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Introduction

Consider a randomized trial where subjects are assigned to 
one of two treatments, T1 or T2, using a standard parallel design. 
The primary outcome is binary, coded as 0 or 1. Suppose there are j 
= 1, 2, . . , n subjects, where subject j would have response x1j under 
treatment T1 and response x2j under treatment T2. The individual 
treatment effect for subject j is defined as x1j-x2j. However, in 
practice, only one of these two potential outcomes is observed for 
each subject due to random assignment.

Following the principles of randomization inference as 
outlined by Rosenbaum [1], and focusing on the binary outcome 
setting, assume that out of n=n1+n2 total subjects, n1 are randomly 
assigned to receive treatment T1 and n2 to receive treatment T2. 

There is m=
1

n
n
 
 
 

 possible treatment assignments, each 

equally likely with probability 
1
m

.

Let Ij=1 if subject j is assigned to treatment T1 and Ij=0 if assigned 
to T2. In randomization theory, the only source of randomness is 
this treatment assignment vector I= (I1, I2, . . ., In), where typically 
P (Ij = 1) =θ for j = 1, 2, . . ., n. The observed outcome for subject j 

is then given by the random variable 1 2(1 )j j j j jY I x I x= + −
. This formulation enables the construction of the randomization 
distribution by enumerating all m possible assignments. 

Sample Summary

Small-sample comparisons of binomial proportions often rely on Fisher’s exact test, which can be overly conservative and underpowered. We 
introduce a perturbation testing framework that generates exact tests by perturbing outcomes, with two variants: with replacement (WR) and 
without replacement (WOR). The WR test maintains nominal Type I error while achieving higher power than Fisher’s, Barnard’s, and Boschloo’s 
tests, and it extends naturally to multiple groups, outperforming the Freeman-Halton test. Implementable in just a few lines of R code, the WR 
perturbation test offers a fast, practical, and more powerful alternative to traditional exact methods.
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Small sample comparisons of binomial proportions are common in early phase clinical trials, laboratory studies, and rare event investigations. 
The standard test, Fisher’s exact, often lacks power due to conservative Type I error control. Alternatives like Barnard’s and Boschloo’s tests offer 
less conservative error control and greater power. We present a unified perturbation testing framework for generating exact tests by perturbing 
the discrete outcome variable, yielding two variants: with replacement (WR) and without replacement (WOR). For the null hypothesis H0: π1=π2, 
WR controls Type I error at the nominal level while providing uniformly higher power than existing methods. The approach extends naturally to g 
independent groups, where WR outperforms the Freeman-Halton exact test. Easily implemented in a few lines of R code and executing in seconds, 
the WR perturbation test offers a practical, more powerful alternative to traditional exact tests.
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In the context of comparing binary outcomes between the two 
groups, we are interested in testing whether

1P(Y = 1 | I  = 1) =  j j π  differs from 

2P(Y  = 1 | I = 0) = , 1, 2,...., .j j j nπ =  

The corresponding estimators are:
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In a one-sided testing scenario, we may test H0: π1=π2 versus 
H1: π1>π2 (or similarly H1: π1<π2). Define the observed test statistic 

as 1 2S π π
∧ ∧

= − . For each of the m permutations, compute the 

corresponding test statistic 1 2k kkS π π
∧ ∧

= − , for k = 1, 2, . . ., m. 
The exact p-value is then given by:

( )1 k

m
s sk

I
p

m
≥== ∑  for H1: π1>π2,

( )1 k

m
s sk

I
p

m
≤== ∑  for H1: π1<π2

where I (·) is the indicator function.

For a two-sided alternative H1: π1≠π2, a common choice for 
the test statistic is:

2
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Where 
22 2

1
( )lkk l

S π π
∧ ∧

=
= −∑  for k=1, 2,,m.

Since enumerating all possible treatment assignments is 
often computationally infeasible for large sample sizes, Monte 
Carlo approximations offer a practical alternative. Specifically, by 
randomly selecting B treatment assignments, the p-value can be 
estimated as:

( )
1

1
k

B

S S
k

p I
B ≥

=

= ∑ ,

for the alternative hypothesis H1: π1>π2, with analogous 
expressions for other alternatives. This method enables feasible 
inference under the randomization framework. 

The randomization test corresponds to sampling without 
replacement from the set of all possible assignments. In addition, 
we will explore a bootstrap-like approach that samples with 
replacement from the observed outcomes Y. The Monte Carlo 
approximation to the p-value in this case follows the same logic as 
that used in the randomization test.

Practically, when comparing two treatments with a binary 
outcome, the observed data can be summarized in a 2×2 
contingency table. In this setting, the p-values obtained through 
a randomization test is equivalent to those derived from Fisher’s 
exact test. Fisher’s exact test, introduced by R. A. Fisher in 
the 1930s [2], was specifically designed to analyze small 2×2 
contingency tables. The test is rooted in conditional probability, 
famously illustrated by the” Lady Tasting Tea” experiment. The 
test is based on calculating the exact probability of observing a 
table as extreme as the one obtained, assuming the null hypothesis 
and conditioning on fixed row and column margins. This approach 
leads to the hypergeometric distribution as the basis for inference. 
Fisher’s ex- act test is widely used in biomedical and clinical 
research, especially where small sample sizes make large-sample 
approximations unreliable. There are several test statistics that 
are one-to-one that can be utilized using this approach that 
generate identical p-values [3]. 

However, Fisher’s test has some important limitations. It 
assumes fixed marginal totals, a condition that may not reflect 
many real-world randomization scenarios, such as those described 
previously where only the treatment assignment is randomized. 
Furthermore, while computationally feasible for small sample 
sizes, the test becomes increasingly intensive as the table size 
grows. Nevertheless, Monte Carlo approximations to Fisher’s 
test can be easily implemented to overcome these limitations in 
practice.

Fisher’s exact test is also known to be the uniformly most 
powerful (UMP) test among all exact tests in the 2×2 setting. 
However, this optimality holds only under specific conditions, 
particularly when the Type I error rate corresponds to attainable 
probabilities under the hypergeometric distribution, which can be 
restrictive in practice.
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As an alternative, Barnard’s test, proposed by George A. 
Barnard in 1945 [4], offers a more flexible framework. Unlike 
Fisher’s test, Barnard’s test does not condition on the marginal 
totals, making it an unconditional test. It evaluates all possible 
2×2 tables and typically uses a test statistic such as the difference 
in sample proportions to assess significance. By allowing the 
margins to vary and optimizing the rejection region, Barnard’s 
test often achieves greater power than Fisher’s test, particularly 
because it can more accurately control the Type I error rate at 
common levels such as 0.05 or 0.10. 

Historically, the computational burden associated with 
Barnard’s test limited its practical use, leading to a preference 
for Fisher’s exact test despite its conservatism. However, with 
advances in modern computing, Barnard’s test and related 
methods like Boschloo’s test [5], which improves on Barnard’s test 
by modifying the rejection criteria, have gained renewed interest. 
These methods are now recognized as powerful alternatives for 
small-sample inference in 2×2 tables, especially when the fixed-
margin assumption of Fisher’s test is not appropriate.

Recent work by Korn and Freidlin [6] underscores the 
advantages of unconditional exact tests, particularly Boschloo’s 
test, which preserve the desired Type I error rate while generally 
offering greater power and, consequently, requiring smaller sample 
sizes. Although some statisticians have argued that conditional 
analyses, such as Fisher’s exact test, are more appropriate in 
randomized trial settings, Korn and Freidlin find these arguments 
either irrelevant or unconvincing. Their conclusions support 
a broader adoption of unconditional methods in clinical trial 
design, especially given the practical value of minimizing trial size. 
Moreover, they propose that incorporating prespecified null and 
alternative response rates into the test framework could further 
improve the power of unconditional approaches. This perspective 
aligns with earlier work by Mehrotra et al. [7], who conducted 
a comprehensive comparison of Fisher’s exact test and various 
un conditional exact procedures. Their study concluded that 
“Boschloo’s test, in which the p-value from Fisher’s test is used as 
the test statistic in an exact unconditional test, is uniformly more 
powerful than Fisher’s test, and is also recommended.” See also 
Lin and Yang [8] and Andres and Mato [9].

Testing binary endpoints across g treatment groups

Now suppose we have g treatment groups, each randomly 
assigned to subjects, with a binary outcome of interest. We aim to 
test the hypothesis 

H0: π1=π2=· · ·=πg versus H1: not all πi are equal, i=1, 2, . . . , g.

Let j=1, 2, . . . , n index the subjects, where subject j would have 

a binary response xij under treatment Ti, for i= 1, 2, . . . , g. Assume 
there are a total of n =n1+n2+· · ·+ng subjects, with ni subjects 
randomly assigned to treatment group Ti. The number of possible 
treatment assignments is given by the multinomial coefficient

1 2

!
! !... !g

nm
n n n

= , 

and each assignment is equally likely with probability 
1
m

.

The observed outcome for subject j is then represented by 
the random variable

1

1 1 2 2
1

... (1 )
g

j j j j j jk gj
k

Y I x I x I x
−

=

= + + + + −∑                      
(1.1)

where Ijk is the random indicator variable that subject j 
received treatment Tk. To test the null hypothesis, we may use the 
test statistic

2 2

1
( )

g

l
l

S π π
∧ ∧

=

= −∑                      (1.2)

Where 
1

n
i ij j ij

I Y nπ
=

∧

=∑  is the treatment level 

sample proportion, i=1, 2,..,g, 
1

1
(1 )g

g kk
I I−

=
= −∑ and 

1

n
jj

Y nπ
=

∧

=∑  is the overall sample proportion.

The exact permutation p-value is then computed as:

2 2( )1 k

m

S Sk
I

p
m

≥==
∑

                         (1.3)

Where 2 2
1
( )g

lkk l
S π π

∧ ∧

=
= −∑  is the value of the test 

statistic under the k-th permutation of treatment assignments.

As before, since enumeration of all possible treatment 
assignments may be computationally prohibitive for large n, we 
employ a Monte Carlo approximation. By randomly selecting B 
treatment assignments, the p-value can be estimated as 
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for the alternative hypothesis H1: π1>π2, with analogous 
expressions for other alternatives.

In parallel, we also consider a bootstrap-like approach, 
sampling with replacement from the observed outcomes Y. The 
Monte Carlo approximation to the p-value in this setting follows 
the same structure as that of the randomization test. 

Similar to the two-group setting, the null hypothesis of 
equal treatment assignment probabilities across g groups, H0: 
π1=π2= · · · =πg, can be represented using a 2×g contingency 
table. This hypothesis may be tested using the exact chi-square 
test of independence proposed by Freeman and Halton [10], 
which extends Fisher’s exact test to higher dimensional tables. 
Importantly, the exact p-value obtained from the Freeman-Halton 
test is identical to that of the corresponding randomization test 
[11], mirroring the equivalence observed in the 2×2 case.

The data described in this subsection may also be represented 
in a K×g contingency table. Under this representation, the 
hypothesis stated above can be equivalently tested using the 
Freeman-Halton extension of Fisher’s exact test, which provides 
an exact chi-square test of independence for multirow by 
multicolumn tables [12].

In this note we extend these ideas by developing a new 
approach to resampling based on a Monte Carlo resampling 
approach. Section 2 introduces our perturbation randomization 
framework, detailing both the with replacement (WR) and without 
replacement (WOR) variants and supplying straightforward 
R code for immediate use. A toy example contrasts the new 
procedures with Fisher’s exact, Barnard’s, and Boschloo’s tests. 
Section 3 reports an extensive simulation study that examines the 
statistical power of each test across a broad spectrum of sample 
sizes and proportion configurations. Section 4 then analyses two 
applied data sets, demonstrating how the perturbation tests can 
alter scientific conclusions relative to traditional exact methods. 
Finally, Section 5 summarizes practical recommendations.

Perturbation-Based Randomization Testing

The general strategy of our new test involves perturbing the 
observed data. In the case of Bernoulli outcomes, this means 
perturbing the binary response (0 or 1). We first describe the 
method for Bernoulli outcomes in a two-group comparison 
setting, which naturally generalizes to g-group comparisons for 
both response types. The perturbations are used to generate a 
less coarse randomization distribution, while utilizing the original 

observed test statistic 1 2S π π
∧ ∧

= − for testing H0: π1=π2 versus 
the one-sided alternative H1: π1>π2. For the two-sided alternative 
H1: π1≠π2, we instead use the squared for each subject j, we define 
the observed outcome as the random variable where Ij=1 if subject 
j is assigned to treatment T1, and Ij=0 if assigned to treatment T2. 
Under this setup, x1j and x2j represent the potential outcomes for 
subject j under treatments T1 and T2, respectively. 

To introduce variability for resampling, we generate a 
perturbed response vector with elements

'
1 2(1 )j j j j j jY I x I x e= + − + , j=1, 2,…n,

where the perturbation term ej~N (0, h2), and h is a user 
specified bandwidth. Unlike traditional smoothing approaches 
such as kernel density estimation, we fix the bandwidth at 
h=1/10000, independent of the sample size. 

Two resampling strategies are considered: sampling with 
replacement and sampling without replacement from the 
perturbed vector Y’. For each resampled dataset, we compute the 
one-sided test statistic using the estimators

'*'
1

1

1

n
j jj

I y

n
π
∧

==
∑

 , 

'*'
1

2

2

(1 )n
j jj

I y

n
π
∧

=
−

=
∑

    (2.1)

where denotes the resampled value for subject j from the 
perturbed response vector Y’. For the sampling with replacement 
approach, we must also use the resampled group mean 

'*'
1

n
jj

y

n
π
∧

==
∑

 when applying the two-sided alternative in two 
group comparisons, as well as the pooled mean for comparisons 
involving g groups with binary or multinomial outcomes.

It follows immediately that

'

1 1( ) ( )E Eπ π
∧ ∧

= , 
'

2 2( ) ( )E Eπ π
∧ ∧

=

and

'
2

1 1( ) ( )Var Var hπ π
∧ ∧

= + , 
'

2
2 2( ) ( )Var Var hπ π

∧ ∧

= +

The probability density function (PDF) of 1'π
∧

 is the following 
normal mixture: 
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where ϕ is the standard normal PDF. The corresponding 
cumulative distribution function (CDF) is
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where Φ is the standard normal CDF. 

Similarly, the PDF of 
'

2π
∧

 is 

2
2

'

2
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and the corresponding CDF is
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Thus, 
'

1π
∧

and 
'

2π
∧

can be interpreted as kernel-smoothed 

versions of the observed sample proportions 1π
∧

and

2π
∧

.

Each perturbation and resampling iteration yield a value used 
to construct a Monte Carlo approximation to the null hypothesis 
distribution. The perturbation-based p-value is calculated in 
accordance with the exact p-value framework described in Section 
1, by comparing the observed test statistic to the distribution 
of values generated under the null hypothesis. This framework 
applies equally whether resampling is performed with or without 
replacement. From the perspective of Monte Carlo inference, 
this approach offers a practical and conceptually intuitive 
approximation to the null distribution.

The estimators of the test statistics based on the perturbed 
responses retain the same expectation as the observed test 
statistics defined in (1.1) under the null hypothesis H0: π1=π2. 
The primary motivation for this perturbation-based strategy, 
particularly in the context of randomized clinical trials, is to achieve 

Type I error control that more accurately reflects the nominal 
significance level α. This approach often yields greater statistical 
power compared to traditional methods such as Fisher’s exact test 
or the Freeman-Halton extension, especially in scenarios involving 
small to moderate sample sizes or sparse contingency tables. 
However, as the sample size increases or the number of treatment 
arms grows, the advantages of the perturbation-based method 
tend to diminish, and classical methods generally attain Type I 
error rates that align with the desired α-level. The extension to the 
g-group setting follows the same strategy as the two-group case, 
utilizing the test statistic defined in (1.2).

Toy Examples

To illustrate the differences in p-values obtained using 
Fisher’s exact test, Barnard’s test, Boschloo’s test, and the 
proposed perturbation method (under both sampling with and 
without replacement), we consider a simple toy example for 
testing the hypothesis H0: π1=π2 versus H1: π1>π2. The observed 
and perturbed binary data for one Monte Carlo realization, based 
on a total sample size of n=10, are presented in (Table 1).

Table 1: Sample values for y1, y2 for T1 and T2 and their perturbed 

versions '
1y , '

2y Perturbations were generated by adding i.i.d. N (0, 
h) noise with h=1/10000.

y1 y2 '
1y '

2y

1 0 1.000096 0.0000527

0 1 -0.000017 0.9999023

0 0 -0.000163 0.0000801

0 1 -6.258×10-6 1.0001902

0 0 7.9194×10-6 0.0000652

0 1 -0.000043 0.9997861

1 1 1.000032 1.0001201

0 0 -0:000181 0.0000953

0 0 0.0000504 0.0000715

0 1 0.0000869 1.0001335

1π
∧

=0.2 2π
∧

=0.5
'

1π
∧

=0.1999862

'

2π
∧

=0.5000497

The perturbed values '
1y and '

2y  corresponding to treatments 
T1 and T2, respectively, were obtained by adding independent 
noise to the original binary responses:

'
1 2(1 )j j j j j jY I x I x e= + − + j=1,2,..n,

where ej~N (0, h) and the bandwidth is fixed at h =1/10000. 
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Here, Ij=1 if subject j is assigned to treatment T1, and Ij=0 if 
assigned to treatment T2.

As demonstrated, the resulting perturbed estimators 1'π
∧

and

'

2π
∧

closely match their original (unperturbed) counterparts. This 
confirms that the perturbation does not meaningfully alter point 
estimation. Both sets of estimators share the same expectation, 
and the variance introduced by the added noise is negligible.

To estimate the p-value under both sampling with and without 
replacement, we performed 10,000,000 Monte Carlo resamples. 
This large number of replicates effectively approximates the full 
permutation distribution of the test statistic and is computationally 
efficient in R. Below is the R code used to generate the p-values for 
testing H0: π1=π2 versus H1: π1>π2:

h <- 1/10000

y0 <- c (1, 0, 0, 0, 0, 0, 1, 0, 0, 0)

y1 <- c (0, 1, 0, 1, 0, 1, 1, 0, 0, 1)

# Observed difference in sample proportions

Obs_diff <- mean(y1)-mean(y0)

# Combine groups

combined <- c (y0, y1)

n <- length(y0) # assumes equal group sizes

# Without replacement: perturb and resample

perm_diffs_wor <- replicate (1e7, {fuzzed <- 
combined+rnorm(length(combined), mean=0, sd=1) *h shuffled 
<- sample(fuzzed) mean(shuffled[(n+1) :(2 *n)])-mean (shuffled 
[1: n])})

pvalue_wor <- mean (perm_diffs_wor >=obs_diff)

# With replacement: perturb and resample with replacement

perm_diffs_wr <- replicate (1e7, {fuzzed <- 
combined+rnorm(length(combined), mean=0, sd=1) *h shuffled 
<- sample (fuzzed, replace=TRUE) mean(shuffled[(n+1) :(2 
*n)])-mean (shuffled [1: n])}) 

pvalue_wr <- mean (perm_diffs_wr >=obs_diff)

To compare the behavior of different exact and approximate 
methods for testing H0: π1=π2 versus H1: π1>π2, we computed 
p-values using Barnard’s test, Boschloo’s test, Fisher’s exact 
test, and our proposed perturbation method under both with-
replacement (WR) and without-replacement (WOR) resampling 
schemes. The observed p-values are summarized below: (Table 
2.1)

These results demonstrate that the proposed perturbation 
approach, particularly with sampling with replacement, can yield 
p-values aligning more closely with Barnard’s and Boschloo’s 
methods. Notably, the WR method produced the smallest p-value, 
suggesting increased sensitivity to detect differences under small-
sample conditions. In the following section, we further evaluate 
the perturbation method through a comprehensive simulation 
study, examining its power and Type I error performance in the 
two-group, g-group, and multinomial testing settings.

To evaluate the reproducibility of the estimated p-values 
across multiple executions of the same program, we ran the 
procedure ten times using the same data. The results for the two 
perturbation strategies, without replacement (WOR) and with 
replacement (WR), are shown in the Table 2. As can be observed, 
the estimated p-values are highly consistent across all runs. 
Importantly, no decision regarding the null hypothesis H0: π1=π2 
versus the alternative H1: π1>π2 would change under either α=0.05 
or α=0.10, both commonly used significance levels in clinical trials 
(Table 2).

Table 2.1

Method Barnard Boschloo Fisher Perturbation 
(WOR)

Perturba-
tion (WR)

p-value 0.132 0.099 0.175 0.102 0.084

Table 2: Estimated p-values from 10 repeated runs under two 
perturbation strategies.

Perturbation (WOR) Perturbation (WR)

0.1017159 0.0843962

0.1019481 0.0844183

0.1015814 0.0844848

0.1018683 0.0842959

0.1016467 0.0843208

0.1018438 0.0843789

0.1016919 0.0843907

0.1018123 0.0843267

0.1018963 0.0844471

0.1019533 0.0841887

Simulation Study

In this section, we compare the new WOR and WR approaches 
in three settings: the two-group binary outcome setting and 
g-group binary outcome setting.

Testing binomial endpoints across two treatment 
groups

In this simulation study, we evaluated Type I error control and 
power for testing H0: π1=π2 versus H1: π1>π2 using Barnard’s test, 
Boschloo’s test, Fisher’s exact test, and the newly proposed WOR 
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and WR tests. Values for π1 ranged from 0.05 to 0.95 in increments 
of 0.10. For each value of π1, corresponding values of π2 ranged 
from π1 to 0.95, also in increments of 0.10, for sample sizes n=10, 
20, 30 per group. The bandwidth parameter h was set to 1/10000. 
The desired Type I error was set to α=0.05.

For the WOR and WR perturbation tests, 1,000 Monte Carlo 
resamples were used per scenario to estimate the p-value, and 
each scenario was simulated 1,000 times. Results for specific 
combinations of π1 and π2 are reported in (Tables 3-5). Full power 
curves for each test are shown in (Figures 1-3).

Table 3: Power values for each test method across different (π0, π1) 
combinations, n=10.

π1 π2 Barnard Boschloo Fisher WOR WR

0.05 0.05 0.01 0 0 0.005 0.01

0.05
0.05

0.45
0.55

0.71
0.826

0.596
0.8

0.516
0.707

0.633
0.805

0.718
0.846

0.15
0.15
0.15

0.15
0.65
0.75

0.042
0.745
0.849

0.02
0.767
0.882

0.016
0.632
0.806

0.03
0.754
0.871

0.043
0.811
0.906

0.25
0.25
0.25

0.25
0.75
0.85

0.04
0.698
0.862

0.033
0.724
0.879

0.016
0.619
0.813

0.035
0.717
0.873

0.048
0.782
0.91

0.35
0.35
0.35

0.35
0.85
0.95

0.048
0.719
0.914

0.053
0.758
0.915

0.021
0.628
0.847

0.052
0.735
0.912

0.059
0.793
0.936

0.45
0.45

0.45
0.95

0.043
0.821

0.041
0.798

0.018
0.713

0.046
0.803

0.059
0.841

0.55
0.55

0.55
0.95

0.047
0.701

0.04
0.616

0.018
0.531

0.039
0.634

0.058
0.715

0.65
0.65

0.65
0.95

0.042
0.516

0.043
0.369

0.024
0.305

0.042
0.416

0.049
0.518

0.75
0.75

0.75
0.95

0.046
0.313

0.037
0.158

0.023
0.139

0.039
0.204

0.049
0.316

0.85
0.85

0.85
0.95

0.034
0.116

0.015
0.041

0.013
0.04

0.023
0.066

0.034
0.118

0.95 0.95 0.008 0.001 0.001 0.004 0.008

Table 4: Power values for each test method across different (π0, π1) 
combinations, n=20.

π1 π2 Barnard Boschloo Fisher WOR WR

0.05
0.05
0.05

0.05
0.35
0.45

0.020
0.770
0.929

0.005
0.763
0.926

0.001
0.689
0.886

0.006
0.782
0.926

0.020
0.821
0.938

0.15
0.15
0.15

0.15
0.55
0.65

0.044
0.847
0.957

0.035
0.847
0.957

0.023
0.803
0.928

0.043
0.859
0.956

0.066
0.876
0.967

0.25
0.25

0.25
0.65

0.050
0.806

0.050
0.806

0.032
0.715

0.046
0.807

0.053
0.823

0.35
0.35
0.35

0.35
0.75
0.85

0.035
0.812
0.948

0.035
0.812
0.948

0.024
0.731
0.930

0.040
0.817
0.950

0.046
0.828
0.955

0.45
0.45

0.45
0.85

0.045
0.855

0.045
0.855

0.025
0.805

0.050
0.858

0.051
0.877

0.55
0.55

0.55
0.95

0.042
0.919

0.042
0.915

0.022
0.878

0.044
0.919

0.046
0.938

0.65
0.65

0.65
0.95

0.042
0.768

0.042
0.760

0.029
0.676

0.045
0.790

0.052
0.822

0.75
0.75

0.75
0.95

0.037
0.548

0.037
0.489

0.025
0.407

0.040
0.520

0.048
0.603

0.85
0.85

0.85
0.95

0.034
0.239

0.026
0.153

0.014
0.083

0.036
0.189

0.054
0.273

0.95 0.95 0.027 0.007 0.000 0.011 0.025

Table 5: Power values for each test method across different (π0, π1) 
combinations, n=30.

π1 π2 Barnard Boschloo Fisher WOR WR

0.05
0.05
0.05

0.05
0.25
0.35

0.037
0.689
0.928

0.017
0.683
0.928

0.003
0.569
0.863

0.021
0.689
0.931

0.039
0.717
0.936

0.15
0.15
0.15

0.15
0.45
0.55

0.039
0.823
0.943

0.038
0.823
0.943

0.017
0.739
0.918

0.041
0.809
0.938

0.051
0.828
0.950

0.25
0.25
0.25

0.25
0.55
0.65

0.041
0.780
0.936

0.041
0.780
0.936

0.022
0.699
0.900

0.039
0.778
0.935

0.044
0.781
0.936

0.35
0.35
0.35

0.35
0.65
0.75

0.054
0.753
0.936

0.054
0.753
0.936

0.031
0.647
0.898

0.050
0.752
0.935

0.057
0.758
0.939

0.45
0.45
0.45

0.45
0.75
0.85

0.038
0.753
0.958

0.038
0.753
0.958

0.021
0.674
0.924

0.039
0.750
0.956

0.038
0.757
0.958

0.55
0.55
0.55

0.55
0.85
0.95

0.046
0.828
0.992

0.046
0.828
0.992

0.028
0.746
0.986

0.043
0.818
0.991

0.050
0.835
0.994

0.65
0.65
0.65

0.65
0.85
0.95

0.042
0.535
0.911

0.042
0.535
0.911

0.025
0.432
0.864

0.041
0.521
0.915

0.045
0.539
0.919

0.75
0.75

0.75
0.95

0.043
0.684

0.043
0.679

0.028
0.554

0.041
0.690

0.048
0.733

0.85
0.85

0.85
0.95

0.033
0.310

0.033
0.272

0.016
0.159

0.038
0.291

0.044
0.350

0.95 0.95 0.045 0.020 0.002 0.022 0.048

As evident from the results, the WR perturbation test 
consistently achieves the highest power across all scenarios, 
with its relative advantage decreasing as sample size increases. 
The efficiency gains of the WR perturbation test range from 
approximately 1% to 10%, depending on the parameter 
configuration. Notably, Barnard’s test tends to outperform 
Boschloo’s test at lower values of π1, while Boschloo’s test shows 
superior performance at higher values of π1.

Although the performance gain of the WR perturbation test 
over Barnard’s and Boschloo’s tests may be modest in some 
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cases, it is consistently superior, and in certain settings, the gain 
is substantial. This improvement can be especially important in 
clinical trials, such as cancer immunotherapy studies, where even 
a small reduction in required sample size can lead to significant 

cost savings. Moreover, the implementation of the WOR and WR 
perturbation methods is straightforward, as demonstrated by the 
R code provided in the previous section.

Figure 1: Power curves for various test methods across different (π0, π1) values, n=10. 

Testing binomial endpoints across g treatment groups

To evaluate the performance of the proposed methods, we 
conducted a simulation study using 1,000 Monte Carlo replications 
per scenario and 1,000 resamples to estimate p-values via both 
the WR and WOR perturbation tests and an approximation to 
the Pearson exact chi-square test. Type I error and power was 
assessed under the global null hypothesis for g=3 groups, H0: 
π1=π2=π3 versus H1: not all πi are equal.

Power was evaluated under various alternatives involving 
increasing divergence in category probabilities. Across all 
sample sizes (n=10, 20, 30), both the WOR and WR perturbation 
tests maintained appropriate control of the Type I error near 
the nominal level of α=0.05, as shown in (Tables 6-8). The WR 
method tended to be slightly conservative for n=10. In contrast, 
the Pearson exact chi-squared test exhibited highly conservative 
behavior at this smallest sample size, with rejection rates under 
the null as low as 0.002, although performance improved as 
sample size increased.

Table 6: Simulation results for n=10 for three group comparison.

π1 π2 π3 WOR WR X2

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.1
0.1
0.1
0.3
0.3
0.5
0.5
0.7
0.9

0.1
0.5
0.9
0.3
0.7
0.5
0.9
0.7
0.9

0.021
0.527
0.991
0.167
0.733
0.461
0.966
0.858
0.992

0.028
0.580
0.991
0.177
0.751
0.495
0.970
0.891
0.994

0.002
0.456
0.991
0.105
0.701
0.401
0.964
0.846
0.989

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.5
0.5
0.7
0.9

0.3
0.7
0.5
0.9
0.7
0.9

0.05
0.384
0.110
0.714
0.432
0.880

0.059
0.417
0.138
0.746
0.470
0.900

0.037
0.354
0.098
0.693
0.409
0.846

0.5
0.5
0.5
0.5

0.5
0.5
0.7
0.9

0.5
0.9
0.7
0.9

0.045
0.469
0.129
0.537

0.053
0.511
0.154
0.573

0.040
0.409
0.104
0.473

0.7
0.7

0.7
0.9

0.7
0.9

0.054
0.192

0.054
0.211

0.031
0.123

0.9 0.9 0.9 0.020 0.034 0.002
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Table 7: Simulation results for n=20 for three group comparison.

π1 π2 π3 WOR WR X2

0.1
0.1

0.1
0.1

0.1
0.5

0.044
0.877

0.040
0.877

0.030
0.844

0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.1
0.3
0.3
0.5
0.5
0.7
0.9

0.9
0.3
0.7
0.5
0.9
0.7
0.9

1.000
0.331
0.977
0.835
1.000
0.994
1.000

1.000
0.330
0.976
0.846
1.000
0.994
1.000

1.000
0.288
0.970
0.806
1.000
0.990
1.000

0.3
0.3
0.3
0.3
0.3
0.3

0.3
0.3
0.5
0.5
0.7
0.9

0.3
0.7
0.5
0.9
0.7
0.9

0.056
0.763
0.245
0.977
0.783
0.999

0.059
0.776
0.258
0.976
0.798
0.999

0.039
0.744
0.224
0.969
0.758
0.995

0.5
0.5
0.5
0.5

0.5
0.5
0.7
0.9

0.5
0.9
0.7
0.9

0.039
0.848
0.231
0.874

0.049
0.852
0.242
0.880

0.035
0.821
0.211
0.839

0.7
0.7

0.7
0.9

0.7
0.9

0.043
0.383

0.042
0.371

0.034
0.332

0.9 0.9 0.9 0.036 0.037 0.022

Table 8: Simulation results for n=30 for three group comparison.

π1 π2 π3 WOR WR X2

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

0.1
0.1
0.1
0.3
0.3
0.5
0.5
0.7
0.9

0.1
0.5
0.9
0.3
0.7
0.5
0.9
0.7
0.9

0.051
0.979
1.000
0.485
1.000
0.964
1.000
1.000
1.000

0.045
0.977
1.000
0.486
1.000
0.963
1.000
1.000
1.000

0.036
0.970
1.000
0.444
1.000
0.955
1.000
1.000
1.000

0.3
0.3
0.3

0.3
0.3
0.5

0.3
0.7
0.5

0.045
0.913
0.338

0.047
0.919
0.345

0.040
0.910
0.318

0.3
0.3
0.3

0.5
0.7
0.9

0.9
0.7
0.9

1.000
0.896
1.000

1.000
0.907
1.000

1.000
0.890
1.000

0.5
0.5
0.5
0.5

0.5
0.5
0.7
0.9

0.5
0.9
0.7
0.9

0.048
0.971
0.364
0.967

0.051
0.976
0.375
0.967

0.043
0.968
0.337
0.958

0.7
0.7

0.7
0.9

0.7
0.9

0.047
0.561

0.049
0.560

0.043
0.527

0.9 0.9 0.9 0.040 0.036 0.030

Figure 2: Power curves for various test methods across different (π0, π1) values, n=20.
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Figure 3: Power curves for various test methods across different (π0, π1) values, n=30.

In terms of power, both the WOR and WR perturbation tests 
consistently outperformed the Pearson exact chi-squared test, 
particularly at small to moderate sample sizes and under moderate 
deviations from the null hypothesis. For example, when π1=π2=0.1 
and π3=0.5, the WR method achieved powers of 0.580, 0.877, and 
0.979 for n=10, 20, 30, respectively, compared to 0.456, 0.844, and 
0.970 for the Pearson exact chi-squared test (see corresponding 
rows in Tables 6-8). Similar patterns were observed in other 
configurations. When the effect size was large (e.g., π1=π2=0.1, 
π3=0.9), all three methods approached maximum power even at 
the smallest sample size.

Overall, these results demonstrate that the WOR and WR 
perturbation tests offer superior performance in terms of both 

Type I error control and statistical power, especially in small-
sample settings where the assumptions of the chi-squared test 
may be violated. Among the two resampling-based methods, the 
WR perturbation test provided the best overall performance, 
consistently balancing Type I error control and power across all 
scenarios.

Design Examples

To guide study planning for the one-sided hypothesis H0: π1=π2 
versus H1: π1>π2, we first computed the per group sample size n 
required by Boschloo’s test to attain 80% power at the α=0.05 
level. The resulting n values for several (π1, π2) configurations are 
listed in (Table 9).

Table 9: Example power comparisons across tests.

n π1 π2 Barnard Boschloo Fisher WOR WR

10 0.05 0.55 0.831 0.799 0.701 0.811 0.851

11 0.05 0.50 0.790 0.809 0.718 0.80 0.849

17 0.15 0.55 0.815 0.807 0.723 0.806 0.830

12 0.35 0.85 0.773 0.807 0.738 0.768 0.823
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Three findings stand out.

•	 Fisher’s exact test is markedly under powered relative to 
the other four procedures.

•	 Contrary to common belief, Boschloo’s test does not 
always dominate Barnard’s test; in some settings Barnard offers 
comparable or even higher power.

•	 The WR perturbation test uniformly outperforms all 
competitors.

Because real-world conclusions frequently hinge on p-values 
that lie near the significance threshold, the choice of test can 
materially affect inference; this will become evident in the applied 
examples of the next section. Finally, we assessed computational 
burden for the setting π1=0.35, π2=0.55 with n=75-85. Power 
curves for the WOR and WR perturbation methods were produced 
in minutes on a standard desktop, whereas Boschloo’s evaluations 
stalled for several days without finishing, underscoring its limited 
practicality for large sample analyses.

Data Examples

Testing Binomial Endpoints Across Two Treatment 
Groups

The following example, which compares several statistical 
methods for testing binomial endpoints between two treatment 
groups, is adapted from the study by Ajani et al. [13]. In this trial, 
trimodality eligible patients were randomized to receive either no 
induction chemotherapy (IC; Arm A) or IC consisting of oxaliplatin 
and fluorouracil (Arm B), followed by concurrent chemoradiation 
with oxaliplatin/fluorouracil and radiation therapy. One of the 
primary endpoints was the pathological complete response 
(pathCR) rate. A total of 55 patients in Arm A and 54 patients in 
Arm B underwent surgery.

We utilized 100,000 resamples to calculate the WR and WOR 
perturbation test p-values for testing the null hypothesis H0: π1=π2 
versus the alternative H1: π1≠π2. The observed pathCR rates were 
13% (7 of 55) in Arm A and 26% (14 of 54) in Arm B. Results from 
several statistical tests are summarized below:

•	 Fisher’s exact test (two-sided): p=0.094

•	 Barnard’s test: p=0.082

•	 Boschloo’s test: p=0.084

•	 WOR test: p=0.073

•	 WR test: p=0.081

The primary hypothesis was evaluated at a significance level 
of α=0.05. As shown, none of the tests reached conventional 
statistical significance, although the WOR and WR perturbation 

tests yielded relatively smaller p-values compared to traditional 
exact tests.

If, hypothetically, the observed pathCR rates were instead 
13% (6 of 54) in Arm A and 26% (14 of 54) in Arm B, the test 
results would be:

•	 Fisher’s exact test (two-sided): p=0.081

•	 Barnard’s test: p=0.065

•	 Boschloo’s test: p=0.058

•	 WOR test: p=0.053

•	 WR test: p=0.048

In this scenario, the WR perturbation test demonstrated in 
our simulation study to maintain appropriate Type I error control 
while offering consistently greater power, would lead to a different 
conclusion, suggesting statistical significance, unlike the more 
conservative traditional tests.

Testing Binomial Endpoints Across g Treatment 
Groups

For this example, comparing Pearson’s exact chi-square test 
with the WR and WOR perturbation tests, we utilized data from 
a multicenter, randomized controlled trial conducted across 20 
Japanese medical institutions [14]. The study compared three 
biologics, namely, Infliximab (IFX), Vedolizumab (VED), and 
Ustekinumab (UST) as treatment arms. The primary endpoint 
was the clinical remission (CR) rate at week 12, with secondary 
endpoints including the treatment continuation rate at week 26 
and adverse events (AEs). The observed CR rates at week 12 were: 
36% (12 of 33) for IFX, 32% (11 of 34) for VED, and 43% (13 of 
30) for UST. We used 100,000 resamples to approximate p-values 
for the exact Pearson chi-square test, the WR perturbation test, 
and the WOR perturbation test when testing the null hypothesis: 
H0: π1=π2=π3 versus H1: not all πi are equal.

•	 Pearson exact chi-square test: p=0.675

•	 WOR test: p=0.663

•	 WR test: p=0.649

For the secondary endpoint of rectal bleeding score of 0 at 
week 1, the rates were: 39% (13 of 33) for IFX, 50% (17 of 34) 
for VED, and 70% (21 of 30) for UST. The corresponding p-values 
were:

•	 Pearson exact chi-square test: p=0.052

•	 WOR test: p=0.043

•	 WR test: p=0.044
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In this case, different conclusions would be drawn from the 
WR and WOR tests as compared to the Pearson exact chi-square 
test at a significance level of α=0.05.

Conclusion

In this note we introduced two new perturbation tests for the 
hypothesis H0: π1=π2 versus H1: π1>π2 (or π1<π2),

together with the two-sided alternative H1: π1≠π2. The with-
replacement (WR) and without-replacement (WOR) perturbation 
tests are both simple to implement, only a handful of Monte-Carlo 
resampling lines in R suffice, yet their operating characteristics 
differ in a way that is practically important. Overall, the WR 
perturbation test was superior.

Some Key Features of the WR Test

•	 Consistently higher power: Across an extensive grid of 
sample size configurations, we benchmarked WR against Fisher’s 
exact, Barnard’s, and Boschloo’s tests. In every scenario the WR 
perturbation test delivered the greatest power, with the advantage 
most pronounced in the small sample setting that dominates 
Phase I/II clinical trials and rare-event studies. Even a seemingly 
modest uptick, for example improving power from 0.80 to 0.85, 
can flip a borderline p-value across the prespecified α threshold, 
changing the scientific conclusion.

•	 Exact type-I error control: Like Fisher’s and 
Boschloo’s procedures, WR maintains the nominal level without 
the conservatism that plagues Fisher’s exact test. Type-I error 
protection is therefore not sacrificed for power.

•	 Generalizes seamlessly: We extended the method to 
the g-group hypothesis H0: π1=π2= · · · =πg versus H1: not all πi 
are equal, and demonstrated that WR outperforms the Freeman-
Halton exact test while maintaining the desired Type I error 
rate. The same resampling blueprint naturally accommodates 
multinomial outcomes, a direction of future work.

•	 Computational simplicity and transparency: Because 
the test statistic is distribution-free under H0, Monte-Carlo p-values 
are obtained in seconds on a lap top, obviating large enumeration 
tables or specialized software. This lowers the barrier to adoption 
for practicing analysts.

Conclusion

When a more powerful test requires no additional modelling 
assumptions, is trivially programmed, and retains exact size, 
there is little rationale for defaulting to less efficient competitors. 
The evidence presented here positions the WR perturbation test 
as the new small sample gold standard for binary proportion 
comparisons.
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