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Introduction

The evolution of mathematical modeling in fire safety and 
incorporation of field modeling through Computational Fluid 
Dynamics (CFD) into fire research has marked a major development 
in this field [1-3]. This approach offers a more detailed and 
accurate representation of fire behavior within various settings 
[4,5]. Among various CFD tools, the Fire Dynamics Simulator 
(FDS) is notably the most used model due to its comprehensive 
capabilities in simulating fire dynamics [6,7]. Despite the higher 
computational demands, CFD modeling is a critical response 
to the limitations of conventional standard time-temperature 
curve and zone modeling in capturing the complex details of 
fire-structure interactions [8-14]. CFD models can incorporate 
complex variables such as building geometry, ventilation, and 
fuel load as well as detailed analysis of fire growth, spread. In fire 
CFD modeling, Reynolds-Averaged Navier-Stokes (RANS) models 
are widely used for their efficiency in averaging complex flows. 
Large Eddy Simulation (LES) models offer more detailed data  

 
but require finer meshes and greater computational resources. 
Direct Numerical Simulation (DNS) provides comprehensive 
flow analysis but demands extensive mesh resolution and high 
computational power, limiting its use primarily to research. 
The modeling approach of CFD provides detailed insights into 
fire evolution and its interaction with structural elements. Such 
detailed modeling is essential for predicting structural responses 
to fire and designing buildings that are resilient to fire hazards 
[6,15-17]. 

The integration of CFD with finite element method (FEM), 
and artificial intelligence (AI) in structural fire engineering 
marks a significant stride in fire safety research [18-24]. While 
CFD comprehensively simulates the behavior of fire and smoke, 
FEM focuses on assessing the structural responses under fire-
induced stress. Building upon the foundation established by CFD 
and FEM, the integration of AI into structural fire engineering not 
only reduces the high computational demands but also enables 
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real-time fire identification and prediction [25-27]. The combined 
use of CFD, FEM, and AI facilitates rapid response during fire 
events and effective assessment of post-fire conditions. This agile 
approach allows for more precise and timely decision-making in 
both the prevention and aftermath of fires, thereby enhancing the 
fire resilience of the structures. The use of FDS models in bridge 
fire assessment is a major focus in structural fire research. Bridges, 
as one of the main structural types and critical components of 
transportation networks, demand specific attention due to their 
unique structural characteristics and the severe impact that fires 
can have on them. The catastrophic nature of bridge fires not 
only poses a threat to public safety but also leads to considerable 
economic losses and disruptions in transportation networks 

[28-32]. The geographical spread of major bridge fire incidents, 
categorized by the severity of damage is demonstrated in Figure 
1. These incidents have highlighted the vulnerability of bridges 
to fire and underscored the need for advanced fire evaluation 
techniques. Therefore, applying field modeling in bridge contexts, 
particularly integrating CFD, FEM, and AI, is of both academic 
interest and practical urgency. This review provides a summary 
of CFD modeling in bridge fire studies from the last decade. 
Utilizing Natural Language Processing (NLP), a broad range of 
articles were analyzed and narrowed down to 10 studies for a 
more detailed assessment. This process aimed to explore various 
methodologies, identify challenges, and outline potential future 
directions for enhancing the fire resilience of bridges.

Figure 1: Global spread of bridge fire incidents.c

Use of CFD in Bridge Fire Engineering

The application of FDS models in bridge fire evaluation is 
a significant area of focus in structural fire research. In FDS 
simulations, the source of the fire, which is often a vehicle 
accident, is typically modeled as a rectangular shape with the top 
surface designated as the burning area. The Heat Release Rate 
(HRR) for different vehicles varies, with the flammable liquid 
tankers having the highest HRR. The combustion characteristics 
for each vehicle fire are defined based on information provided 
by SFPE Handbook of Fire Protection Engineering [33] As one of 
the notable CFD-based bridge fire studies, J Alos-Moya et al. [34] 
employed FDS and ABAQUS to analyze the I-65 overpass bridge in 
Birmingham, Alabama, which collapsed due to a fire in 2002. Their 
comprehensive study focused on the effects of factors such as HRR 
and temperature discretization from CFD to a finite element (FE) 

model on the fire responses of bridges. The FE model successfully 
simulated the structural behavior, including web buckling and 
deformation. This study underscores the limitations of the 
current design standards and the importance of performance-
based approaches in bridge fire safety. Gong X, Agrawal A, [35] 
investigated the Ed Koch Queensboro Bridge fire in New York City 
using sequential thermo-mechanical analysis. They employed FDS 
for fire simulation and ABAQUS for the structural response. 

Their analysis results revealed a significant temperature rise 
and out-of-plane stringer deformations, although the load-bearing 
capacity of the bridge under normal conditions was maintained. 
This research highlights the importance of post-fire assessments 
and the need to retrofit fire-damaged components of bridges. Peris-
Sayol G, et al. [36] focused on the fire response of steel bridges, 
and examined the impact of fire position, bridge configuration, 
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and wind speed. Utilizing adiabatic surface temperatures from 
FDS as input for ABAQUS thermomechanical analysis, their 
study identified the most damaging scenarios as tanker fires 
near bridge abutments, particularly in single-span bridges with 
minimal vertical clearance. The findings showed that the thermal 
responses and structural integrity were significantly influenced 
by factors such as vertical clearance and fire load position. This 
study offers new insights into the modeling of bridge fires and 
emphasizes the importance of specific parameters in predicting 
the integrity of steel bridges under fire. Wang and Liu [37] studied 
the buckling behavior of steel bridges under fire using FDS for fire 
characteristics and ANSYS for buckling analysis. Their findings 
revealed that bridge temperatures significantly increased during 
a tanker fire, with a critical buckling stress reduction in the steel 
bridge web within 17 min of exposure to a tanker fire, indicating 
early structural failure. They identified the optimal rescue time 
for such fires to be within the first 15 minutes. 

The validation study by Alos-Moya et al. [38] is considered 
one of the key CFD-based bridge fire studies. They conducted a 
simulation study to validate modeling approaches for bridge fire 
scenarios using Valencia bridge fire tests that were performed 
earlier. Their methodology included experimental fire tests 
under a composite bridge and utilized both a simplified approach 
(Heskestad and Hamada’s correlation) and FDS. The findings 
revealed the limitations of the simplified approach in large-scale 
scenarios, whereas the FDS model provided accurate simulations 
of the fire dynamics and thermal impacts. This study significantly 
enhances the understanding and accuracy of fire simulation tools 
used in bridge safety engineering. Zou et al. [39] investigated the 
performance of suspension bridge hangers exposed to fires caused 
by hazardous material (HazMat) accidents, with a particular focus 
on the impact of wind effects. They used FDS to simulate various 
scenarios considering the fuel size, transverse offset distance, 
and wind. Their analysis of the post-fire conditions based on 
the material properties of the bridge hangers indicated that 
wind speed, spill size, and hazardous material type significantly 
influenced the peak temperatures. Notably, higher wind speeds 
intensified temperature rises, elevating the risk of structural 
damage. Their findings demonstrated major reductions in the 
yield strength of steel hangers during fire events and emphasized 
the correlation between the yield strength and temperature. This 
study offers insights into the thermal effects of HazMat fires on 
suspension bridge hangers, highlighting the critical influence 
of the wind in such scenarios. Cui et al. [40] employed FDS and 
ANSYS to investigate the stability performance of a three-pylon 
suspension bridge considering a nearby tanker fire with varying 
burning time, fire area, and fire location. 

Their analyses demonstrated that conventional fire 
temperature curves, which ignore height effects, often 
overestimate fire effects. They observed that the stability 

coefficient of the bridge was significantly influenced by fire 
size and location, with notable reductions after 30 min of fire 
exposure. This research contributes to safety assessment and 
maintenance strategies for cable-supported bridges with steel 
pylons. Yu et al. [41] focused on the Wuhan Yangtze River Bridge, 
a long-span double-deck suspension bridge, and analyzed its 
responses to tanker fire exposure. They utilized FDS to generate 
temperature data for a tanker fire scenario on the upper deck of 
a bridge and conducted thermomechanical analysis with ANSYS 
to determine the shortest failure time of the main cable and the 
critical duration for fire rescue. They observed that the tanker 
location significantly affected the fire response of the bridge, 
and that the middle lane on the upper deck of the suspension 
bridge was a relatively safe lane during such fire scenarios. This 
study highlights the importance of considering fire scenarios in 
bridge design, especially for the main urban passages with heavy 
traffic and high fire risk. Xu and Liu [42] combined CFD and FEM 
to simulate the response of a steel box bridge to a tanker fire 
beneath it. Their experimental validation on the steel beams 
added credibility to their approach. The FE model effectively 
demonstrated the inhomogeneous thermomechanical response 
of the bridge under actual fire conditions, noting girder failure 
due to buckling in less than 10 minutes. This study validates the 
effectiveness of coupled CFD-FEM methods in replicating complex 
fire scenarios and highlights their importance in accurate bridge 
fire evaluations.

The study by Lu et al. [43] shifted towards AI integration in 
bridge fire field modeling. They developed a novel approach 
combining FDS, FEM, and a Kriging-based AI algorithm for 
the enhanced post-fire analysis of RC bridges, overcoming the 
limitations of the conventional FEM to accurately assess the post-
fire conditions of bridges. Their model successfully predicted 
the static behavior of an actual fire-affected bridge, proving its 
effectiveness in fundamental structural assessments such as 
load-bearing capacity and crack formation predictions. This 
approach represents a significant advancement in bridge fire 
engineering by providing a more accurate and reliable method for 
evaluating and monitoring bridge structural integrity post-fire, 
which is crucial for post-disaster assessment and retrofitting. In 
the performed studies, assumptions about fuel bed sizes varied 
from specific dimensions to estimates based on observations 
and spillage percentages. The FE analysis in these studies mainly 
employed software such as ABAQUS and ANSYS, focusing on 
specific elements or sections rather than the entire bridge model, 
and commonly performed thermomechanical analysis using 
adiabatic surface temperature data obtained from FDS models. 
These studies identified that the fire position, HRR, structural 
configuration, and wind play a critical role in determining the 
impact of fires on bridges. They emphasized the critical need 
for precise modeling techniques to understand and mitigate the 
impacts of fires on bridges.
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Knowledge Gap and Future Trend

An essential observation from existing studies is the limited 
capacity of current bridge design practices to address fire hazards, 
which highlights the need for more comprehensive guidelines. 
Despite these advancements, a notable knowledge gap persists 
in the integration of AI with advanced computational modeling 
techniques in the context of bridge fires. Integrating AI into these 
practices can significantly enhance the resilience of bridges to fire 
hazards, leading to improved safety and design methodologies 
[44]. Recent studies in the field of bridge fire analysis have made 
major progress through AI integration. The use of machine 
learning algorithms such as random forests, support vector 
machines, and generalized additive models has been pivotal for 
assessing the risk of fire hazards in bridges [44]. Furthermore, 
the development of a Rapid, Automated, and Intelligent (RAI) 
approach has enhanced the identification of bridges vulnerable 
to fire [45]. Current AI applications in bridge fire analysis rely 
predominantly on historical or actual fire incident data. This 
reliance constrains the models to scenarios that have already 
occurred, thereby limiting their ability to predict or simulate 
novel or extreme fire conditions that have not been previously 
recorded [46,47]. Computational models, such as CFD and 
FE, are crucial for simulating the dynamic behavior of bridges 
under fire. However, the integration of AI with these models has 
not been explored extensively. AI has the potential to enhance 
these simulations by providing predictive insights, optimizing 
simulation parameters, and offering faster and more accurate 
interpretations of complex fire dynamics. The bridge fire analysis 
field would benefit significantly from AI models that go beyond 
analyzing past data to predict future scenarios. Integrating AI with 
advanced computational modeling can advance risk assessment 
and management strategies. Such integration can lead to more 
comprehensive and dynamic models capable of evaluating a wider 
range of variables and conditions, thus providing more robust and 
reliable strategies for mitigating fire risks in bridge structures.

Conclusion

The critical role of bridge structures in transportation and 
their susceptibility to fire highlights the importance of exploring 
advanced fire safety measures. Correspondingly, the present 
research reviewed advanced CFD-FEM approaches and their 
integration in enhancing the fire safety and resilience of bridges. 
For this, a comprehensive series of articles were evaluated using 
NLP, whereby the 10 articles were shortlisted for more in-depth 
evaluation. This review particularly investigated the role of CFD, 
FEM, and AI in enhancing the fire resilience of bridges. Despite 
progress in bridge fire safety, challenges persist in current 
CFD-FEM models, including high computational demands and 
the need for more accurate thermal behavior predictions and 
real-time detection. Emerging technologies, such as AI and the 
internet of things (IoT), present opportunities for enhancing CFD-
FEM assessments. Future research should focus on developing 

advanced CFD models that integrate real-time data and machine 
learning algorithms, enabling dynamic and more precise fire 
simulations. Addressing these gaps will not only improve the 
efficacy of CFD models, but also significantly contribute to the 
safety and sustainability of bridge infrastructures.
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