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Abstract


A parametric relation to the radial injection of cement mix in a rock fracture is sought in the framework of the first order expansion of the 
lubrication model. The first order expansion challenges the zero order expansion leading to a solution that satisfies the mass and momentum 
equations and energy balance in its integral form. A closed form relation for the flow rate is deduced from the analytic solution. The flow rate 
relation has a useful application. It transforms the spread objective during grouting into a flow rate objective.
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Introduction

The sealing of crystalline bedrocks is generally achieved filling the fractures with cement mix. A borehole is drilled to the fracture. A segment of the borehole containing the fractures is isolated with packers. It is filled with cement mix that enters the fractures when the pressure in the borehole exceeds the in-situ water pressure. This is the injection process that is idealized as a pressure driven flow of a viscoplastic material between rigid parallel discs [1-3]. Two main quantities are continuously registered during grouting: the volumetric flow rate of the mix and the injection pressure which is the excess pressure in the borehole to in-situ pressure. These two quantities are used to monitor the grouting process to attain the grouting objective [4].

The analytic solution of the 1D injection of a viscoplastic material between parallel plates is probably as old as is the formulation of Bingham [5] on the behavior of a viscoplastic material. It can be found  in  a  monograph  by  Prager  [6]  with its corresponding volumetric flow rate at a constant injection pressure. The volumetric flow rate was extended by Dai & Bird [7] to the radial injection between parallel discs using analogies. Since the radial flow rate was not obtained solving the governing equations its validity may be questioned. Further investigations have shown that it is not wrong [8] and can be deduced from the zero order solution of the radial injection of a viscoplastic material in the frame of the lubrication model. The governing equations of the radial injection  are nonlinear and  cannot be solved analytically without making the assumption that the mix thickness is small in comparison to the dimension of the injected fracture. This assumption is the basic hypothesis of the lubrication models. The analytic solution that is obtained in the frame of the zero order expansion does not satisfy the momentum equation [9]. This inconsistency is resolved in this note considering the first-order expansion and normal stresses. The lubrication frame leads to a simplified set of governing equations [10]. The solution to these equations may be obtained numerically or analytically in a weak form. It is the latter form that will be sought and obtained requiring that the solution satisfies the energy balance in its integral form. This implies the consideration of gross quantities since in its integral form the energy balance indicates that the power expended by the injection mechanism is equal to the total rate of dissipated energy by viscoplastic effects.

The definition of a viscoplastic material is presented in Sec 2. This section contains also the definition of the pseudo-core and the local dissipated energy. The basic quantities that are used in the injection of a rock fracture are presented in Sec 3. This latter contains also the main findings obtained in this note concerning the volumetric flow rate and the closure relation. Their usefulness in deciding on where and when, to stop the injection is also discussed. Sec 4 is technical and contains the mathematical proof that leads to the main mentioned findings; the governing equations, boundary conditions, gross energy balance, and naturally the analytic solution that consists in the pressure, velocity, stress fields and some related gross quantities are listed there.

Bingham  material

In a shear experiment a Bingham material remains rigid when the shear stress does not exceed a threshold value called the yield stress. When the shear stress exceeds the yield stress it behaves like a Newtonian fluid. Modeling an incompressible viscoplastic material as a Bingham material has often led to inconsistencies predicting a solid behavior when actually the material is yielding [11]. Wilson [12] proved that the inconsistency is due to a flaw deriving from Bingham's relation that neglects normal stresses. This finding favored a 3D generalization of Bingham's material by Hohenemser & Prager [13] based on the invariants of the stress and shear rate tensors. HP relation is
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where c , η, τand γare the yield stress, dynamic viscosity and deviatoric stress and strain-rate tensors. τII and τII   are the second invariants of the deviatoric stress and strain rate tensors. A viscoplastic material according to HP remains rigid whenever the second invariant of the stress tensor does not exceed the yield stress. From the above relations it is deduced that
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The rate of dissipated energy is by definition
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Since [image: ] the rate of dissipated energy by viscoplastic effect is
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In the original definition of Bingham, a viscoplastic material is  rigid  when  the  shear  stress  is  less  than  the  yield  stress  while  in HP definition it is rigid when the second invariant of the stress tensor is less that the yield stress. This has led to the definition of  a  pseudo-core  where  the  shear  stress  is  less  than  the  yield  stress  but  the  second  invariant  is  not.  Hence  in  the  pseudo-core  the material yields and dissipates energy while it should be rigid standing to Bingham definition. 

Injection

Basic definition

Figure 1 illustrates a schematic representation of the injection of a cement mix in a rock fracture. It is idealized by a viscoplastic material  that  spreads  between  two  identical,  parallel  and  rigid  discs.  The  injection  pressure  is  noted  P.  The  distance  between  the discs is noted 2H. The internal radius and front radius of the injected material are noted respectively, a, and b. Their difference, b-a, is the spread.  A physical quantitythat is much used in grouting is the spread ratio, noted ζ, and defined with
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Figure 1:  Schematic representation of the injection of cement mix.
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The core ratio is the ratio of the pseudo-core thickness that is noted 2Hc  to the distance between the discs. The core ratio is noted β and is
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The core ratio is by definition always bounded by zero and one. The spread ratio is by definition positive. It is rewritten as
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Where S is the span that is defined with
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It  will  be  proved  that  for  a  spreading  mix  the  spread  ratio  is always  smaller  than  one  and  the  span  is  an  upper  bound  for  the  spread.

Flow rate

The main results that are obtained in this note concerning the volumetric flow rate Q and the closing relation with the core ratio and spread ration are the following:
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 The details that leads to Eq. 10 and 11 are provided in Sec 4. Eq.11 is valid for a spreading mix. It implies that the spread ratio is smaller than the core ratio and by consequence is always smaller than one. This implies that injection will resume from a rest state if the spread ratio is smaller than the core ratio. Hence, the spread ratio of an advancing mix is smaller than one, which implies that the spread, b-a, is smaller than the span, according to Eq.8.

Minimal flow criterion

 The  main  quantities  that  are  monitored  during  rock  fracture  grouting  are  the  injection  pressure  and  the  volumetric  flow rate.  These  are  raw  quantities  that  give  a  clear  indication  on  the  designer's concern. This particularity should be emphasized when compared to the needs in other disciplines independently from the fact that cement mix is a viscoplastic material. The preoccupation of a designer is to define an attainable objective. This latter is often formulated in term of a minimal spread at a prescribed pressure that is generally the maximal allowable injection pressure [14]. he value of the flow rate at the minimal required spread and the maximal allowable pressure is the flow rate limit. When this limit is attained the injection is generally continued for a while and then stopped. This stop criterion is called the “Minimal Flow Criterion”, and  is  also  known  under  different  variants  and  appellations  [15,16] 
such as “Refusal Pressure”, “Equivalent Lugeon” or “North American Refusal Criterion”.

 The closed form that results from Eq.10 and 11 transforms the spread objective into a flow rate objective. This transformation has  a  practical  consequence  because  it  is  simpler  to  monitor  the  flow rate than the spread. Indeed, when the injection pressure P is maintained constant the flow rate Q is uniquely defined by the spread to the condition that a, c, η and H be known. The injection radius is a standard value unless predefined by the designer. The   yield   stress   and   viscosity   are   selected   by   the   designer,   and  the  aperture  of  the  fracture  may  be  determined  from  the  transmissivity that is obtained by preliminary pressure tests [17]. 



With that, the value of the flow rate that is calculated at the spread objective with the maximal allowable injection pressure becomes a lower bound. When the flow rate attains the lower bound the injection will be stopped.

Analytic solution

Governing equations

 It  is  supposed  that  the  mix  is  yielding  out  with  no  angular  velocity  and  no  angular  dependency  of  the  variables.  The  radial  and  axial  coordinates  are  noted  r  and  z,  and  the  radial  axial  velocities v and w. The radial and axial velocities are respectively even  and  odd  functions.  They  will  be  sought  for  positive  values  of  the  z  axis  and  extended  using  their  respective  parity  that  is [image: ] and  [image: ]  The  shear  stress  is  noted τrz, and the normal, radial, tangential and axial stresses are τr, τt and τz.  The  shear  and  axial  stresses  are  odd  functions  and  the radial and tangential stresses even functions. 

 The mix satisfies a no-slip condition at the discs,
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The pseudo-core is the domain where the shear stress is less than the yield stress and on its boundary 
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 In geotechnical engineering the yield stress is called cohesion that is a more suitable appellation since it does not imply necessarily a transition state.

 The  governing  equations  are  written  in  the  frame  of  the  lubrication  model.  A  ratio  of  the  distance  between  the  plates  to  a  characteristic  length,  noted  ε,  is  supposed  small  and  is  used  to  expands  the  velocities  and  truncate  the  governing  equations.  The truncation and expansion procedure that is followed by Ryan [10] for a 2D slit is extended here to the radial case between rigid parallel  discs.  The  radial  component  of  the  velocity  is  an  even  function  of  the  axial  coordinate  and  the  axial  velocity  is  an  off  function. The governing equations up to 0( ε2 ) are
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where  p  is  the  pressure.  It  is  deduced  that  the  pressure  is  a  function of the radial coordinate only, p=p(r), and the shear stress is [image: ] and the core ratio is intimately related to the inverse of the pressure gradient as
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 The  stress  and  strain-rate  relation  takes  a  different  form  in  the  boundary  layer  and  pseudo-core.  In  the  boundary  layer,  the  following relations hold
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  And  to  zero  order  expansion,  up  to  0(ε),  the  velocities  are  written
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  The following relations are deduced
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  And  in  the  pseudo-core  the  shear-rate  is  no  more  dominant, which needs considering on one hand the normal stresses leading to
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 And  on  the  other  hand  the  first  order  expansion  ofthe velocities  
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  In Eq.32, v0 represents the mean value of the radial velocity at the upper and lower edges of the pseudo-core. The mean value of w0 in Eq.33 is zero, and noting that w1  is  of  the  order  of  εv1 and ε2v0, and that v0 in the pseudo-core is independent of z, the following relations are obtained    
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Flow rate

 The volumetric flow rate is written 
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 Where
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In between[image: ]  in Eq.39 and 40.

Energy balance

 The dissipated energy is
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 Where
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Hence
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Final form 

 A  solution  is  obtained  seeking  the  value  of  β  for  which  the  energy balance is satisfied, that is 
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 This relation is satisfied whenever when
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 This leads to
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 And to
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 Eq. 10 and 11 are part of the solution. It can be verified that Eq.10 is obtained inserting Eq. 50 and 51 in 39 and 40, and Eq. 11 is obtained equating 52 and 53.[image: ]

 The  relative  difference  of  the  volumetric  flow  rate  and dissipated  energy  to  the  values  that  are  obtained  with  the  zero  order expansion is practically small.The relative difference of the volumetric flow rate and dissipated energy to the values that are obtained with the zero order expansion is 
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where the dot over E is its time derivative.

Generally, the ratio c/P in rock fractures grouting is less than one thousand, which is a negligible quantity.Also, c/P is equal to H/S that is the ratioof the fracture half thickness to the span, according to Eq.9. Considering a fracture thickness that is two tenth of a millimeter and a span that is ten meter will give a ratio c/P that is one to ten thousands. The first order expansion does not change significantly the volumetric flow rate and dissipated energy relatively to their values in the frame of the zero order expansion. But, it brings a significant weight to the validity of the solution since it satisfies the mass, momentum and energy equations.

Conclusion

A closed form solution to the radial injection of a cement mix between parallel  discs  was  obtained.  It  satisfies  the mass, momentum and energy equations. It brings a negligible difference to the zero order solution but a big contribution to the completeness of the solution. It can be almost used to calculate the volumetric flow rate into a planar rock fracture and transforms the spread objective into a flow rate objective.
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