GATES/GEB as the New Paradigm for Electrolytic Redox Systems

Anna M Michałowska Kaczmarczyk¹ and Tadeusz Michałowski²*

¹Department of Oncology, The University Hospital in Cracow, Poland
²Faculty of Engineering and Chemical Technology, Technical University of Cracow, Poland

Submission: May 14, 2019; Published: July 10, 2019
*Corresponding author: Tadeusz Michałowski, Faculty of Engineering and Chemical Technology, Technical University of Cracow, 31-155 Cracow, Poland

Keywords: Electrolytic systems; Redox titrations; Balances; GEB; GATES

Abbreviations: GEB: Generalized Electron Balance; GATES: Generalized Approach to Electrolytic Systems; ON: Oxidation Number; EN: Electronegativity; T: Titrant; D: Titrand

Introduction

One of the most important achievements in formulation of electrolytic systems is the discovery of Generalized Electron Balance (GEB) [1], as an equation (unknown earlier in Science) completing the set of equations needed for thermodynamic solving electrolytic redox systems of any degree of complexity, i.e., equilibrium, metastable and kinetic systems, in monophase, two-phase, multiphase, and multi-solvent media. Redox and non-redox systems are resolved according to Generalized Approach to Electrolytic Systems (GATES) [2,3], formulated by Michałowski; for redox systems, the acronym GATES/GEB is applied.

GATES is referred to aqueous, non-aqueous and mixed-solvent media $A_f (s=1,....,s)$, with amphiprotic (co)solvent(s) involved [4]. In aqueous media, the species X^a exist as hydrates $X^a_s : n_w = 0$ is a mean number of water ($W=H_2O$) molecules attached to X^a. In the mixed-solvent media, formation of the mixed solvates $X^a_s : n_w_{1a}......n_w_{sa}$ is admitted, where $n_w_{sa} = 0$ is the mean numbers of As molecules attached to X^a [5].

The GEB is recognized as the law of Nature [1], as the hidden connection of physicochemical laws, and as the breakthrough in thermodynamic theory of electrolytic redox systems. GEB was discovered by Michałowski: as the Approach I to GEB, and as the Approach II to GEB. In the Approach I to GEB, perceived according to ‘card game’ principle, electron-active elements are perceived as ‘players’, electron-non-active elements as ‘fans’, and electrons as ‘money’; the knowledge of oxidation numbers is needed here. The Approach II introduces the balance $f_{z2} = 2f_{z1} - f_{1}$ as the combination of elemental balances: $f_{1} = f(H)$ for $x_{1} = H$ and $f_{1} = f(O)$ for $x_{2} = O$. Charge balance ($f_{3} = ChB$) and other elemental and core balances $f_{k} = f(Y_{k})$ are f_{12} from $f_{0} f_{2} = f_{0} f_{12}$ the linear dependency or independency of f_{12} from $f_{0} f_{2} = f_{0} f_{12}$ is then the general property distinguishing between non-redox and redox systems.

Properties of the balances

In a non-redox system, the f_{1z} is linearly dependent on the balances: $f_{0} f_{0} f_{1z}$ i.e., a non-redox system is formulated with use of $K-1$ independent balances $f_{0} f_{2} - f_{0}$. In a redox system, f_{1z} is linearly independent on the balances $f_{0} f_{2} - f_{0}$ i.e., a redox system is formulated with use of k independent balances $f_{0} f_{1} - f_{0} f_{12}$.

Other, general properties are also valid here. Among others, oxidation number (ON) is the derivative concept; application of controversial electronegativity (EN) concept, where an artificial/doubtful qualification of bonds is made, is thus avoided.

Formulation of GEB according to Approach II needs none prior knowledge of ONs of elements in all components forming a system and in all species present in the system. For a redox system with $K - K^*$ ‘players’, f_{1z} is linearly independent on $f_{0} f_{2} - f_{0}$ i.e., the redox system is described by K independent balances $f_{0} f_{1} - f_{0} f_{12}$.

For a non-redox system ($K^* = K$), f_{1z} is linearly dependent on $f_{0} f_{2} - f_{0}$ i.e., a non-redox system is described...
by k-independent balances $f_0 f_1 f_2$. Consequently, the linear combination $f_0 + f_1 \cdot \sum_i d_i \cdot f_i = \sum_i d_i \cdot f_i$ with d_i equal to the oxidation numbers of the related elements, is reducible to identity, $0 = 0$. The linear combination $\sum_{k=1}^n d_k \cdot f_k = f_0$ applied to a redox system does not give the identity, also after further combination with $K - K^n$ balances for ‘players’. The linear combination $\sum_{k=1}^n d_k \cdot f_k = f_0$ for a redox system is composed only of components and species, where ‘players’ are involved. These regularities are valid for electrolys systems of any degree of complexity, with biological systems included a priori.

Redox titrations

Static and dynamic systems (aqueous media) were considered within GATES/GEB. Dynamic systems are realizable in simulated titrations, where V_t mL of titrant (T) is added into V_d mL of titrand (D), at defined point of the titration; V is considered here as the stirring variable. In general, D and T are composed of one or more solutes dissolved in water. One of solutes in D is analyte A, one of solutes in T is reagent B. The results of simulated redox titrations, realized with use of an iterative computer program, e.g. MATLAB [2], are plotted on the graphs: $E = E(\phi)$ and $PH = PH(\phi)$, where $\phi = \frac{C_D}{C_T}$ is the fraction titrated, C_D – concentration [mol/L] of A in D; C_T – concentration [mol/L] of B in T. Moreover, concentrations $X_{i,n}$ of the species $X_{i,n}$ are presented as dynamic speciation curves $log[X_{i,n}] = \phi(\phi)$ ss. The plots related to different redox systems are presented in numerous articles, e.g. in [6-18], and other papers cited therein. Relatively simple redox systems are considered in [6,7].

Final comments

GATES provides the best thermodynamic tool, the entrance step towards better understanding the physicochemical concepts within biomedical chemistry. The knowledge of chemical processes is the basis for understanding the phenomena occurring in cells and in the body, perceived as the most complex electrolytic systems. This way, the interdisciplinary relationship of chemistry with physics, biology, pharmacy and medicine can (should) be highlighted. The description of the systems according to GATES (and GATES/ GEB in particular) principles is based on algebraic equations, not on the stoichiometry of reactions, practiced hitherto in scientific papers and book literature. The GATES proves to be the most useful on the preliminary stages of research programs. From the authors’ viewpoint, stoichiometry is only a kind of ‘dummy’ [8-19], a relic from the late eighteenth century.

References
