) term can be easily deducted 
in an isotonic cell system, from the fulfilment of the following 
invariance relationship derived from eqn.(2): 

             (6)     

                                                                                                                                                                                    

 The basic hypotheses of the WCVV dynamic models of type 
Eqs. (3-6) are briefly presented in the below paragraphs. These 
formulations are valid over ca. 80% of the cell cycle representing 
the balanced cell growth before its division [68]. 

 The whole chemical/biochemical cell processes are called ’cell 
metabolism’, defined as: Metabolism is the set of life-sustaining 
chemical transformations within the cells of living organisms. 
The three main purposes of metabolism are the conversion of 
food/fuel to energy to run cellular processes, the conversion of 
food/fuel to building blocks for proteins, lipids, nucleic acids, and 
some carbohydrates, and the elimination of nitrogenous wastes. 
These enzyme-catalyzed reactions allow organisms to grow 
and reproduce, maintain their structures, and respond to their 
environments [69]. 

 The basic equations and hypotheses of a deterministic WCVV 
simplified cell model (with continuous variables) presented in 
this work, also called a “mechanical cell” , are discussed by Maria 
[EB1-EB4], [14,33], and summarized in (Figure 7). To better 
underline the WCVV models hypotheses, a couple of issues should 
be explained, as followings [EB1-EB4]: 

a)	 Genes (generically denoted by G), and the encoded 
proteins (generically denoted by P) are in a mutually auto-
catalytic relationship: the synthesis of P is catalyzed by G, and 
vice-versa (directly or indirectly), in the so-called GERM-s (see the 
GERM library of Figure 2-down). 

b)	 During its cell cycle, the cell volume grows continuously, 
but preserving a constant osmotic pressure. 

c)	 The regulatory mechanisms to achieve the gene 
expression modelled by lumped GERM-s, and the internal 
homeostasis are explained  in detail by [EB1-EB4], and 
[14,16,17,33]. 

d)	 The cell WCVV model assumes an ideal system, that is: 
isothermal and with an uniform content (perfectly-mixed case); 
species behave ideally, and present uniform concentrations within 
cell. The cell system is not only homogeneous but also isotonic 
(constant osmotic pressure), with no inner gradients or species 
diffusion resistance. 

e)	 The cell is an open system interacting with the 
environment through a semipermeable membrane. To better 
reproduce the GERM properties interconnected with the rest 
of the cell, the other cell species are lumped together in the so-
called ”cell ballast” [EB1-EB4], and [14,16,17,33]. The cell ballast 
has an important influence on the GERM performance indices 
(see below) through the common cell volume to which all species 
contributes.  

f)	 The inner osmotic pressure (π cyt) is constant, and 
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all time equal with the environmental pressure, thus ensuring 
the membrane integrity (π cyt = π env = constant [EB1, EB3]). 
Even if, in a real cell, such equality is approximately fulfilled 
due to perturbations and transport gradients, and in spite of 
migrating nutrients from environment into the cell, the overall 
environment concentration is considered to remain unchanged. 
On the other hand, species inside the cell transform the nutrients 
into metabolites and react to make more cell components. In 
turn, increased amounts of permeases are then used to import 
increasing amounts of nutrients. The net result is an exponential 
increase of cellular components in time, which translates, through 
isotonic osmolarity assumption, into an exponential increase in 
volume with time [ V = Vo exp(+Ds·t)] [see eqn.(3B,4A,4B,5) ].  

g)	 Due to the “D” term in eq.(3A, 3B), the cell content 
reports a continuous dilution, that is a species concentration 
decline due to the continuous increase of the denominator of the 
expression

h)	 Cj = nj(t)/V(t). In spite of that, concentrations of key 
species remain constant because the numerator (copynumbers) 
increases at the same rate with the denominator. So, the overall 
concentration of cellular components is time-invariant at the cell 
homeostasis (i.e. quasi-steady-state, or balanced growth). 

i)	 Species concentrations at the cell level are usually 
expressed in nanomoles, being computed with the relationship of 
Maria [14]

        (7)

j)	 where NA is the Avogadro number. For instance, for an 
E. coli cell with an approximate volume of Vcyt,0 = 1.66 10-15  L 
[64], concentration of one generic gene G copynumber is: [G]s = 
(1/(6.022×1023)(1.66×10-15) = 1 nM (that is 10-9 mol/L). 

k)	 Under quasi-stationary growing conditions (QSS), 
from eq.(1A, 3A) it results that species “j” synthesis rates (rj) 
must equal to first-order dilution rates (Ds Cj,s), leading to the 
time-invariant (index ’s’) species concentrations Cj,s , i.e. the 
homeostatic conditions (corresponding to a balanced steadystate 
growth). Under QSS cell growing conditions, the ODE model mass 
balance eq. (3A) is leading to the following nonlinear algebraic 
mass balance set: 

     

                                                                                                                   (8)

                                                                                              
    This QSS mass balance eq.(8) is used to estimate the rate 
constants ’k’ by using the known experimental stationary species 
concentration vector Cs, with also imposing some constraints to 
ensure the optimal properties of the cell system. Some examples 
are given by [EB1-EB4], and [9,10,11,12,14,15,16,17,33,41,72,73]. 

/ ( , ); (0) ; / ; (0) ; ( ( , ) / )s c c sdC dt h c k C C dA dt J A A I J h c k C= = = = = ∂ ∂  (11)

    j)     It is to observe that, in a continuous variable cell kinetic 
model, species concentrations can present fractional values. When 
treated deterministically, fractional copy numbers must be loosely 
interpreted either as time-invariant average in a population of 
cells, or as a time-dependent average of single cells. For other 
types of cell kinetic models (with stochastic, or Boolean variables, 
topological, etc.) see the review of [EB1-EB3], and [14]. 

k)      A metabolic kinetic model in a WCVV approach should 
be written in the 

form eq. (3-6). In such a formulation, all cell species should 
be considered (individually or lumped), because all species net 
reaction rates contribute to the cell volume increase [see eq.(6)]. 
As the cell volume is doubling during the cell cycle, this continuous 
volume variation can not be neglected. 

The simplest representation of the core of such a ’mechanical 
cell’ is shown in (Figure 5-down-right). It exists in an environment 
consisting of two nutrients NutG and NutP. The cell contains one 
gene (lumped genome), and protein (lumped proteome) [11,12] 
in a mutually autocatalytic relationship, two lumped metabolites 
(MetG and MetP) used in the synthesis of the G/P pair, and various 
regulatory elements promoting internal homeostasis. A membrane 
is presumed to demarcate the cell from its environment, but is not 
an explicit component of the system. 

 Advantages of using the WCVV kinetic modelling 
framework in living cells:

As an important observation, ”from eqn. (5) it results that the 
cell dilution is a complex function D(C,k) being characteristic to 
each cell and its environmental conditions. Relationships eq.(5-6) 
are important constraints imposed to the WCVV cell model eq.(3A-
B),eventually leading to different simulation results compared to 
WCCV models that neglect the cell volume growth and isotonic 
effects (see some examples given by [EB1-EB4], and [16,17,33]). 

On the contrary, application of the default classical WCCV-ODE 
kinetic models of eqns. (1A-B) type with neglecting the isotonicity 
constraints presents a large number of inconveniences, related to 
ignoring lots of cell properties (discussed in detail by [EB1-EB4], 
and [16,17,33]), that is:  

a)	 the influence of the cell ballast in smoothing the homeostasis 
perturbations;  

b)	 the secondary perturbations transmitted via cell volume 
following a primary perturbation;  

c)	 the more realistic evaluation of GERM-s regulatory 
performance indices (  P.I.s, see [EB1-EB4], and [16,17,33] ) 

d)	 the more realistic evaluation of the recovering/transient 
times after perturbations (see Figure 5, and Figure 6)[33]
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e)	 loss of the intrinsic model stability;  

f)	 loss of the self-regulatory properties after a dynamic 
perturbation, etc.” 

The multiple advantages of the WCVV modelling framework 
are discussed, and exemplified by Maria [EB1-EB4], and [13-
17,33,34,49]. In short, the novel proposed modelling concept/
framework WCVV, widely promoted in a large number of 
applications by Maria (see the above references) allows to derive 
cell kinetic models, in a holistic approach, well reproducing the cell 
processes homeostasis, and the individual/holistic GRC regulatory 
properties, by including in a natural way constraints related to the 
cell system isotonicity, and the variable-volume in relationship 
to the species reaction rates, and the lumped proteome/ 
genome replication [EB1-EB4], and [11,12,14,16,17,33]. Such an 
isotonicity constraint is required to ensure the cell membrane 
integrity, but also to preserve the homeostatic properties of the 
cell system, not by imposing ’the total enzyme activity’, or the ’total 
enzyme concentration’ constraints used by the classical (default) 
constant-volume cell modelling approach (WCCV). As proved by 
Maria et al. [33], compared to the classical WCCV models, the 
WCVV novel modelling framework is leading to a more accurate 
simulation of several cell metabolic effects, such as: relationships 
between the external conditions, species net synthesis reactions, 
osmotic pressure, cell content (ballast) influence on smoothing 

the continuous perturbations in external nutrient concentrations, 
the more realistic representation of GERM regulatory modules, 
etc.

 This shortly presented WCVV holistic modelling framework 
proposed, extrapolated, and widelly promoted in a large number 
of applications in bioengineering and bioinformatic by Maria (see 
the above references) was proved to be more accurate and present 
a large number of advantages briefly reviewed in the (Table 1). 

Other aspects related to the extended MSDKM model under 
WCVV approach, such as a) numerical rules to reduce its structure; 
b) estimation of the kinetic model rate constants from the QSS 
mass balance eq.(8) with known (from experiments) stationary 
species concentration vector Cs, with also imposing some optimal 
regulatory properties to the math-modelled cell system, and c) 
some examples are given by [EB1-EB4] 

GERM-s regulatory performance indices (P.I.): 

 ”As proved in previous works [EB1-EB3], the performances 
indices (P.I.-s) of GERM–s of [G(P)n] type in (Figure 2-down), are 
as better as the number ’n’ of buffer reactions increases (Figure 
14). 

Also, Maria [EB1-EB3] proved that when P is acting as a TF, 
its efficiency is better if it is present in a dimeric form (PP), in 
GERM-s of [G(PP)n] type in (Figure 2-down,  and Figure 8). 

Figure 8: Influence of the number of effectors in a GERM on their regulatory performance indices P.I.-s [EB2-EB3].

Maria [EB1-EB3] also proved that the GERM regulatory 
efficiency is better if TF is a dimmer PP acting at both G and M levels 
of the expression (middle and down-rows of Figure 2-down), thus 

developing a cascade control scheme of the expression where 
transcription and translation regulatory steps are separately 
considered, that is GERM-s of [G(PP)n;M(PP)n’] type. 
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Following an extended study [EB1-EB3], it was concluded 
that, as the number of effectors increases in GERM-s as their 
P.I.–s are better, the right GERM choice being case dependent (see 
[11,12] as an example). Simulation with a large number of GERM 
types lead to important conclusions. Some of them are presented 
in this section. 

Perturbations of the species steady-state (homeostatic) 
concentrations are caused by environmental processes. In a GERM 
case, these processes tend to increase or decrease the key-protein 
stationary level [P]s. These processes occur in addition to those of 
the ‘‘core’’ system (G/P pair replication over the cell cycle). 

Figure 9: Some regulatory performance indices P.I.-s of GERM, following a stationary (up-blue- rows), or a dynamic (down-pink- rows) 
[EB1-EB4].

Figure 10: The main regulatory efficiency performance indices (P.I.-s) proposed by Maria [EB1-EB4], [14] to evaluate the treatment efficiency 
of dynamic/stationary (Figure 9) perturbations inside cell by a GERM following the definitions of [14]. Abbreviations: Min = to be minimized; 
Max = to be maximized. Note: k(syn) and k(decline) refers to the → P→ overall reaction. See the notations and details of [EB1- EB3].
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Figure 11:  Seeking for modelling the GRC regulatory properties (performance indices, P.L._s [EB1-EB4]).

Figure 12: Importance of lumped modular math modelling for the in-silico design of GMO -s by using HSMDM models [EB1-EB3].

GERM or GRC regulatory performance indices P.I.-s are of 
two types [EB1-EB3]: stationary and dynamic, according to the 
perturbation type (Figure 9), and Figure 13). Briefly the P.I.-s 
are presented in the (Figure 10), together with the associated 

optimization objective (goal), for a general nonlinear dynamic 
cell model described by eq. (3A-B). See also an intuitive display 
in (Figure 9, and Figure 11) Detailed information is given by 
Maria [EB1-EB3], and [14]. The monodromy matrix A, necessary 
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to express the species QSS-level stability ’strength’ is evaluated 
together with the cell process ODE model eqn.(3A-B), by using the 
differential relationship eq (11). 

Modelling individual GERM-s under WCVV formulation: 

 In order not to overly complicate the HSMDM models that 
also include GRC-s, it is necessary to have a “library” of kinetic 

models to represent individual GERM-s, to be used for build-
up GRC-s of desirable properties (e.g. genetic switches, operon 
expression, etc.). See some case studies of [EB1-EB4]. Obviously, 
the selection of the most suitable GERM to be included in the GRC 
chain depends on its regulation performances (that is, the so-
called selfregulation performance indices (P.I.-s), related to the 
GERM type. 

Figure 13:  The effect of the G/P mutual self-catalysis, and of the isotonicity in the case of a simple [G(P)1] gene expression regulatory 
module GERM [EB1-EB3], [16,17]. Species QSS recovery after a 10% dynamic (impulse-like) perturbation in [P]s.  Notations: π  = cell 
osmotic pressure; V = cell volume; T= temperature; G = generic gene; P = the protein encoded by G; C(j) = cell species concentrations; „s” 

index = at QSS; „o” index = initial;   = species P recovering time of its QSS,  [P]s., with a 1% precision (i.e. 0.01).

 This chapter briefly presents the main GERM-s models 
proposed by Maria [EB1-EB3], and [74] used in the construction 
of HSMDM-s, in terms of the reduced reaction scheme, kinetic 
model, and their associated P.I.-s. 

As experimentally proved in the literature [EB1-EB4], the 
GRC-s (or GRN-s) „that control the synthesis of all proteins 
(enzymes) in the cell, present a modular construction, every 
operon (a cluster of genes under the control of a single promoter) 
including a variable number of interacting GERM-s. However, it is 
well-known that one GERM interacts with no more than other 23-
25 GERM-s [75], while most of GERM structures are repeatable. 
Consequently, when developing the GRC in-silico analysis and 
reaction schemes / kinetic models, the modular approach is 
preferred due to several advantages: (i) A separate analysis of the 
constitutive GERM-s in conditions that mimic the stationary or 
perturbed cell growth; (ii) The GERM modules are then in-silico 
linked to construct the target GRC of an optimized regulatory 

efficiency that ensures key-species homeostasis and cell network 
holistic properties (Figure 12, and Figure 4). (iii) In-silico 
investigations of GERM-s and GRC-s characteristics focus on the 
tight control of gene expression, the quick dynamic response, the 
high sensitivity to specific inducers, and the GRC robustness (i.e. a 
low sensitivity vs. undesired inducers). Such advanced regulatory 
structures must ensure the homeostasis (quasistationarity) of the 
regulated key-species, and quick recovery (with a trajectory of 
minimum amplitude) after a dynamic (impulse-like) or stationary 
(step-like) perturbation of one of the involved metabolites or 
nutrients [EB1-EB3], and [74] (Figure 13, and Figure 14). 

 However, to not complicate the resulted simulation model 
when coupling GERM chains in complex GRC-s, simple GERM 
dynamic models have been proposed and investigated by various 
researchers [EB1-EB3], and 

[9,27,39,40,63,76], with Hill-type, or pseudo-Hill-type 
activation [EB1-EB3]. 
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Figure 14:  Influence of the GERM’s number of effectors on some of their properties, i.e. the QSS recovering rate (top), and the amplitude 
/ species recovering trajectory after a 10% dynamic perturbation in the [P]s [EB1-EB3], [74].

 To make this rule easier, Maria [EB1-EB3] elaborated a 
library with reduced representations of GERM-s (Figure 2-down) 
to be used for every particular case. Of course, these individual 
GERM modules differ by the regulatory performance indices 
(P.I.) to be further defined, in response to stationary or dynamic 
perturbations into the cell, or in the environment. 

 These simplified deterministic models of lumped GERM and 
structures have been proved to adequately represent complex 
GRC–s (Figure 4). The simplest GERM structure with one 
regulatory element is those denoted by [G(P)1], one of a the better 
regulatory efficiency [G(PP)1] (Figure 2-middle).  

 The generic [G(P)1] regulatory module (schematically 
represented in (Figure 2-down, the row-up) refers to the 
synthesis of a generic protein P and the simultaneous replication 
of its encoding gene G. The lumped [G(P)1] model (Figure 5) 
includes only one regulatory element (a so-called “effector”, that 
is a fast ’buffer’ reversible reaction G + P <===> GP(inactive) 
(Figure 2-down), aiming at controlling the P synthesis rate and its 
homeostatic QSS level. The following notations have been used: 
G = active part of the gene encoding protein P; GP = inactive part 
of the gene encoding protein P; MetG, MetP = lumped DNA and 
protein precursor metabolites, respectively. 

 In such a generic lumped construction, the protein P and 
its encoding gene G mutually catalyses the synthesis of each 
other. The protein P is the ’control node’ playing multiple roles in 

such a simplified lumped representation. Thus, P is a permease 
leading to the import of nutrients NutG, NutP in the cell, but also 
a metabolase converting the nutrients into precursors MetG and 
MetP of the G and P respectively. Protein P is also a polymerase 
catalysing the gene replication. And, finally, the protein P is also a 
transcriptional factor (TF) by dynamically adjusting the catalytic 
activity of the G by means of a very rapid ’buffer’ regulatory 
reaction G + P <===> GP(inactive). When P is produced in excess, it 
reversible inactivates more amount of G, which in turn, will slow-
down the P synthesis. When P is produced in too low amounts, the 
regulatory process goes backwards.  

The module nomenclature used in (Figure 2-down) 
for such GERM models, proposed by [14,77] is those of 

. It includes the assembled regulatory 
units  . One unit ’i’ is formed by the component  L(i) (e.g. 
enzymes or even genes G, P, M, etc.) at which regulatory element 
acts, and n(i) =0,1,2,… number of ‘effectors’/TF, generically 
denoted by species O(i) (that is ‘effectors’ like P, PP, PPPP, R, 
RR, RRRR, etc ) binding the ‘catalyst’ L. For instance, a [G(P)2] 
unit of (Figure 2-down) includes two successive  binding steps 
of G with the product P, that is G + P <===> GP + P <===>  GPP, 
all intermediate species GP, GPP, being inactive catalytically, 
while the mass conservation law is all time fulfilled [1-3], i.e 
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Such a representation accounts for the protein concentration 
diminishment due to the cell-growth dilution effect, but could also 
include protein degradation by proteolysis. It is also to observe 
that such GERM lumped models try to account essential properties 
of the gene expression, that is a highly self- / cross- regulated and 
mutually catalyzed process by means of the produced enzymes / 
effectors. As depicted in  (Figure 2-down) for the [G(P)1] module 
case, the protein P synthesis is formally catalysed by its encoding 
gene G. In turn, P protein formally catalyse the G synthesis, but also 
modulate the G catalyst activity (via the fast buffering reaction G 
+ P <===> GP). 

Even if such a generic [G(P)1] regulatory module is more 
complex, by including a large number of reactions involved in 
the regulation of the gene expression (schematically presented 
by [EB1-EB3]), it was proved (see the case study of [EB4]) to 
satisfactory reproduce the dynamics of complex GRC-s in HSMDM 
models. 

 As proved by Maria [EB1-EB4], [15] this simplified 
formulation of GERMs in (Figure 2-down) implicitly ensures the 
homeostatic regulation of the gene expression and G/P mutual 
auto-catalysis of their synthesis. 

 An extended discussion on the GERM types and their ranked/
ordered regulatory efficiency is given by [EB1-EB3]. 

Conclusion

 As a general conclusion, the CBE and NSCT principles and 
modelling rules are fully applicable to math modelling cellular 
metabolic processes, by developing extended and valuable of 
using MSDKM and HSMDM dynamic math models (within the 

WCVV modelling framework). This involves application of the 
classical modelling techniques (mass balance, thermodynamic 
principles), algorithmic rules, and modern CBE concepts [80]. 
The metabolic pathway representation with continuous and/or 
stochastic variables remains the most adequate and preferred 
representation of cell processes, the adaptable-size and structure 
(reaction, species) of the lumped model depending on available 
information and model utilisation scope. 

The developed MSDKM and HSMDM have been proved to be 
very useful when solving various bioengineering problems (a) 
to in-silico (math model based) off-line optimize the operating 
policy of various types of bioreactors, and (b) to in-silico design/
screening/check some GMO-s of industrial use able to improve 
the performances of several bioprocess/bioreactors. 

GRC representations combining Reverse Engineering and 
Integrative Understanding [EB1-EB4] allows in-silico design of 
GRC–s inducing specific cell motifs of GMO-s. Examples given 
by [EB1-EB4] includes: Genetic switches of adjustable certainty, 
sensitivity to exo-/endogeneous stimuli, responsivity, regulatory 
efficiency; Metabolism behaviour of wild or cloned cells with 
plasmids. Even if the cell simulators still present lot of drawbacks 
and limited adequacy, they become more and more valuable tools 
in designing GMO–s with desirable characteristics, or for obtaining 
micro-organisms cloned with desirable plasmids with important 
applications in industry (production of vaccines), or in medicine 
(gene therapy). As mentioned by the late Dr. G.E.P. Box (Professor 
of statistics at the Univ. of Wisconsin, and a pioneer in the areas 
of quality control, time series analysis, design of experiments, and 
Bayesian inference): “All models are wrong, but some are useful.” 

Table 1: Some advantages when using the holistic WCVV framework when modelling GRC-s [EB1-EB4], and [16,17,33]. 

a.         the role of the high cell-ballast in “smoothing” the perturbations of the cell homeostasis;

b.        the secondary perturbations transmitted via the cell volume;

c.     the system isotonicity constraint reveals that every inner primary perturbation in a key-species level (following a perturbation from the envi-
ronment) is followed by a secondary one transmitted to the whole cell via cell volume;

d.        allows comparing the regulatory efficiency of various types of GERM-s;

e.         allows a more realistic evaluation of GERM performance indices [33]

f.          allows studying the recovering/transient intervals between steady-states (homeostasis) after stationary perturbations; 

g.         allows studying conditions when the system homeostasis intrinsic stability is lost

h.        allows studying the self-regulatory properties after a dynamic/stationary perturbation, etc.  

i.          allows simulate with a higher accuracy the plasmid-level effects in cloned cells [11,12].
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