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Introduction
Brain-derived neurotrophic factor (BDNF) is molecule 

that enhances the growth and maintenance of neurons in 
the central nervous system [1,2]. BDNF is highly expressed 
in the hippocampal and cortical regions of the brain where 
they involved in neuronal survival, synaptic plasticity and the 
formation of long-lasting memories [3-5]. Their high affinity 
receptor, TrkB has been identified as the Trk family of tyrosine 
protein kinases, thus facilitate to understand the signaling 
pathways responsible for mediating their trophic properties 
[6]. TrkB receptor is phosphorylated by binding of BDNF that 
trigger the activation of ERK-, Akt-, and PLC gamma-pathways 
[7-9]. Each pathway contributes to multifarious neuronal 
functions, including neurogenesis and the regulation of cell fate 
[10,11]. Various studies demonstrated that reduced expression 
of BDNF along with depressive behaviors, suggesting that an 
alteration in status of the BDNF/TrkB system leads to reduction 
in neurogenesis resulting brain dysfunctioning. Chronic stress 
reduces mRNA levels of BDNF [10,12] is one of the most 
important endogenous mediators of stress responses in the 
mammalian brain. Glucocorticoids (GCs) a stress hormone, exert 
influence on neurogenesis and functions, as well as BDNF [13]. 
Blood levels of GCs are regulated by hypothalamus-pituitary-
adrenal (HPA) axis activity [14-16]. It is well known that chronic 
stress induces the hyper activation of HPA axis, resulting 
overabundance of GCs levels [16].

Elevated levels of GCs have a role in the onset of mental 
disorders, including post-traumatic stress disorder, major 
depressive disorders and neurodegeneration. Furthermore, GC 
stress suppress the formation of neuron synthesis, especially in 
hippocampal region, has been a vulnerable target to develop new 
drugs because it shows the dysregulation of HPA axis function 
[17,18] and is considered as a culprit that leads to the onset of 
the mental disorders [19]. This review article demonstrated the 
functional interaction between BDNF and GCs towards altered 
neurogenesis. 

Impact of BDNF and GCs on Brain 
It is well known that chronic stress affects the neural 

morphology particularly in the hippocampus and the amygdala 
brain regions [20]. A single exposure to emotional stress is 
sufficient to increase dendritic length and number in amygdala 
region and vice versa in the hippocampus region [21,22]. 
Moreover, a study suggests that distinctive hippocampal and 
amygdala neuroarchitecture alteration predicting specific 
patterns of behavioral disruption following stress exposure in 
an animal [23]. These findings direct our focusing to understand 
if these stress effects on brain morphology are mediated by GCs. 
However, neurotrophic and GCs systems both act in antagonistic 
as well as in synergistic manners. BDNF and GC are involved in 
dendritic ramification, usually BDNF is associated with spine 
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formation and stabilization with GC rather playing a vital 
role in spine turnover [3,24]. A study showed that chronic GC 
administration results in spine loss in the cortex. Interestingly, 
transient raise in GC levels mostly affected newly formed spines, 
whereas chronically increased GCs affected spines that have 
been formed early in life [25].

However, both BDNF/TrkB and GCs/GR systems are 
occupied in neurogenesis, the interaction between these systems 
in neurogenesis is of interest. Therefore, this interplay in the 
neural function, including neurotransmitter release, synaptic 
structure has been investigated [18]. Many studies demonstrated 
a negative impact of systemic administration of GCs on BDNF 
mRNA expression in hippocampal and cortical regions [26-28]. 
It has been demonstrated that mRNA expression of BDNF was 
concealed by GC vulnerability via binding of GR to the regulatory 
sequences of the BDNF gene in neuron-like cells inveterate from 
mouse [29]. Previous study reported that TrkB also interacted 
with GR and mediated calcium signaling regulated by PLC 
gamma [29,30]. 

Molecular Mechanisms of BDNF and GC Interplay 
BDNF can directly influence the HPA-axis regulation through 

modification of CRH expression levels. On the other hand, 
dexamethasone (DEX, a synthestic GC) administration led to 
suppression of CRH, which could not be up to the mark by BDNF 
treatment [3]. A study revealed that DEX treatment stimulates 
more GR-binding to the CRH promoter [3,31]. In contrast to 
DEX, BDNF boost cAMP response element-binding protein 
(CREB) -binding to its site on the CRH promoter, which is in 
juxtaposition to the GR-binding site [32]. The central mechanistic 
element in CRH regulation is the recruitment of CREB to the 
CRH promoter. CREB requires the interaction with a coactivator 
protein named CREB regulated transcription coactivator 2 
(CRTC2) for its transcriptional activity [33]. Upregulated 
GC levels lead to the relocalization of the nuclear CRTC2 to 
the cytosol and thus downregulate the CREB transcriptional 
activity at the CRH promoter [3]. In additional, another aspect 
of association between the GC- and BDNF-signaling pathways 
seems to involve the mitogen-activated protein kinase (MAPK) 
pathway. Overexpression of MKP-1 induces detrimental effects 
by obstruct the axonal growth [34]. Regulation of the GC levels 
and consecutively MKP-1 expression levels proceed towards 
the restoration of stress-related depressive phenotypes 
through regulate the BDNF expression [35]. In a further study 
it was demonstrated that acute GC activity excites transient 
enhancement in tissue-plasminogen activator protein, which is 
play a vital role in proteolytic cleavage of pro-BDNF to mature 
BDNF. The excessive amounts of mature BDNF itself associate 
with TrkB and trigger downstream MAPK phosphorylation, 
which is imperative for the emergence contextual fear memory 
[36].

Conclusion
This review introduced the functional interplay between the 

BDNF/TrkB and GCs/GR systems in the neurogenesis. High level 

of BDNF and low GC levels are involved in neuronal maintenance, 
synaptic integrity and dendritic spine stabilization in the brain 
regions. BDNF-GC equilibrium is pivotal throughout life as a 
considerable mechanism for stress response regulation. 
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