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Introduction

There are many fluids like plasmas, liquid metals, salt 
water, and electrolytes etc. that lie under the class of magneto 
hydrodynamics and attract the attention of mechanical engineers, 
scientists and chemists for a longer period of time. The main 
significant quantity of magneto hydrodynamic flow of micro polar 
fluid past an axially symmetric particle is the drag experienced 
by the stationary body or moving through the fluid. George 
Gabriel Stokes [1], a renowned mechanical engineer and physicist 
of UK coined first the new concept of Stokes drag on sphere by 
solving the Navier–Stokes equation clubbed with continuity 
equation under zero-slip boundary condition by neglecting the 
convective inertia terms in the vicinity of sphere. Then, this rule 
given by him is known as Stokes law. After his landmark work in 
continuum mechanics, a new region of work called Stokes flow, 
emerge out significantly and many authors have contributed 
and lead to generate drag value analytically and numerically 
solving the Navier-Stokes equations and continuity equations by 
applying Stokes approximation with no-slip boundary conditions. 
Application of Stokes flow can be explored in biochemistry, 
marine engineering, naval engineering, biology and others as well. 
This was Hartmann [2] who initiated the theory of laminar flow 
of an electrically conductive liquid in a homogeneous magnetic 
field. Chester [3] studied the effect of magnetic field on Stokes  

 
flow in a conducting fluid and modified the classical Stokes drag 
solution by magnetic field, which is uniform at infinity and is in 
the direction of flow of the fluid, given as

( )}{ 2 3 4
sD=D = 1+38M+7960M -437680M +O M ,  (1.1)

where sD is the classical Stokes drag and ‘ M ’ is the Hartmann 
number. He also proved that when the magnetic Reynolds number 

mR , is small the magnetic field is essentially independent of 
the fluid motion. Ludford [4] discussed the effect of an aligned 
magnetic field on Oseen flow of a conducting fluid. Payne and 
Pell [5] tackled the Stokes flow problem for a class of axially 
symmetric bodies and found the general expression of Stokes drag 
on axially symmetric bodies in terms of stream function. Imai [6] 
has discussed the flow of conducting fluid past bodies of various 
shapes. Gotoh [7] has discussed the magneto hydrodynamic flow 
past a sphere and calculated the drag on sphere. Chang I-Dee [8] 
studied the problem of Stokes flow of a conducting fluid past an 
axially symmetric body in the presence of a uniform magnetic field 
and gave the formula of drag on axially symmetric body placed in 
the conducting fluid under the effect of uniform magnetic field. He 
utilizes the perturbation technique. In his Ph.D. thesis at Harvard 
University, Blerkom [9] studied the magneto-hydrodynamic flow 
of a viscous fluid past a sphere. Riley [10] considered the slow 
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flow of a viscous, conducting fluid past a non-conducting sphere 
at whose center is a magnetic pole. He calculated the drag in terms 
of Hartmann number. 

Eringen [11] introduced first the theory of micro polar fluid. 
The micro polar fluid differs with classical Newtonian fluid by only 
microstructure properties viz; micro-rotation and micro-inertia. 
The features of this type of fluid can easily be found in complex 
fluids like polymeric suspensions, animal blood, liquid crystals, 
lubricants, colloidal suspensions, bubbly fluids, granular fluids. 
Kanwal [12] obtained the drag on solid bodies moving through 
the viscous and electrically conducting fluids. Mathon and Ranger 
[13] tackled the problem of magneto-hydrodynamic streaming 
flow past a sphere at low Hartmann numbers. Ariman et al. [14] 
provided a complete review of micro polar continuum fluid 
mechanics. Ramkissoon and Majumdar [15] have evaluated the 
drag on an axially symmetric body in the Stokes flow of micro polar 
fluid. Bansal and Kumari [16] have studied the MHD slow motion 
past a sphere and calculated the drag on sphere in both Stokes 
and Oseen’s limits. Datta and Srivastava [17] proved a new form 
of Stokes drag on axially symmetric bodies based on geometric 
variables. Shu and Lee [18] provided the fundamental solutions 
for micro polar fluids. Based on geometric variables, Srivastava 
and Srivastava [19] calculated the drag on axially symmetric body 
in micro polar fluid. They concluded that the drag value reduced 
to classical Stokes drag by taking micro polarity parameter k tends 
to zero. In the latest work, Srivastava [20] extended the Stokes 
drag to Oseen’s drag in magneto hydro dynamics.

For the in-depth analysis of classical Stokes drag in Newtonian 
and micro polar fluids as well as drag in magneto hydrodynamic 
Stokes flow, author refers books of few renowned researchers 
like [21-28], etc. The target of present problem is to explore the 
relationship between viscosity coefficient, micro polar parameter 
and Hartmann number by combining the features of drag values 
described in papers of Riley [10] for magneto hydrodynamic 
Stokes flow, Datta and Srivastava [17] for Newtonian fluid and 
Srivastava and Srivastava [19] for micropolar fluid. For the 
specific flow configuration, numerical value of Hartmann number 
is also presented.

Formulation of Problem and Governing Equations

Let us consider the axially symmetric body of characteristic 
length L placed along its axis (x-axis, say) in a uniform stream
U of micro polar viscous fluid of density 1ρ , kinematic viscosity 
ν , viscosity coefficient µ and micro polar parameter k . When 
Reynolds number UL

ν  is small, the steady motion is governed by 
Stokes equations [15],

( )    0 ,1k u k p Fµ ω ρ  − + ∇×∇× + ∇× −∇ + =  (2.1)

( ) ( . ) ( ) 2 0,1 2 3 3 k u kα α α ω α ω ω+ + ∇ ∇ − ∇× + ∇× − =  (2.2)

 						    
. 0,∇ =u  (2.3)

subject to the no-slip and no spin boundary condition. In the 
above equations, u is the velocity vector, ω  the micro-rotation 
or spin vector, µ  the viscosity coefficient, p the pressure, ‘ k
’ the coupling constant or micro polarity of the fluid, F the 
external force per unit mass and 

1α , 2α , 3α  are characteristics 
constants of the particular fluid under consideration. It should be 
noted here that the general expression for Stokes drag on small 
axially symmetric particle placed under slow incompressible 
viscous micro polar fluid with small micro polarity experiencing 
no external body forces is proposed with the restriction of no-slip 
and no spin boundary conditions. The solution of these equations 
for described axially symmetric bodies are being discussed by 
Srivastava and Srivastava [19].

We consider the equation of low Reynolds number flow 
of an incompressible conducting micropolar fluid past an axi-
symmetric body in a magnetic field which is uniform at infinity. 
Chester [3] proved that when the magnetic Reynolds number 

mR  is small the magnetic field is essentially independent of fluid 
motion. For the case where the body and the fluid have nearly 
the same permeability, a uniform magnetic field will result i.e., 

0H  H i′ = = magnetic field at infinity. This indicates from the 
symmetry that there is no electric field, since for all such flows the 
electric currents form closed circuits. The governing equations 
and the no-slip boundary conditions for the present problem now 
becomes [8]

( )2 2p M . ,v - v v i i 0 
 −∇ +∇ − = (2.1a)

. = 0v∇  (2.1b)

2 2 2 2  as  r   r = x +y +zv i  
 
 

→ → ∞  (2.2a)

 =  at the bodyv 0  (2.2b)

In equations (2-3), all entities are non-dimensional, and their 
abbreviations are as follows;

 U = free-stream velocity,

 a = characteristic length of body,

( )
( )

a p pv xv ,  p ,  x=  , etc.,U aì +k U
′ ′−′ ′∞= =

UañRe =  = Reynolds number,ì +k
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Other symbols have their usual meanings in electro-
hydrodynamics and magneto-hydrodynamics. Primed entities are 
in physical units (as per [3, 8]). The solution of these equations is 
given by Riley [10].

Methods

Srivastava [20] has provided the axial Stokes drag on axially 
symmetric body Figure 1 placed in axial flow of micro polar fluid 
as

where the subscript ‘ x ’ is inserted to indicate that the force is 
calculated in the axial flow direction. While using (3.1), it should 
be kept in mind that ‘ b ’ denotes intercept between the meridian 
curve and the axis of the normal perpendicular to the axis i.e., 
b=R at = 2α π . This expression of drag may be split in two parts 
as

where sF  is axial Stokes drag. This expression of total drag 
(3.2) may further be written as

Now, on considering the effect of magnetic field in the present 
flow configuration, the requisite drag was calculated by Riley [10] 
in terms of Hartmann number as

where ‘ M ’ is Hartmann number. 

Figure 1: Geometry of axially symmetric body.

Solution

For micro polar fluid with small micro polarity effect permits 
us to consider kì =1, 2, 3,... etc. which lead us to the point where 
we get drag value 

x s s sF =2F , 4F , 6F ... etc. Which gives an idea that on 
fixing the micro polarity parameter equal to viscosity coefficient 
provide the drag value doubled to the corresponding Stokes drag 
on body placed under axial flow of micro polar fluid. Further, 
on taking the effect of magnetic field in the present situation of 

existing fluid phenomenon, expression of drag (3.4) given by 
Riley, N. can be clubbed with (3.3) leads us to the relationship.

                    

k 37 2 2= M +O Mì 210
 
 
   (4.1)

For  this relationship provides the approximate 
numerical value at the level of second degree of Hartmann 
number ‘ M ’ as 2.38. The other values of Hartman number can be 
evaluated by using (4.1) by using the ratio  etc. By 
(3.4), for , we can have
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F F 37 2 2x s = M +O M 1.71479 as MF 210s
 
 
 

− → →∞  (4.2)

The relation (4.1) and the limiting value of drag given in (4.2) 
can be verified very easily for various axially symmetric bodies 
like sphere, spheroid, deformed sphere etc. The same can also be 
verified experimentally. 

Numerical Discussion

We consider the micro polar fluid with small micro polarity 
parameter k and fix k=ì , 2ì , 3ì , 4ì , 5ì  etc., then from Riley’s 
expression of drag ( )x s sF F F−  and 

x sF F  may be calculated 

numerically by using (4.2). For ratio kì =1, 2, 3, 4, 5 etc., the 
numerical values of Hartmann number may be calculated from 
relationship (4.1). All the numerical values are presented in Table 
1. It is clear from table that drag value increases with increase in 
ratio due to the linear relationship between the two variants 
[19]. For fix value of ratio , we can always have an approximate 
value of Hartmann number, up to second power of M , responsible 
for creating magnetic effect on Stokes flow of micro polar fluid. 
We receive increasing trend in Hartmann number with respect 
to increasing value of ratio due to parabolic relation given in 
(4.1). This variation has been depicted in (Figure 2).

Table 1: For axially symmetric bodies, numerical values are presented.

For axially symmetric bodies [17]

( )x s sF F F− 1 2 3 4 5 n

Stokes flow of Micro polar Fluid past axially 
symmetric bodies x sF F 2 3 4 5 6 n+1

kì 1 2 3 4 5 2n=37M 210 , 
positive integer

M 2.38 3.3689 4.1263 4.764 5.3271 ( )1 2210n 37
Micro polar Fluid under the effect of mag-
netic field with magnetic pole at the centre 

of body

Figure 2: Variation of drag and Hartmann number with ratio  .

Conclusion

A technical note on magneto-hydrodynamic Stokes flow of 
micro polar fluid past an axially symmetric particle with magnetic 
pole at the center is tackled without solving the governing 

equations of considered flow phenomenon. The expression of 
drag [19] in terms of micro polarity parameter ‘ k ’ and viscosity 
coefficient ‘ ì ’ is matched with the expression of drag [10] in terms 
of Hartmann number ‘ M ’ providing the required relationship 
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between micro polarity parameter ‘ k ’, viscosity coefficient ‘ ì ’ 
and Hartmann number ‘ M ’. This relationship, 210n kM= , n=37ì , must 
be satisfied by all axially symmetric bodies which falls under 
the class described by Datta and Srivastava [17] for all fluid-
structure problem of magneto hydrodynamic Stokes flow of micro 
polar fluid with small effect of magnetic field and micro polarity 
parameter. The author claims that this idea may open the door 
to study the peculiar features of Newtonian fluid and micro polar 
fluid in the presence of magnetic field.
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