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Abstract


Recent proposals for very long span bridges, such as those proposed for the Straights of Messina and Gibraltar, have reopened the questions as to which forms provide feasible solutions and within those forms what particular geometries will result in the most efficient solution - in terms of both material volume and cost? While these questions can now be approached using sophisticated optimization software it would seem that simple engineering reasoning still has much to offer. The following rehearses some simple analytical approaches to the question of assessing the relative efficiencies of different bridge geometries considered in an earlier paper and uses this approach to widen the discussion and address the issues of what parametric choices within each of these different geometric classes of bridge would provide the most materially efficient solution. It compares the material efficiency of the common forms of catenary-type and cable-stay suspension bridges, and assesses the relative merits of the so called harp and fan forms of cable-stay bridges. It also extends past analyses to various classes of multi-pylon cable stay bridges and shows how these relate to the theoretical optimal Mitchell structure. Finally, it suggests that the simple physically based models developed in relation to bridges might form a template for future conceptual design for which computers can be relied upon to carry-out the detailing.







Background

Some years ago the author had occasion to ponder the
question as to which form of suspension bridge, the traditionally
preferred catenary-type or the increasingly popular cablestayed,
provided the best solution for bridging large spans. This
work, outlined in Reference [1], was undertaken while sailing up
the River Seine on route to the Mediterranean. At the time the
Pont du Normandie had just been completed and the wonderfully
slender lines of its stiffening girder and cables contrasted
strongly, when viewed at an equal distance, to the stockier cables
and girder of the Tancarville catenary-type bridge having a very
similar span but completed some 35 years earlier. Having to
complete the first leg of this sail to Rouen on a single tide I found
myself with time on my hands to attempt to prove that the more
daring slenderness of the new Pont du Normandie must result
from the of use of higher strength steels. After all for a uniformly
distributed load the parabolic form of the Tancarville bridge,
in following the shape of the moment distribution, must surely
provide the most efficient solution? Or so I thought. Because
the results of these musings proved so counter to my intuitive
understanding the results were sent in the form of a letter to
the editor of The Structural Engineer; to my surprise this was
subsequently published as a feature article [1] which attracted
an agreeable range of enlightening discussion [2]. 

Subsequently the methodology that had been developed
formed the basis of a teaching module [3] encouraging students 
to use similarly simple calculations to make rational decisions
for more general forms of structure. This encouraged the use
of non-computer based analyses to allow assessment of the
structural forms most likely to provide materially efficient
solutions for a given function and which would not. And
inevitably such comparisons allowed consideration of the extent
to which aesthetics should or should not be separated from
issues of material and mechanical efficiency and cost. 

For the classes of bridge structure considered in the original
article the primary load paths involved membrane behaviour
with individual members carrying their loads through axial
tensions and compressions. In contrast, many recently proposed
bridges involve primary load paths requiring the development of
bending action. To be able to make meaningful comparisons of
their relative efficiencies it was necessary, as part of the teaching
course developed, to extend the original methodology to allow
treatment of structures for which bending is involved in the
primary load paths. In this regard the bridges of Calatrava [4]
made instructive case studies. And having a simple treatment of
bridges involving both membrane and bending actions allowed
the approach to be extended to the treatment of wider classes of
buildings and structures. This in turn enabled consideration of
the structural efficiencies of some of the new styles of building
favoured for example by the so called High Tech architecture
movement [5] relative to more conventional buildings. Like many 
of the more recent bridge forms these examples from recent
trends in building provided equally compelling illustrations
of how the choice of an inappropriate structural form can lead
to very inefficient use of material and spiralling costs - see for
example Refs [6,7]. And of course this provided the material
for much wider discussion of whether aesthetics and form in
structures should follow material and mechanical efficiency, or
whether they can be considered separately. Or whether, as Guest,
Draper and Billing to night put it, whether a particular structure
embodies “structural art” or merely “art in structures” [7]. 

Recent efforts to revive the proposals for bridges across the
Straights of Messina and Gibraltar [8,9] have reopened questions
relating to the relative efficiencies of various bridge forms. In
the following a brief summary is given of the method developed
to assess relative efficiencies of competing structural forms
in which the primary load paths do not involve bending. This
will be used to illustrate the main conclusions on the relative
efficiencies of the parabolic cable and cable stay suspension
bridges contained in Refs [1,2]. This is followed by some further
calculations which illustrate the relative efficiencies of the so
called harp and fan forms of cable-stay bridges. And because
they have been proposed as possible solutions for longer span
bridges a final section will deal with cable stay bridges having
multiple pylon supports. Increasing the number of multiple
pylons will be shown to eventually converge to the “optimum”
Mitchell structure [10]. Relative to their more conventional
counterparts these will be shown to often embody very efficient
use of material. Finally, brief consideration will be given to
the wider socio-economic factors at work in many recent
developments in structural engineering and how these fit into
a global agenda where waste and profligacy should be and are
increasingly challenged. 

Basis for calculating material efficiency

Member volumes for axially loaded members

A member i carrying a tensile axial force Fti constructed
from a material having a characteristic material tensile strength σt
 will require a cross section area Ai=Fti/σt. If the force remains
constant over the length i l of the member i then the volume of
material required to carry this tensile force will be Vi=Ai·li or

[image: ]

In a similar way the volume of a member i carrying a constant
compressive force Fci having a characteristic compressive
strength σc will be
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In a situation such as for the cable of a catenary type
suspension bridge the axial force will vary over its length so that
eq. (1) would become
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while for the volume of a compression arch would similarly
be

[image: ]

In a related way a flat plate of area A carrying a uniaxial
stress resultant n will require a thickness of t=n/σt  so that
the volume required would be given by
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In many cases where cable nets are involved it will be
convenient to replace the individual cables with an equivalent
continuous thin membrane plate having the thickness of the
smeared out areas of the cables allowing the total cable volumes
to be expressed in the form of eq. (5).

For a structure consisting of an assemblage of m individual
members, such as that shown in Figure 1, the total volume of
material required will be

[image: ]

where, in line with current terminology forces Fi will be
taken as positive when tensile Fti and negative in compression
Fci .


[image: ]

Figure 1:   Hypothetical frames structure to illustrate Maxwell's
Lemma

 

Maxwell's Lemma: In the following it will be helpful to recall
one of Maxwell's lesser known lemma, which in paraphrase
states that:

“any structure made up of assemblage of members i
carrying axial forces Fi that are in a state of overall equilibrium
with applied and reactive external forces Pj which are fixed in
both position and orientation, will have the algebraic sum of the
product of the axial forces and their lengths equal to a constant”

In terms of the present notation this lemma could be written
as
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where Mk is the Maxwell constant and again forces Fi will
be taken as positive when tensile and negative in compression.
It does not matter what form the structure takes, this statement
remains true. The proof of this was elegantly presented by
Maxwell [11] but because it was seemingly not sufficiently well
recognized was given new life in Ref. [12]. Perhaps the simplest
method of proving this lemma is the following; this is given
since it will provide a simple conceptual way of evaluating the
Maxwell constant Mk. 

Consider the arbitrary if somewhat contrary structure of
Figure 1, and imagine that it is uniformly contracted down until
it becomes infinitesimally small and lies at the origin point O.
In doing so the axial forces Fi will have undergone a relative
movement of li with the compressive forces doing positive work
on account of their relative deformations being in the same sense
as the forces while the tensile forces will do negative work. With
the work done by the internal forces equaling the work done by
the external forces, the Maxwell constant Mk in eq. (7) can be
seen to represent the positive work done by the external forces
in undergoing the deformation required for them to be acting at
the point O . With dj representing the distance from the original
position of the external force component Pj to the point on the
line of action of Pj from which a normal drawn from this line
of action of Pj passes through the point O , then the Maxwell
constant is given by
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Reflecting the convention of his time, Maxwell adopted the
convention of compression being positive. Were this the present
case there would be no negative sign on the right side of eq. (7).
It is understood that dj in eq. (8) are positive when dj is in the
positive direction of the external force Pj. 

It follows from eq. (7) that 
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allowing the total material volume of eq. (6) to be rewritten
in terms of just the tension members
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or alternatively in terms of just the compression members
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Provided the Maxwell Mk constant is known the use of
Maxwell's lemma allows the work required to calculate the
volumes of primary elements in a structure to be halved. For
the sake of brevity this will be the approach adopted in the
following. However, as previously illustrated [1,2] it may be
prudent to calculate the volumes of both the tension members
and the compression members and use the Maxwell lemma of
eq. (6) as a check on the voracity of the calculations. 

To eliminate the difficulties of comparing relative efficiencies
when there are different requirements for the foundations,
previous comparisons assumed that for both the catenary and
harp cable-stay bridges the end supports needed to develop the
horizontal thrust ql2/8h conventionally required of the catenarytype
suspension bridge. This meant that for the cable-stay bridge
the deck needed to develop both tension and compression in
equal measure. Because this is perhaps unrealistic in terms of
conventional practice for cable stay bridges the calculations
will here be repeated under the assumption that there is no
horizontal thrust developed at the end supports for all the cases
to be considered. While this requires a compression force to be
transmitted through the deck of the catenary-type suspension
bridge, it has the merit of eliminating the need for horizontal
forces at the end supports. Although not the usual practice for
catenary-type suspension bridges this assumption provides
another perfectly valid way of comparing the relative efficiencies
when using conventional practice for cable-stay type bridges. 

Catenary-type suspension bridge
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Figure 2:  (a) Typical catenary-type suspension bridge with

 


Figure 2a highlights the equivalent of a typical span l of a
multi-span catenary-type suspension bridge (it being understood
that the term catenary is here being used loosely to describe what
of course would normally be a second order parabolic cable)
having pylons of height h above deck and carrying an assumed
uniformly distributed load q. In this case we could integrate
the volume of the cable to account for its variable tension force
and similarly integrate the volume of material required for
the hangers. In this case this would be a rather long winded
process, so instead the consideration of material volumes will
be approached via the compression members. There are just
two compression members each having a constant compressive
force. The pylon carries a constant compression of ql while the
deck transmits a constant compression of  ql2/8h .  Hence the sum
of the compression forces times their respective lengths will in
this case be given by 

[image: ]

Because there are no externally applied horizontal forces
and the applied downward vertical force of is at the same
vertical elevation as the equal and opposite reactive force, the
Maxwell constant will for this system be zero, implying that the
total material volume could be written 

[image: ]

Treating L≡l/h  as a variable the minimum volume will when [image: ] or l/h≈2.83  giving the least material volume

[image: ]

as shown in Figure 2b, it is noteworthy that the value of L = l/h≈2.83 associated with the minimum primary structural material volume does not depend upon the choice
of characteristic tensile and compressive stresses (σt,σc)
although of course this is not the case for total material volume
required. 


[image: ]

Figure 2(b):  primary material volumes for varying l/r.

 

Harp-type cable-stay bridge



[image: ]

Figure 3 (a):   Typicalharp-type cable-stay bridge with 

 

Consider a typical span l of a multi-span harp-type cablestay
bridge having pylons of height h above deck level, as shown
in Figure 3a, subject to a uniformly distributed load of intensity
q over each of its spans. Instead of considering individual
cables it is perhaps more convenient to assume the cable net acts
as if it is a continuous thin membrane plate having a maximum
principal membrane stress resultant n in the direction of the
cables and a minor principal membrane stress of zero in the
direction normal to the cables. Vertical equilibrium of a typical
element from this continuous plate shown in Figure 3b requires 
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where a is the inclination of the cables. Horizontal
equilibrium of this same typical cable element shown in Figure
3b will be provided by the horizontal shear stress resultant nt
where 

[image: ]

The volume of the tensile steel required for the cable net may
then be determined by multiplying the thickness t required of
the equivalent membrane plate of the cable net, given as

[image: ]

by the vertically projected area 0.5l·h of the cable net,
which on account of tan α=2h/l, gives a total tensile steel
volume of 

[image: ]

In eq. (18) the expression when the characteristic tension
stress αt is removed represent the sum of the product of the
tensile forces times the lengths of the members. Since for this
structure the applied deck force of ql is at the same level as
the reactive support force ql, and there are no other external
forces, the Maxwell constant is again zero, so that  Mk =0 . It
follows from Maxwell's lemma that 

[image: ]

The total material volume required to carry the primary
loads for the harp cable-stay is therefore 

[image: ]

Noting that 
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and that the minimum of this function occurs at tanα=1 then the least volume choice for α=45° , or L=l/h=2, is 

[image: ]

as shown in Figure 3(d). It is noteworthy that this least
material volume for the harp-type cable stay requires around
30% less material than the equivalent catenary bridge of eq.
(14). 


[image: ]

Figure 3(d):   primary material volumes for varying l/r.

 

Fan-type cable-staybridge

A commonly adopted alternative to the harp solution above,
in which the cables are parallel, is that for which the anchorage
points are concentrated nearer the top of the pylon. As an
idealisation of this form is that shown in Figure 4(a). Although
not practical given that the cable anchorages need a finite height,
this will represent a convenient approximation of the more 
practical versions of this fan type cable stay. Again it is probably
most convenient to start by calculating the volume required for
the cable net. In this case this could be approached by noting as
shown in Figure 4(b) that the force in a typical cable at a location
a distance x from the base of the pylon and supporting the deck
load q over a length δx is, qδx/sinϑ
which remains constant over its length x/cosα so that the total Fti.li over the half span of Figure 4(b) is given by

[image: ]

which on account of eq. (20a) and the consideration that
tan ϑ= h/x may be written for a typical span l

[image: ]

allowing the total material volume to be written
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Treating L≡l/h as a variable the minimum volume 

[image: ]

will occur when [image: ]
 or  l/h≈3.46 , as depicted in Figure 4(d). This form of fan-type cable-stay bridge is therefore less efficient than the least weight harp-type cable-stay of Figure
3, requiring around 15% more primary material volume, but
more efficient than the least weight catenary-type suspension
bridge of Figure 2, requiring 18% less material. However, it
should be recalled that the catenary-type suspension bridge
considered here requires the horizontal component of tension
force in the cables to be equilibrated through the development of
an equal and opposite compression force over the entire length
of the stiffening girder. This is not of course the usual practice in
catenary-type suspension bridges. The more representative case
of the horizontal thrust being equilibrated by end supports will
be treated in a later section. 


[image: ]

Figure 4:   (a) Typicalfan-type cable-stay bridge with (d) primary material volumes for varying l/r.

 


Applications to non-conventional suspension bridges

There have been suggestions that instead of just a single
pylon at each support there may be advantage in using a number
of radially directed pylons. Because they are a step towards
the optimal Mitchell-type structure(10) it is certainly probable
that these multi-pylon structures would have advantages over
the single pylon case. In the following a number of alternatives
are considered and shown to converge to the Mitchell optimum
structure as the number of pylons increases. Consideration of
their practicality will be deferred to a later section. 

Two pylon cable-stay

As a first example of a multi-pylon solution consider the
case shown in Figure 5(a). Taking as an illustrative example 
the pylons having length equal to the half span of the deck, but
allowing the inclination of the pylon to be variable at ϑ , implies
that the inclination of the cables at the deck are (90-ϑ/2)  so that
the stress resultant n1 equivalent to the action of the cables in
the lower cable net is

[image: ]

Resolving the forces normal to the inclined pylon requires
that the stress resultant n2 equivalent to the action of the cables
in the upper cable net be given by 

[image: ]

With the area of the lower and upper cable nets being
respectively 

[image: ]

the total volume of tension steel in the 3 cable nets will be
given by

[image: ]

and on account of Maxwell's lemma the total volume of steel
will be

[image: ]

For varying ϑ the total volumes of primary steel shown in
Figure 5(c) can be seen to exhibit a minimum of

[image: ]

when ϑ = 60° . This represents a 13% reduction in primary
structural material required compared with the harp cable stay
of eq. (21).


[image: ]

Figure 5:   (a) Double-pyloncable-stay bridge with (c) primary material volumes for varying pylon inclination ϑ.

 

Three-pylon cable-stay

As a second example of multi-pylon cable-stay consider the
3 pylon case of Figure 6(a) for which the inclined pylons are
taken to have a variable inclination of ϑ . Again for illustrative
purposes it is assumed that the pylon has length equal to the half
span of the deck making the inclination of the cables at the deck again (π-ϑ)/2, , so that the stress resultant n1 equivalent to the action of the cables in the lower cable net is

[image: ]

Resolving the forces normal to the inclined pylon requires
that the stress resultant n2 equivalent to the action of the
cables in the upper cable net be given by

[image: ]

With the area of the lower and upper cable nets case in this
being respectively 

[image: ]

the total volume of tension steel in the 3 cable nets will be
given by

[image: ]

and on account of Maxwell's lemma the total volume of steel
will be

[image: ]

For varying ϑ the total volumes of primary steel shown in
Figure 5(c) can be seen to exhibit a minimum of

[image: ]

when ϑ = 45° . This represents a 17% reduction in primary
structural material required compared with the harp cable stay
of eq. (21). 


[image: ]

Figure 6:   (a) Triple-pyloncable-stay bridge with (c) primary
material volumes for varying lower pylon inclination ϑ .

 


Multi-pylon cable-stay

It is generally the case for multi-pylon cable stay bridges
that the v least volume will be displayed when the pylons are
separated by equal angles. Adopting this a multi-pylon cable-stay
having n pylons shown in Figure 7(a) will have the first pylon at
an inclination angle of π/(n+1).It follows that the inclination of
the cables at the deck will be π(1-1/(n+1))with the stress resultant
equivalent to the action of the cables in the lower cable net given
by

[image: ]

Resolving the forces normal to the inclined pylon requires 
that the stress resultant equivalent to the action of the cables in
the next cable net must also be equal to  n1 , so that all cable-nets
have the same stress resultant  n1 equivalent to the action of the
cables.


[image: ]

Figure 7:  (a) Multi-pyloncable-stay bridge with (c) primary
material volumes for varying numbers of pylon n.

 

With the area of each of the (n +1) cable nets being

[image: ]

the total volume of tension steel in the (n +1) cable nets
will be given by

[image: ]
 
and on account of Maxwell's lemma the total volume of steel
will be

[image: ]

For varying n the total volumes of primary steel shown in
Figure 7(c) can be seen to include the one, two, and three pylon
cases considered separately in eq. (21), (27), (30). In the limit
as n→∞

[image: ]

This limiting case represents more than 21% reduction in
total primary structural material compared with the harp cable
stay of eq. (21). Furthermore, this limiting case which represents
an infinite number of concentric semi-circular members being
intersected by an infinite number of radial members is often
referred to as the “Mitchell optimum” [10]. Whether it is practical
is of course another story. But in this context the use of multiple
pylons emanating from each of the support piers can be viewed
as an approach to this Mitchell optimum. 

Hybrid cable-stay

As a variant on the multi-pylon solution for the cable stay is
the case where the radially emanating pylons are concentrated 
about the centre line of the support, as shown in Figure 8(a).
Adopting this hybrid multi-pylon cable-stay having n pylons
shown in Figure 8(a) the lowest pylons will be taken to subtend
an angle ϑ to the deck. Assuming pylons to be equally spaced
the angle between adjacent pylons will be(π-2ϑ/(n-1)).Following the
above analysis, for which the use Maxwell's lemma allows the
total volume to be inferred from just an analysis of the volume
required for the tension steel, the equivalent membrane stress
resultants in the two forms of cable net are 

[image: ]
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Where  n1 relates to the lower and larger cable net of Figure
8(b), and  n2 to any one of the smaller upper cable nets shown
in detail in Figure 8(c). With the respective areas of these two
cable nets being


[image: ]

Figure 8:  (a) Hybrid multi-pyloncable-stay bridge with primary material volumes for(b) varying lower pylon inclination ϑ, and (c) varying
numbers of pylon n

 

[image: ]

it is a straightforward matter to show that the total primary
material required is given by

[image: ]

which in the limit of n→∞ becomes

[image: ]

Figure 8(d) shows the variation of total primary material
volume for varying ϑ reaching a minimum value of  l/h≈20
at ϑ = 0° (which is the condition for stationarity of eq. (34) and
also of course identical to the Mitchell optimum of eq. (33)and
exhibiting a very flat variation as ϑ increases. With the first
pylon chosen to have an inclination of 45° for example the total
material volume would be 

[image: ]

which is just a little over 6% higher than the Mitchell
optimum. Figure 8(e) shows for the case of ϑ = 45°
 the variation in the total material volumes required as the number of pylons
n for the hybrid case increases -note the minimum number for
this case would be n = 2 . Again, this variation shows very
little change as n increases. For n = 3 for example  KV = 0.423
which is a little under 8% higher than the Mitchell optimum and
around 15% lower than the harp cable-stay of eq. (21).

Suspension Bridges with Horizontal Foundation
Thrust

Clearly the various possible bridge forms considered above
represent just a small sample of the possible designs for bridge
structures. One of the aims in presenting this limited range
of alternative designs is to demonstrate that simple hand 
calculations have considerable merit in comparing the relative
structural efficiencies of various alternatives. The supports
have been chosen to conform to those typical of cable-stay
bridges, in that there is no horizontal thrust requirement at the
end supports. To allow direct comparisons the catenary type
suspension bridge was also taken to have no horizontal thrust
requirement at its end supports, with the cable horizontal
tension being instead equilibrated by a compression force over
the entire length of the deck. This of course adds considerably to
the total structural volume required and perhaps misrepresents
the merits of the catenary-type suspension bridge relative to
those of the various forms of cable-stay bridges considered. The
following makes similar comparisons but with the horizontal
thrust being provided by the end supports; it is this situation
that was described in Ref [1,2].

Catenary-Type Suspension Bridge with Horizontal
Foundation Thrust

To represent conventional practice Figure 9 shows the same
multi-span catenary-type bridge as that of Figure 2 with the
difference that the horizontal thrust is now generated at the end
supports. For this situation considered in greater detail in Ref
[1,2], there is just one compression member - that of the pylon -
so that for the typical section of the bridge shown eq. (12) now
becomes


[image: ]

Figure 9:   (a) Typical catenary-type suspension bridge with horizontal cable force resisted by foundations showing (b) variation of (l/r) min for (c) minimum primary material volumes for varying β = σt/σc.

 

 [image: ]

In this case the Maxwell constant is Mk=-ql3/8h, which
represents the negative work done by the outward horizontal
reaction of ql2/8 moving through the distance l of the single span
but in the opposite sense to the force. On the basis of eq. (9) the
sum of the products of the tension forces times their lengths
would for this case be

[image: ]

Notice that through the use of the Maxwell lemma it is not
here necessary to calculate separately the volumes of the tension
members, as was done in Ref. [1].It follows that the total material
volume will be given by

[image: ]

Introducing the non-dimensional pylon height H= h/l a minimum of this volume will occur when

[image: ]

which from eq. (34) gives 

[image: ]

where β = σt/σc is the ratio of the characteristic tensile to
compressive strength. Figure 9(b) shows the L=l/h1 resulting in
the minimum material volumes for variations of β , and Figure
9(c) plots the corresponding minimum volumes. Taking as an
example the characteristic tensile and compressive strengths
to be equal, β =1 it can be seen that the total volume of
primary structural material for the catenary-type bridge, having
foundations capable of reacting the horizontal cable force, is k'v= 1.0 
compared with the value of k'v= 1.414 when the horizontal
thrust is resisted by a compressive force over the length of the
deck as summarised in eq. (14). It is also noteworthy that this
reduced value of material volume for the catenary-type bridge
is the same as the k'v= 1.0 for the harp-type cable-stay given by
eq. (21), and just 30% greater than the k'v= 0.786 needed for the
Mitchell optimum when β =1. However, it must be remembered
that this super-structural material volume for the catenary-type
suspension bridge does not include consideration of the cost
of providing the foundation horizontal thrust capacity. For a
small number of spans this foundation costs averaged out would
nullify the equality in the provision of super-structural material
as compared with the harp-type cable-stay. However, the added
foundation cost will represent a diminishing span averaged 
cost when the bridge has multiple spans. These issues will be
considered later in relation to a discussion of optimisation based
upon cost rather than as at present the material volumes. 

eq. (37) also makes clear that the choice of say  l/h≈20, as
chosen for the “blade of light” that comprises the millennium
bridge in London, will require 2.6 times the volume of primary
structural steel as that for the above minimum material volume,
not to mention the 5-fold increases in the horizontal thrusts
required to be generated at the end abutments. 

Harp-Type Cable-Stay Bridg E with Horizontal
Foundation Thrust

Consider again the multi-span harp-type cable-stay bridge
of Figure 3(a) but constructed in such a way as to require the
same horizontal thrust at the end foundations as the catenarytype
bridge of Figure 9(a). This situation is summarised in
Figure 10(a) with the changes to the deck axial force shown in
Figure 10(b). Over a typical span l the compressive force will
vary linearly from a maximum tension of +ql2/8h to a maximum
compression of -ql2/8h. Hence the total product of compression
forces integrated over their lengths consists of two contributions
- the pylon and the reduced value from the deck - and is given by 

[image: ]

with the Maxwell constant again Mk=ql3/8h. On the basis of
eq. (9) the sum of the product of the tension forces times their
lengths is in this case 

[image: ]

Notice again that through the use of the Maxwell lemma it
is not here necessary to calculate separately the volumes of the
tension members, as was done in Ref. [1]. It follows that the total
material volume will be given by 

[image: ]

Using again the non-dimensional pylon height L=l/h  and
β  =σt/σc  the minimum of this volume will occur when

[image: ]

which from eq. (40) gives the least material volume as

[image: ]

Figure 10(c) shows the variation of Lmin=(l/h)min,as a
function of the material strength parameter β  =σt/σc . For typical
ratios of the high strength steels used for the tension cables and
the lower grade steels used for the compression members, the
least material volume will occur for values of β in the range 1
to 3, for which the optimal (l/h)min would be in the range 2.3 to
2.8; this contrasts with the least volume solution of (l/h)min=2 when the full horizontal thrust is resisted by the deck. 

Reductions in optimal material volumes for the harp-type
cable-stay when the horizontal thrust of ql2/8h are taken by
end support reactions as compared with those for which the
thrust is resisted fully through deck compression can be seen
in Figure 10(d) to be considerable, but far less extreme than
those for the catenary type bridge shown in Figure 9(c). Given
that the cost of providing foundations capable of resisting the
horizontal thrusts of ql2/8h will be the same for both the systems
of Figure 9(c) & 10(d), it can be seen that for values of 
β  =σt/σc<3
the optimal harp-type cable-stay requires less super-structural
steel than that required for the optimal catenary-type. However,
for β  =σt/σc>3 the situation is reversed and the catenary-type
bridge would likely be more materially efficient.


[image: ]

Figure 10:   (a) Typical harp-type cable-stay bridge with horizontal
cable force resisted by foundations showing (b) variation
of (l/r)min for (c) minimum primary material volumes for varying
β  =σt/σc.

 

While it may be feasible to construct cable-stay bridges for
which the horizontal components of cable tension due to dead load 
are resisted by a combination of deck tension and compression
this could not be possible for the subsequent application of live
loading. To achieve this situation for the dead loading would
require a deck connection similar to a typical expansion joint
for which no horizontal force could be transmitted. This form
of construction joint would be inconsistent with the needs of
flexural continuity required to resist loads that have an antisymmetrical
component applied to adjacent spans. For this
reason the situation discussed in Figure 10 must be considered
impractical for the components of live loading. 

Some Further Practical Considerations

The above analyses ignore many factors likely to influence the
design of suspension bridges. First, it assumes that the material
volumes required for what one might regard as secondary
structural action will be little influenced by the changes in the
structural material volumes needed to carry the primary loads.
These secondary structural actions would include the structural
members required to transmit the local deck loads back to the
locations where cables pick-up the reactions. And they would
include bracing members required to limit the effective buckling
lengths of compression members in the deck and pylons. So
long as the cable spacing and forms of bracing are held fairly
constant over the various designs these secondary structural
components could be anticipated to require comparable
amounts of secondary steel. For this reason the above limitation
to consider just the volumes of primary structural components
should provide realistic comparisons of relative efficiency. 

However, the levels of the overall bending in the stiffening
decks will depend upon the relative stiffness of the deck and
the cable support systems which will in turn be very dependent
upon the various design parameters. This would impact upon
the material requirements for the stiffening girder that could
have a secondary influence upon the total volumes of structural
material required. Secondly, while dead load would conform to
the assumed restriction of equal uniformly distributed loads
over adjacent spans this may not be the case for live loading.
Unequal live load distributions on adjacent spans will induce
considerable bending moments in both the decks and possibly
pylons. However, it can be shown that the purely anti-symmetric
components of loading will induce roughly equal bending
moments in the spans of all the bridge forms considered,
requiring similar volumes of material required to provide these
bending moment distributions. This would have the effect of
making the determination of the optimal designs relatively
insensitive to the non-uniform distributions of live load. Thirdly,
and related to this, the dynamic response to wind and earthquake
loadings have not been considered. These too could impact upon
the stiffness required of the deck and therefore on the amounts
of material needed for the deck. Fourthly, as the spans increase
some of the individual components will require additional
structural material just to support their own weight. For example
the stay cables will increase in length in direct proportion to the
increasing span. Rather than being able to carry the primary loads 
by direct tension the catenary action within each separate cable
will require additional structural material to carry the additional
tension and bending caused by the cable weights. This is likely
to be more important for most of the cable-stay bridges than for
catenary-type bridge since for the latter most of the components
will have their characteristic lengths kept relatively constant as
the spans increase. For example, the distances between vertical
hangers will not generally be increased in direct proportion with
the increasing span, so that local bending in the deck or the local
self-support of the cable will not be a major fact in determining
the sizes of members required. For this reason most of the feedback
effects for the self-weights of components can simply be
incorporated in an adjustment to the dead load component of
the distributed load q. 

In assessing the impacts on required material volumes
arising from different characteristic strengths of materials in
tension and compression no allowance has been made for the
use of different grades of material for different components. For
example, it is likely that considerably higher grade steels would
be adopted for the tension cables than those used for the deck.
So where there is tensile action occurring in the deck it is likely
that the volumes of steel required would be underestimated
compared with those required had a lower grade steel been
assumed. To keep the presentation simple, as is consistent with
the approach being adopted, this has not been considered in the
above presentation. However, it would be a relatively straight
forward adjustment to the calculations presented to include
these effects. In any case a potentially even more important factor
that has seemingly been neglected is to base the considerations
of which structures provide the most efficient choice purely on
material volumes - or equivalently weight given that most steels
have roughly the same density. The costs of materials, their
fabrication and erection are likely to be highly dependent upon
the grades of steel adopted and the nature of the components and
especially the connections for which these materials are being
used. The unit cost of fabricating and erecting the high strength
steels used for the tension cables is likely to be considerably
greater than the material, fabricating and erection costs for mild
steel used for the compression members, whose dimensions
are likely to be more critically controlled by buckling. Because
buckling capacities will be much more dependent upon the
elastic modulus and because the modulus of elasticity for high
grade and low grade steels are broadly the same, there is likely
to be much less advantage for compression components in
adopting the high strength steels. 

A simple way of modifying the above discussion of relative
efficiencies based upon material volumes to the consideration
of cost optimisation is to consider that the cost of tension
components is say ct per unit volume (or weight) and that for
compression components the unit cost is cc. This means that
replacing the parameter β  =σt/σc with the alternative 
compoundmaterial and cost parameter  B ≡(ccσt/ctσc)≡cc/ctβ will allow
all the expressions derived above to be adjusted to cover the
combined consideration of differences between the strengths
in tension and compression as well as the differences in cost of
the different grades of steel and their fabrication as expressed
by whether they are in tension or compression. Bringing all of
the above calculations together the results could be summarised
in the following Figure 11. For each of the different classes of
structure the total costs C minimised with respect to each of
the parameters considered above are expressed in the form 
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Figure 11:  Summary of minimum volumes and costs for various
suspension bridge forms as functions of the strength parameter
β  =σt/σc or the cost parameter B =β.cc./ct.
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In terms of the material and cost parameter is B ≡(ccσt/ctσc)≡cc/ctβ .

Again, fabrication costs do not just depend upon the grade of
steel but also on the type of fabrication and erection involved.
For example the cost of on-site fabrication and erecting of a
high compression strength steel pylon might be considerably
different to the costs of erecting a pre-fabricated deck from
the same material. Again, if nuances are required it would be
possible to incorporate these within a modified form of the
above calculations. 

Conclusion

One of the aims of this paper has been to provide sufficiently
simple analyses of structural behaviour to allow estimates
of material volumes or costs to help make rational decisions
between the relative merits of different structural forms.
Although confined to restricted classes of structure used for
long span bridges, the methodology described could equally be
applied to other classes of structural system. There are a number
of issues that stand out from this analysis. These will be drawn
together with the aid of Figure 11 which shows, for each of the
classes of bridge form considered, the material volumes and cost
estimates for providing the super-structural steel as functions
of the compound material and cost parameter, B. Compound
parameter B encapsulates an allowance for the different
material characteristic strengths in tension and compression,
and the different material, fabrication and erection costs for the
elements in tension compared with those in compression. There
are a number of potentially important conclusions that have
emerged:

As would be expected, there is considerable advantage in
reducing the required super-structural material volumes by
including end foundations capable of resisting all or part of
the horizontal force otherwise resisted by the deck. For the
catenary-type suspension bridge having low values of the
material strength and cost parameter B, there is around 40%
saving in material volumes for each span when the horizontal
component of the main cable is absorbed by the end support
foundations. The savings become even greater for higher values
of B. Whether for bridges having a small number of spans the
additional cost of providing the horizontal capability in the
foundations would be offset by the savings in super-structural
weight would require separate costing of foundation provision
and superstructure. But what is certain is that as the number of
spans increase it is likely that the added foundation costs would
be more than compensated by the considerable savings in superstructural
costs.

While it is not the usual practice to do so there would be
similar savings to super-structure cost for cable-stay bridges
were they to incorporate horizontal load capacity in the end
foundations equivalent to those usually provided for the
catenary-type bridge. This is especially true for higher values of
the material strength and cost parameter B. However, to enable
a multi-span cable-stay bridge to resist live load components
that display anti-symmetry with respect to adjacent spans this
strategy would be possible for just the dead load contributions
to the deck loading. 

With the same foundation requirements in terms of both
vertical and horizontal load capacity, the harp cable-stay is
marginally more efficient than the catenary-type bridge for
values of B < 3 , while the reverse is true for B > 3 . Hence the use
of very high strength steel for the cables is likely to favour the 
adoption of the catenary-type bridge as compared with either
the harp or the fan cable-stay bridges; although this advantage is
likely to be reduced when cost optimisation is considered. 

For the situation where the end supports are not able to
provide horizontal force capacity, both the fan and harp cablestay
bridges provide considerably more efficient structures than
the catenary-type bridge over the entire range of material and
cost parameter B. In all cases the harp system is marginally more
efficient than that of the fan configuration. 

The use of radially directed multi-pylons at each support
provides considerably more efficient cable-stay bridge solutions
than any of the alternative cable-stay systems. When optimised
in terms of inclination angle even 3 radial pylons at each
support result in total material volumes very close to theoretical
minimum volume provided by the somewhat impractical
Mitchell-type truss.

The optimal multi-pylon supports systems for low values
of B < 2 require less super-structural material volume than
either the catenary-type or harp cable-stay bridges for which
end supports provide horizontal capacity. Even for higher
values of B < 2 the multi-pylon solutions offer very competitive
super-structural weights without the need for the provision
of horizontal capacity at the end support foundations. This
suggests that for future economic design serious consideration
be given to the use of multi-pylon supports to the cable nets.

Use of Maxwell's lemma is shown to provide an efficient
shortcut to the calculation of required material volumes. In cases
where the Maxwell constant is zero the total volumes of tension
and compression members are inversely proportional to their
respective characteristic strengths.

For very long span bridges it is likely that the added
material required for the individual members, responsible for
providing the primary load paths, to support themselves will
be more keenly felt for the various cable-stay solutions. In these
circumstances the catenary-type bridge will likely provide the
most effective solutions provided end supports are capable of
resisting the inevitably high horizontal thrusts.

Final Remarks

Over the past few decades it has become a matter of concern
that the conceptual design of even bridge structures has
decreasingly been undertaken by engineers. The reasons for
this are many but one factor that has contributed is suggested
to be the dominance of analysis in engineering education and
over the past 50 years or so and the overwhelming emphasis
on analyses directed towards the development and use of
computer algorithms. While it is questionable whether the more
traditionally taught hand calculation methods did a lot more
to enhance physical and intuitive understanding of structural
behaviour, so vital for effective design, it has always seemed
to the writer that we have not exploited sufficiently the fact 
that analysis can now be so effectively performed with readily
available software. This could have liberated those involved in
engineering education to spend more time on the fundamentals
of structural behaviour as well as providing simple but reliable
methods of analysis which being more directly founded in physics
would develop the intuitive skills so vital to creative design. It
would have reduced the worrying trend that when faced with
a novel problem the response from too many engineers is not
to sit down and think about how this could be understood
and approximated using simple conceptual models, like those
discussed here, but instead to consider how the problem might
be interfaced with whatever brand of software happens to be
available within the office. Little wonder that others are too
often in the driving seat of structural creativity.

Traditionally, bridges were perhaps the purest expression of
structural rationality in which the basic principles of mechanics
directed the engineer to the most appropriate form for a given
situation and choice of structural material. Over time our
perceptions of what looked right and consequently pleasing
to the eye were most likely what was right for the particular
situation – just as in natural structures formed through eons of
evolutionary optimisation what is right becomes accepted as
looking right. This theme has recently been developed in Ref. [7]
where a detailed analysis of the Alamillo bridge in Seville showed
this to be a classic example of structures being used as a piece
of art rather than the art being a consequence of the structure
representing a true expression of the best use of material
based upon the application of sound and rational principles of
mechanics. Now it seems this process has been hijacked with
many bridge forms having a closer affinity to sculpture than with
rational engineering. It is hoped that this theme will be taken up
in subsequent publications.

Perhaps if we are to reverse this trend it will be even more
important that future engineers spend more time developing an
ability to undertake simple scoping calculations. Only through
a sound understanding of how structures work and an ability
to translate this into simple models to allow the flow of forces
through our structures to be understood will it be possible for
engineers to recover the conceptual lost ground. In an age when
waste and its contribution to global warming are high on the
agenda it is likely that clients will require their structures to be
part of the solution rather than part of the problem. To this end it
is to be hoped that the simple models, like those outlined in this 
paper, will find an increasing role in engineering education and
professional design.
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