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Sample Summary

Small-sample comparisons of binomial proportions often rely on Fisher’s exact test, which can be overly conservative and underpowered. We
introduce a perturbation testing framework that generates exact tests by perturbing outcomes, with two variants: with replacement (WR) and
without replacement (WOR). The WR test maintains nominal Type I error while achieving higher power than Fisher’s, Barnard’s, and Boschloo’s
tests, and it extends naturally to multiple groups, outperforming the Freeman-Halton test. Implementable in just a few lines of R code, the WR
perturbation test offers a fast, practical, and more powerful alternative to traditional exact methods.

Abstract

Small sample comparisons of binomial proportions are common in early phase clinical trials, laboratory studies, and rare event investigations.
The standard test, Fisher’s exact, often lacks power due to conservative Type [ error control. Alternatives like Barnard’s and Boschloo’s tests offer
less conservative error control and greater power. We present a unified perturbation testing framework for generating exact tests by perturbing
the discrete outcome variable, yielding two variants: with replacement (WR) and without replacement (WOR). For the null hypothesis HO: m1=m2,
WR controls Type I error at the nominal level while providing uniformly higher power than existing methods. The approach extends naturally to g
independent groups, where WR outperforms the Freeman-Halton exact test. Easily implemented in a few lines of R code and executing in seconds,
the WR perturbation test offers a practical, more powerful alternative to traditional exact tests.
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Introduction

Consider a randomized trial where subjects are assigned to
one of two treatments, T, or T,, using a standard parallel design.
The primary outcome is binary, coded as 0 or 1. Suppose there are j
=1, 2,..,nsubjects, where subject j would have response Xy, under
treatment T, and response Xy under treatment T, The individual
treatment effect for subject j is defined as x,x,. However, in
practice, only one of these two potential outcomes is observed for
each subject due to random assignment.

Following the principles of randomization inference as
outlined by Rosenbaum [1], and focusing on the binary outcome
setting, assume that out of n=n,+n, total subjects, n, are randomly
assigned to receive treatment T,and n, to receive treatment T,.

n

There is m= possible treatment assignments, each

n

1
equally likely with probability —.
m
Letlj.:lifsubjectjis assignedto treatmentTland1j=0ifassigned
to T,. In randomization theory, the only source of randomness is
this treatment assignment vector I= (1, I, ..., I ), where typically

P (Ij =1)=0forj=1,2, ..., n The observed outcome for subject j

is then given by the random variable ¥, =1 x,, +(1—1,)x,,
. This formulation enables the construction of the randomization

distribution by enumerating all m possible assignments.
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In the context of comparing binary outcomes between the two
groups, we are interested in testing whether

differs from

PY,=1[1,=1)= x,
P(Yj =1 |Ij=0)= 7y, j=L12,...,n.

The corresponding estimators are:

i Zj‘:l Iij h

= T = Zj:l =1,
n n,

In a one-sided testing scenario, we may test H, T,=T, versus
H:m>m, (or similarly H,: t <m,). Define the observed test statistic

A A
as S = 7r1— 7T2. For each of the m permutations, compute the

N A

corresponding test statistic Sk =Tk— T2, fork=1,2,..,m.
The exact p-value is then given by:

m
Zk:l I(S/czs)

p= - for H;:m >,
m
I
p= —Zk_;n (54s5) for H:m <m,

where I(_) is the indicator function.

For a two-sided alternative H,: 1, #1,, a common choice for
the test statistic is:

2 P 2
S = Z (mi—7m)",
I=1
n n
Where 7 = ZFI Yj/n The p-value is then:

m
_ Zk:l I(S,%zsz)

’

m

2 A A
Where S,f = 2121(7[”‘_7[)2 for k=1, 2,,m.

Since enumerating all possible treatment assignments is
often computationally infeasible for large sample sizes, Monte
Carlo approximations offer a practical alternative. Specifically, by
randomly selecting B treatment assignments, the p-value can be
estimated as:

555835. DOI:10.19080/BB0AJ.2025.12.555835

1 B
=—N7. ..,
p B;(Sk_S)

for the alternative hypothesis H: m>m, with analogous
expressions for other alternatives. This method enables feasible

inference under the randomization framework.

The randomization test corresponds to sampling without
replacement from the set of all possible assignments. In addition,
we will explore a bootstrap-like approach that samples with
replacement from the observed outcomes Y. The Monte Carlo
approximation to the p-value in this case follows the same logic as
that used in the randomization test.

Practically, when comparing two treatments with a binary
outcome, the observed data can be summarized in a 2x2
contingency table. In this setting, the p-values obtained through
a randomization test is equivalent to those derived from Fisher’s
exact test. Fisher’s exact test, introduced by R. A. Fisher in
the 1930s [2], was specifically designed to analyze small 2x2
contingency tables. The test is rooted in conditional probability,
famously illustrated by the” Lady Tasting Tea” experiment. The
test is based on calculating the exact probability of observing a
table as extreme as the one obtained, assuming the null hypothesis
and conditioning on fixed row and column margins. This approach
leads to the hypergeometric distribution as the basis for inference.
Fisher’s ex- act test is widely used in biomedical and clinical
research, especially where small sample sizes make large-sample
approximations unreliable. There are several test statistics that
are one-to-one that can be utilized using this approach that
generate identical p-values [3].

However, Fisher’s test has some important limitations. It
assumes fixed marginal totals, a condition that may not reflect
many real-world randomization scenarios, such as those described
previously where only the treatment assignment is randomized.
Furthermore, while computationally feasible for small sample
sizes, the test becomes increasingly intensive as the table size
grows. Nevertheless, Monte Carlo approximations to Fisher’s
test can be easily implemented to overcome these limitations in

practice.

Fisher’s exact test is also known to be the uniformly most
powerful (UMP) test among all exact tests in the 2x2 setting.
However, this optimality holds only under specific conditions,
particularly when the Type [ error rate corresponds to attainable
probabilities under the hypergeometric distribution, which can be
restrictive in practice.
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As an alternative, Barnard’s test, proposed by George A.
Barnard in 1945 [4], offers a more flexible framework. Unlike
Fisher’s test, Barnard’s test does not condition on the marginal
totals, making it an unconditional test. It evaluates all possible
2x2 tables and typically uses a test statistic such as the difference
in sample proportions to assess significance. By allowing the
margins to vary and optimizing the rejection region, Barnard’s
test often achieves greater power than Fisher’s test, particularly
because it can more accurately control the Type I error rate at
common levels such as 0.05 or 0.10.

Historically, the computational burden associated with
Barnard’s test limited its practical use, leading to a preference
for Fisher’s exact test despite its conservatism. However, with
advances in modern computing, Barnard’s test and related
methods like Boschloo’s test [5], which improves on Barnard’s test
by modifying the rejection criteria, have gained renewed interest.
These methods are now recognized as powerful alternatives for
small-sample inference in 2x2 tables, especially when the fixed-
margin assumption of Fisher’s test is not appropriate.

Recent work by Korn and Freidlin [6] underscores the
advantages of unconditional exact tests, particularly Boschloo’s
test, which preserve the desired Type I error rate while generally
offering greater power and, consequently, requiring smaller sample
sizes. Although some statisticians have argued that conditional
analyses, such as Fisher’s exact test, are more appropriate in
randomized trial settings, Korn and Freidlin find these arguments
either irrelevant or unconvincing. Their conclusions support
a broader adoption of unconditional methods in clinical trial
design, especially given the practical value of minimizing trial size.
Moreover, they propose that incorporating prespecified null and
alternative response rates into the test framework could further
improve the power of unconditional approaches. This perspective
aligns with earlier work by Mehrotra et al. [7], who conducted
a comprehensive comparison of Fisher’s exact test and various
un conditional exact procedures. Their study concluded that
“Boschloo’s test, in which the p-value from Fisher’s test is used as
the test statistic in an exact unconditional test, is uniformly more
powerful than Fisher’s test, and is also recommended.” See also
Lin and Yang [8] and Andres and Mato [9].

Testing binary endpoints across g treatment groups

Now suppose we have g treatment groups, each randomly
assigned to subjects, with a binary outcome of interest. We aim to

test the hypothesis
H m=m,=" *=TL, Versus H:notall 7, are equal, i=1,2,...,g.
Letj=1, 2,..., nindex the subjects, where subject j would have
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a binary response X, under treatment T, for i= 1, 2,..., g. Assume
there are a total of n =n +n,+ - +n, subjects, with n, subjects
randomly assigned to treatment group T, The number of possible

treatment assignments is given by the multinomial coefficient

n!

m!n,!.n,!

and each assignment is equally likely with probability —.
m
The observed outcome for subject j is then represented by

the random variable

g-1
Y, =1,x,+1,;+x,; +...+(1—zljk)xg,~
(1.1) k=1

where L is the random indicator variable that subject j
received treatment T,. To test the null hypothesis, we may use the
test statistic

(1.2)

g A A
S* = Z(m— 3%
I=1

N
n
Where ﬂizg ) [..Y./I’l. is the treatment level
=1

)

-1
sample proportion, i=1, 2,.g, ]g = (1 — Zizl Ik)and

A
n
T = Zj:I Y//n is the overall sample proportion.

The exact permutation p-value is then computed as:

R A
p= Zk:l (S¢28%) (1.3)
m

AN AN
2 g 2
Where Sk = 21—1 (muw—m)" is the value of the test
statistic under the k-th permutation of treatment assignments.

As before, since enumeration of all possible treatment
assignments may be computationally prohibitive for large n, we
employ a Monte Carlo approximation. By randomly selecting B

treatment assignments, the p-value can be estimated as
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1 B
p=—2 1) (1.4)
B k=1

for the alternative hypothesis H: m >m, with analogous
expressions for other alternatives.

In parallel, we also consider a bootstrap-like approach,
sampling with replacement from the observed outcomes Y. The
Monte Carlo approximation to the p-value in this setting follows
the same structure as that of the randomization test.

Similar to the two-group setting, the null hypothesis of
equal treatment assignment probabilities across g groups, H;:
M=M,= -+ =T, can be represented using a 2xg contingency
table. This hypothesis may be tested using the exact chi-square
test of independence proposed by Freeman and Halton [10],
which extends Fisher’s exact test to higher dimensional tables.
Importantly, the exact p-value obtained from the Freeman-Halton
test is identical to that of the corresponding randomization test

[11], mirroring the equivalence observed in the 2x2 case.

The data described in this subsection may also be represented
in a Kxg contingency table. Under this representation, the
hypothesis stated above can be equivalently tested using the
Freeman-Halton extension of Fisher’s exact test, which provides
an exact chi-square test of independence for multirow by
multicolumn tables [12].

In this note we extend these ideas by developing a new
approach to resampling based on a Monte Carlo resampling
approach. Section 2 introduces our perturbation randomization
framework, detailing both the with replacement (WR) and without
replacement (WOR) variants and supplying straightforward
R code for immediate use. A toy example contrasts the new
procedures with Fisher’s exact, Barnard’s, and Boschloo’s tests.
Section 3 reports an extensive simulation study that examines the
statistical power of each test across a broad spectrum of sample
sizes and proportion configurations. Section 4 then analyses two
applied data sets, demonstrating how the perturbation tests can
alter scientific conclusions relative to traditional exact methods.

Finally, Section 5 summarizes practical recommendations.

Perturbation-Based Randomization Testing

The general strategy of our new test involves perturbing the
observed data. In the case of Bernoulli outcomes, this means
perturbing the binary response (0 or 1). We first describe the
method for Bernoulli outcomes in a two-group comparison
setting, which naturally generalizes to g-group comparisons for
both response types. The perturbations are used to generate a
less coarse randomization distribution, while utilizing the original

555835. DOI:10.19080/BB0AJ.2025.12.555835

A A
observed test statistic S = 71— /T2 for testing H, T =m, versus

the one-sided alternative H,: T, >,. For the two-sided alternative
H:m #m, we instead use the squared for each subject j, we define
the observed outcome as the random variable where 11.=1 if subject
J is assigned to treatment T, and 1=0 if assigned to treatment T,
Under this setup, X, and X,; represent the potential outcomes for

subject j under treatments T, and T, respectively.

To introduce variability for resampling, we generate a

perturbed response vector with elements

Y, =1x,;+(1-1)x,; +e;,j=1,2,.n,

where the perturbation term e~N (0, k%), and h is a user
specified bandwidth. Unlike traditional smoothing approaches
such as kernel density estimation, we fix the bandwidth at
h=1/10000, independent of the sample size.

Two resampling strategies are considered: sampling with
replacement and sampling without replacement from the
perturbed vector Y. For each resampled dataset, we compute the

one-sided test statistic using the estimators

A Z,~=11jyj A Zj:l(l_]j)yj
m==t— 1=
n n,

(2.1)

where denotes the resampled value for subject j from the
perturbed response vector Y. For the sampling with replacement

approach, we must also use the resampled group mean

' n "%
- =Y . . o
7T = —— when applying the two-sided alternative in two
group comﬂarisons, as well as the pooled mean for comparisons

involving g groups with binary or multinomial outcomes.

It follows immediately that

EGr) = EGr), EGra) = EGr)

and

Var(;n) = Var(;rl) +h, Var(;rz) = Var(;rz) +h’

A

The probability density function (PDF) of 77" is the following
normal mixture:
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Y- k/nl

f(%i“}mww* L
n 4 _k:O k)" ’ : h/\/l’T1 h/\/7

where ¢ is the standard normal PDF. The corresponding

cumulative distribution function (CDF) is

y k/n1

lk(l_ﬂ])nlik /\/—

m
IROEDY
7 k=0
where @ is the standard normal CDF.

AN

Similarly, the PDF of 777 is

Y- k/”z

W,

f;vz ()= kz(; Zz }!ﬁ‘ (=)~ h/\l/n_ ¢(

and the corresponding CDF is

0 k/n
f 0= }w¢w®ﬂ 2)
Z Wi

Jr1and 72'2 can be interpreted as kernel-smoothed

Thus,

A
versions of the observed sample proportions 771 and

A

7T2.

Each perturbation and resampling iteration yield a value used
to construct a Monte Carlo approximation to the null hypothesis
distribution. The perturbation-based p-value is calculated in
accordance with the exact p-value framework described in Section
1, by comparing the observed test statistic to the distribution
of values generated under the null hypothesis. This framework
applies equally whether resampling is performed with or without
replacement. From the perspective of Monte Carlo inference,
this approach offers a practical and conceptually intuitive
approximation to the null distribution.

The estimators of the test statistics based on the perturbed
responses retain the same expectation as the observed test
statistics defined in (1.1) under the null hypothesis H: m =,
The primary motivation for this perturbation-based strategy,
particularly in the context of randomized clinical trials, is to achieve
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Type I error control that more accurately reflects the nominal
significance level a. This approach often yields greater statistical
power compared to traditional methods such as Fisher’s exact test
or the Freeman-Halton extension, especially in scenarios involving
small to moderate sample sizes or sparse contingency tables.
However, as the sample size increases or the number of treatment
arms grows, the advantages of the perturbation-based method
tend to diminish, and classical methods generally attain Type [
error rates that align with the desired a-level. The extension to the
g-group setting follows the same strategy as the two-group case,
utilizing the test statistic defined in (1.2).

Toy Examples

To illustrate the differences in p-values obtained using
Fisher’'s exact test, Barnard’s test, Boschloo’s test, and the
proposed perturbation method (under both sampling with and
without replacement), we consider a simple toy example for
testing the hypothesis H; =, versus H: w >T,. The observed
and perturbed binary data for one Monte Carlo realization, based
on a total sample size of n=10, are presented in (Table 1).

Table 1: Sample values for y’, y? for T' and T? and their perturbed

versions yl' , y'2 Perturbations were generated by adding i.i.d. N (O,
h) noise with h=1/10000.

y y » Vs
1 0 1.000096 0.0000527
0 1 -0.000017 0.9999023
0 0 -0.000163 0.0000801
0 1 -6.258x10°¢ 1.0001902
0 0 7.9194x10° 0.0000652
0 1 -0.000043 0.9997861
1 1 1.000032 1.0001201
0 0 -0:000181 0.0000953
0 0 0.0000504 0.0000715
0 1 0.0000869 1.0001335

A A A ' A '

T1=02 | 72=05 771=0.1999862 772=0.5000497

The perturbed values ), and ), corresponding to treatments

T, and T, respectively, were obtained by adding independent

noise to the original binary responses:

Y, =1x,;+(-1)x,;, +e;j=12.n,

where e~N (0, h) and the bandwidth is fixed at h =1/10000.
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Here, 1=1 if subject j is assigned to treatment T, and =0 if

assigned to treatment T,

A
As demonstrated, the resulting perturbed estimators /7 '1 and

'

A
7T 2 closely match their original (unperturbed) counterparts. This

confirms that the perturbation does not meaningfully alter point
estimation. Both sets of estimators share the same expectation,
and the variance introduced by the added noise is negligible.

To estimate the p-value under both sampling with and without
replacement, we performed 10,000,000 Monte Carlo resamples.
This large number of replicates effectively approximates the full
permutation distribution of the test statisticand is computationally
efficient in R. Below is the R code used to generate the p-values for

testing H ; 7 =1, versus H: Tt >,
h<-1/10000
y’<-¢(1,0,0,0,0,0,1,0,0,0)
y'<-¢(0,1,0,1,0,1,1,0,0,1)
# Observed difference in sample proportions
Obs_diff <- mean(y1)-mean(y0)
# Combine groups
combined <- ¢ (y0, y1)
n <- length(y0) # assumes equal group sizes
# Without replacement: perturb and resample

perm_diffs wor  <- (1e7,  {fuzzed <-
combined+rnorm(length(combined), mean=0, sd=1) *h shuffled

replicate

<- sample(fuzzed) mean(shuffled[(n+1) :(2 *n)])-mean (shuffled
[1:n])})

pvalue_wor <- mean (perm_diffs_wor >=obs_diff)
# With replacement: perturb and resample with replacement

perm_diffs_wr <- (1e7, {fuzzed <-
combined+rnorm(length(combined), mean=0, sd=1) *h shuffled

replicate

<- sample (fuzzed, replace=TRUE) mean(shuffled[(n+1) :(2
*n)])-mean (shuffled [1: n])})

pvalue_wr <- mean (perm_diffs_wr >=obs_diff)

To compare the behavior of different exact and approximate
methods for testing H: m=m, versus H: m>m, we computed
p-values using Barnard’s test, Boschloo’s test, Fisher’s exact
test, and our proposed perturbation method under both with-
replacement (WR) and without-replacement (WOR) resampling
schemes. The observed p-values are summarized below: (Table
2.1)

555835. DOI:10.19080/BB0AJ.2025.12.555835

These results demonstrate that the proposed perturbation
approach, particularly with sampling with replacement, can yield
p-values aligning more closely with Barnard’s and Boschloo’s
methods. Notably, the WR method produced the smallest p-value,
suggesting increased sensitivity to detect differences under small-
sample conditions. In the following section, we further evaluate
the perturbation method through a comprehensive simulation
study, examining its power and Type I error performance in the
two-group, g-group, and multinomial testing settings.

To evaluate the reproducibility of the estimated p-values
across multiple executions of the same program, we ran the
procedure ten times using the same data. The results for the two
perturbation strategies, without replacement (WOR) and with
replacement (WR), are shown in the Table 2. As can be observed,
the estimated p-values are highly consistent across all runs.
Importantly, no decision regarding the null hypothesis H m =,
versus the alternative H : 1 >, would change under either @=0.05
or a=0.10, both commonly used significance levels in clinical trials
(Table 2).

Table 2.1

. Perturbation | Perturba-
Method | Barnard | Boschloo | Fisher (WOR) tion (WR)
p-value 0.132 0.099 0.175 0.102 0.084

Table 2: Estimated p-values from 10 repeated runs under two
perturbation strategies.

Perturbation (WOR) Perturbation (WR)
0.1017159 0.0843962
0.1019481 0.0844183
0.1015814 0.0844848
0.1018683 0.0842959
0.1016467 0.0843208
0.1018438 0.0843789
0.1016919 0.0843907
0.1018123 0.0843267
0.1018963 0.0844471
0.1019533 0.0841887

Simulation Study

In this section, we compare the new WOR and WR approaches
in three settings: the two-group binary outcome setting and
g-group binary outcome setting.

Testing binomial endpoints across two treatment
groups
In this simulation study, we evaluated Type I error control and

power for testing H: T, =T, versus H: T, >T, using Barnard’s test,
Boschloo’s test, Fisher’s exact test, and the newly proposed WOR
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and WR tests. Values for 7, ranged from 0.05 to 0.95 in increments
of 0.10. For each value of m,, corresponding values of m, ranged
from m, to 0.95, also in increments of 0.10, for sample sizes n=10,
20, 30 per group. The bandwidth parameter h was set to 1/10000.
The desired Type I error was set to a=0.05.

For the WOR and WR perturbation tests, 1,000 Monte Carlo
resamples were used per scenario to estimate the p-value, and
each scenario was simulated 1,000 times. Results for specific
combinations of 1, and m, are reported in (Tables 3-5). Full power
curves for each test are shown in (Figures 1-3).

Table 3: Power values for each test method across different (m,, )
combinations, n=10.

™, T, Barnard Boschloo | Fisher | WOR WR
0.05 0.05 0.01 0 0 0.005 0.01
0.05 0.45 0.71 0.596 0.516 | 0.633 | 0.718
0.05 0.55 0.826 0.8 0.707 | 0.805 | 0.846
0.15 0.15 0.042 0.02 0.016 0.03 0.043
0.15 0.65 0.745 0.767 0.632 0.754 | 0.811
0.15 0.75 0.849 0.882 0.806 | 0.871 | 0.906
0.25 0.25 0.04 0.033 0.016 | 0.035 0.048
0.25 0.75 0.698 0.724 0.619 | 0.717 | 0.782
0.25 0.85 0.862 0.879 0.813 | 0.873 0.91
0.35 0.35 0.048 0.053 0.021 | 0.052 | 0.059
0.35 0.85 0.719 0.758 0.628 | 0.735 | 0.793
0.35 0.95 0.914 0.915 0.847 | 0912 | 0.936
0.45 0.45 0.043 0.041 0.018 | 0.046 | 0.059
0.45 0.95 0.821 0.798 0.713 | 0.803 | 0.841
0.55 0.55 0.047 0.04 0.018 | 0.039 | 0.058
0.55 0.95 0.701 0.616 0.531 | 0.634 | 0.715
0.65 0.65 0.042 0.043 0.024 | 0.042 | 0.049
0.65 0.95 0.516 0.369 0.305 | 0.416 | 0.518
0.75 0.75 0.046 0.037 0.023 0.039 0.049
0.75 0.95 0.313 0.158 0.139 | 0.204 | 0.316
0.85 0.85 0.034 0.015 0.013 0.023 0.034
0.85 0.95 0.116 0.041 0.04 | 0.066 | 0.118
0.95 0.95 0.008 0.001 0.001 0.004 | 0.008

Table 4: Power values for each test method across different (m,, )
combinations, n=20.

™, T, Barnard | Boschloo | Fisher | WOR WR
0.05 0.05 0.020 0.005 0.001 0.006 0.020
0.05 0.35 0.770 0.763 0.689 | 0.782 0.821
0.05 0.45 0.929 0.926 0.886 | 0.926 0.938
0.15 0.15 0.044 0.035 0.023 0.043 0.066
0.15 0.55 0.847 0.847 0.803 0.859 0.876
0.15 0.65 0.957 0.957 0.928 | 0.956 0.967
0.25 0.25 0.050 0.050 0.032 0.046 0.053
0.25 0.65 0.806 0.806 0.715 0.807 0.823
0.35 0.35 0.035 0.035 0.024 | 0.040 0.046
0.35 0.75 0.812 0.812 0.731 0.817 0.828
0.35 0.85 0.948 0.948 0.930 | 0.950 0.955
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0.45 0.45 0.045 0.045 0.025 0.050 0.051
0.45 0.85 0.855 0.855 0.805 0.858 0.877
0.55 0.55 0.042 0.042 0.022 0.044 0.046
0.55 0.95 0.919 0.915 0.878 0.919 0.938
0.65 0.65 0.042 0.042 0.029 0.045 0.052
0.65 0.95 0.768 0.760 0.676 0.790 0.822
0.75 0.75 0.037 0.037 0.025 0.040 0.048
0.75 0.95 0.548 0.489 0.407 0.520 0.603
0.85 0.85 0.034 0.026 0.014 | 0.036 0.054
0.85 0.95 0.239 0.153 0.083 0.189 0.273
0.95 0.95 0.027 0.007 0.000 0.011 0.025

Table 5: Power values for each test method across different (7, )
combinations, n=30.

™, T, Barnard Boschloo | Fisher | WOR WR
0.05 0.05 0.037 0.017 0.003 | 0.021 | 0.039
0.05 0.25 0.689 0.683 0.569 | 0.689 | 0.717
0.05 0.35 0.928 0.928 0.863 | 0.931 0.936
0.15 0.15 0.039 0.038 0.017 | 0.041 0.051
0.15 0.45 0.823 0.823 0.739 | 0.809 | 0.828
0.15 0.55 0.943 0.943 0.918 | 0.938 | 0.950
0.25 0.25 0.041 0.041 0.022 | 0.039 | 0.044
0.25 0.55 0.780 0.780 0.699 | 0.778 | 0.781
0.25 0.65 0.936 0.936 0.900 | 0.935 0.936
0.35 0.35 0.054 0.054 0.031 | 0.050 | 0.057
0.35 0.65 0.753 0.753 0.647 | 0.752 | 0.758
0.35 0.75 0.936 0.936 0.898 | 0.935| 0.939
0.45 0.45 0.038 0.038 0.021 | 0.039 | 0.038
0.45 0.75 0.753 0.753 0.674 | 0.750 | 0.757
0.45 0.85 0.958 0.958 0.924 | 0.956 | 0.958
0.55 0.55 0.046 0.046 0.028 | 0.043 0.050
0.55 0.85 0.828 0.828 0.746 | 0.818 | 0.835
0.55 0.95 0.992 0.992 0986 |0.991 | 0.994
0.65 0.65 0.042 0.042 0.025 | 0.041 | 0.045
0.65 0.85 0.535 0.535 0.432 | 0.521 | 0.539
0.65 0.95 0911 0911 0.864 | 0.915| 0.919
0.75 0.75 0.043 0.043 0.028 | 0.041 | 0.048
0.75 0.95 0.684 0.679 0.554 | 0.690 | 0.733
0.85 0.85 0.033 0.033 0.016 | 0.038 | 0.044
0.85 0.95 0.310 0.272 0.159 | 0.291 | 0.350
0.95 0.95 0.045 0.020 0.002 | 0.022 | 0.048

As evident from the results, the WR perturbation test
consistently achieves the highest power across all scenarios,
with its relative advantage decreasing as sample size increases.
The efficiency gains of the WR perturbation test range from
approximately 1% to 10%, depending on the parameter
configuration. Notably, Barnard’s test tends to outperform
Boschloo’s test at lower values of 1, while Boschloo’s test shows
superior performance at higher values of m,.

Although the performance gain of the WR perturbation test
over Barnard’s and Boschloo’s tests may be modest in some
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cases, it is consistently superior, and in certain settings, the gain
is substantial. This improvement can be especially important in

cost savings. Moreover, the implementation of the WOR and WR
perturbation methods is straightforward, as demonstrated by the

clinical trials, such as cancer immunotherapy studies, where even R code provided in the previous section.

a small reduction in required sample size can lead to significant

e N
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Figure 1: Power curves for various test methods across different (10, 111) values, n=10.
\ J

Testing binomial endpoints across g treatment groups Table 6: Simulation results for n=10 for three group comparison.

™, T, T, WOR WR X?
To evaluate the performance of the proposed methods, we
. . . L 0.1 0.1 0.1 0.021 0.028 0.002
conducted a simulation study using 1,000 Monte Carlo replications 01 01 05 0.527 0.580 0.456
per scenario and 1,000 resamples to estimate p-values via both 0.1 0.1 0.9 0.991 0.991 0.991
. . . 0.1 0.3 0.3 0.167 0.177 0.105
the WR and WOR perturbation tests and an approximation to o1 0.3 07 0733 0751 0.701
the Pearson exact chi-square test. Type I error and power was 0.1 0.5 0.5 0.461 0.495 0.401
assessed under the global null hypothesis for g=3 groups, H; 0.1 0.5 0.9 0.966 0.970 0.964
0.1 0.7 0.7 0.858 0.891 0.846
T, =T,=T, versus H,: not all T, are equal. 0.1 0.9 0.9 0.992 0.994 0.989
Power was evaluated under various alternatives involving 0.3 0.3 0.3 0.05 0.059 0.037
. . . . e 0.3 0.3 0.7 0.384 0.417 0.354
increasing divergence in category probabilities. Across all 03 05 05 0.110 0.138 0.098
sample sizes (n=10, 20, 30), both the WOR and WR perturbation 0.3 0.5 0.9 0.714 0.746 0.693
C . 0.3 0.7 0.7 0.432 0.470 0.409
tests maintained appropriate control of the Type I error near 03 0.9 0.9 0.880 0.900 0.846
the nominal level of @=0.05, as shown in (Tables 6-8). The WR
) . 0.5 0.5 0.5 0.045 0.053 0.040
method tended to be slightly conservative for n=10. In contrast, 0.5 0.5 0.9 0.469 0.511 0.409
the Pearson exact chi-squared test exhibited highly conservative 0.5 0.7 0.7 0.129 0.154 0.104
. . . . - 0.5 0.9 0.9 0.537 0.573 0.473
behavior at this smallest sample size, with rejection rates under
. 0.7 0.7 0.7 0.054 0.054 0.031
the null as low as 0.002, although performance improved as 0.7 0.9 0.9 0192 0211 0123
sample size increased.
0.9 0.9 0.9 0.020 0.034 0.002
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Table 7: Simulation results for n=20 for three group comparison. Table 8: Simulation results for n=30 for three group comparison.

™, ™, ™, WOR WR X2 ™, T, ™, WOR WR X2
0.1 0.1 0.1 0.044 0.040 0.030 0.1 0.1 0.1 0.051 0.045 0.036
0.1 0.1 0.5 0.877 0.877 0.844 0.1 0.1 0.5 0.979 0.977 0.970
0.1 0.1 0.9 1.000 1.000 1.000 0.1 0.1 0.9 1.000 1.000 1.000

0.1 0.3 0.3 0.485 0.486 0.444
0.1 0.3 0.3 0.331 0.330 0.288

0.1 0.3 0.7 1.000 1.000 1.000
0.1 0.3 0.7 0.977 0.976 0.970

0.1 0.5 0.5 0.964 0.963 0.955
0.1 0.5 0.5 0.835 0.846 0.806

0.1 0.5 0.9 1.000 1.000 1.000
0.1 0.5 0.9 1.000 1.000 1.000

0.1 0.7 0.7 1.000 1.000 1.000
0.1 0.7 0.7 0.994 0.994 0.990 01 09 09 1.000 1.000 1.000
0.1 0.9 0.9 1.000 1.000 1.000 . ’ ’ . . .
0.3 0.3 0.3 0.056 0.059 0.039 0.3 0.3 0.3 0.045 0.047 0.040

0.3 0.3 0.7 0.913 0.919 0.910
0.3 0.3 0.7 0.763 0.776 0.744 03 05 05 0.338 0.345 0318
0.3 0.5 0.5 0.245 0.258 0.224 . ’ ’ . . .
0.3 0.5 0.9 0.977 0.976 0.969 0.3 0.5 0.9 1.000 1.000 1.000
0.3 0.7 0.7 0.783 0.798 0.758 0.3 0.7 0.7 0.896 0.907 0.890
0.3 0.9 0.9 0.999 0.999 0.995 0.3 0.9 0.9 1.000 1.000 1.000
0.5 0.5 0.5 0.039 0.049 0.035 0.5 0.5 0.5 0.048 0.051 0.043
0.5 0.5 0.9 0.848 0.852 0.821 0.5 0.5 0.9 0.971 0.976 0.968
0.5 0.7 0.7 0.231 0.242 0.211 0.5 0.7 0.7 0.364 0.375 0.337
0.5 0.9 0.9 0.874 0.880 0.839 0.5 0.9 0.9 0.967 0.967 0.958
0.7 0.7 0.7 0.043 0.042 0.034 0.7 0.7 0.7 0.047 0.049 0.043
0.7 0.9 0.9 0.383 0.371 0.332 0.7 0.9 0.9 0.561 0.560 0.527
0.9 0.9 0.9 0.036 0.037 0.022 0.9 0.9 0.9 0.040 0.036 0.030

P
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Figure 2: Power curves for various test methods across different (10, 1) values, n=20.

“ How to cite this article:  Alan D H. A Perturbation-Based Method to Boost Exact Tests of Proportions in . Biostat Biom Open Access J. 2025; 12(2):
555835. DOI:10.19080/BB0AJ.2025.12.555835


http://dx.doi.org/10.19080/BBOAJ.2025.12.555835

Biostatistics and Biometrics Open Access Journal

m =005

m =015
1.00

0.75
0.50
0.25
0.00

1.00
0.75
0.50
0.25
0.00

Power

m =085 T =085

1.00
0.75
0.50
0.25

0.00

0.25 0.50 0.75 0.25 0.50 0.75

Test

(N

~#- Bamnard ~* Boschleo

Figure 3: Power curves for various test methods across different (10, 111) values, n=30.
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In terms of power, both the WOR and WR perturbation tests
consistently outperformed the Pearson exact chi-squared test,
particularly at small to moderate sample sizes and under moderate
deviations from the null hypothesis. For example, when 1 =m,=0.1
and m,=0.5, the WR method achieved powers of 0.580, 0.877, and
0.979 for n=10, 20, 30, respectively, compared to 0.456, 0.844, and
0.970 for the Pearson exact chi-squared test (see corresponding
rows in Tables 6-8). Similar patterns were observed in other
configurations. When the effect size was large (e.g., m,=m,=0.1,
1,=0.9), all three methods approached maximum power even at

the smallest sample size.

Overall, these results demonstrate that the WOR and WR
perturbation tests offer superior performance in terms of both

Table 9: Example power comparisons across tests.

Type I error control and statistical power, especially in small-
sample settings where the assumptions of the chi-squared test
may be violated. Among the two resampling-based methods, the
WR perturbation test provided the best overall performance,
consistently balancing Type I error control and power across all

scenarios.

Design Examples

To guide study planning for the one-sided hypothesis H : t =,
versus H: m >, we first computed the per group sample size n
required by Boschloo’s test to attain 80% power at the a=0.05
level. The resulting n values for several (1, 1t,) configurations are
listed in (Table 9).

n L m, Barnard Boschloo Fisher WOR WR
10 0.05 0.55 0.831 0.799 0.701 0.811 0.851
11 0.05 0.50 0.790 0.809 0.718 0.80 0.849
17 0.15 0.55 0.815 0.807 0.723 0.806 0.830
12 0.35 0.85 0.773 0.807 0.738 0.768 0.823

555835. DOI:10.19080/BB0AJ.2025.12.555835
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Three findings stand out.

° Fisher’s exact test is markedly under powered relative to
the other four procedures.

° Contrary to common belief, Boschloo’s test does not
always dominate Barnard’s test; in some settings Barnard offers
comparable or even higher power.

° The WR perturbation test uniformly outperforms all
competitors.

Because real-world conclusions frequently hinge on p-values
that lie near the significance threshold, the choice of test can
materially affect inference; this will become evident in the applied
examples of the next section. Finally, we assessed computational
burden for the setting m=0.35, 1,=0.55 with n=75-85. Power
curves for the WOR and WR perturbation methods were produced
in minutes on a standard desktop, whereas Boschloo’s evaluations
stalled for several days without finishing, underscoring its limited
practicality for large sample analyses.

Data Examples

Testing Binomial Endpoints Across Two Treatment
Groups

The following example, which compares several statistical
methods for testing binomial endpoints between two treatment
groups, is adapted from the study by Ajani et al. [13]. In this trial,
trimodality eligible patients were randomized to receive either no
induction chemotherapy (IC; Arm A) or IC consisting of oxaliplatin
and fluorouracil (Arm B), followed by concurrent chemoradiation
with oxaliplatin/fluorouracil and radiation therapy. One of the
primary endpoints was the pathological complete response
(pathCR) rate. A total of 55 patients in Arm A and 54 patients in
Arm B underwent surgery.

We utilized 100,000 resamples to calculate the WR and WOR
perturbation test p-values for testing the null hypothesis H : =,
versus the alternative H,: 7, #1,. The observed pathCR rates were
13% (7 of 55) in Arm A and 26% (14 of 54) in Arm B. Results from
several statistical tests are summarized below:

° Fisher’s exact test (two-sided): p=0.094
° Barnard'’s test: p=0.082

° Boschloo’s test: p=0.084

° WOR test: p=0.073

° WR test: p=0.081

The primary hypothesis was evaluated at a significance level
of @=0.05. As shown, none of the tests reached conventional
statistical significance, although the WOR and WR perturbation

How to cite this article:
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tests yielded relatively smaller p-values compared to traditional
exact tests.

If, hypothetically, the observed pathCR rates were instead
13% (6 of 54) in Arm A and 26% (14 of 54) in Arm B, the test
results would be:

° Fisher’s exact test (two-sided): p=0.081
° Barnard'’s test: p=0.065

° Boschloo’s test: p=0.058

° WOR test: p=0.053

. WR test: p=0.048

In this scenario, the WR perturbation test demonstrated in
our simulation study to maintain appropriate Type I error control
while offering consistently greater power, would lead to a different
conclusion, suggesting statistical significance, unlike the more
conservative traditional tests.

Testing Binomial Endpoints Across g Treatment
Groups

For this example, comparing Pearson’s exact chi-square test
with the WR and WOR perturbation tests, we utilized data from
a multicenter, randomized controlled trial conducted across 20
Japanese medical institutions [14]. The study compared three
biologics, namely, Infliximab (IFX), Vedolizumab (VED), and
Ustekinumab (UST) as treatment arms. The primary endpoint
was the clinical remission (CR) rate at week 12, with secondary
endpoints including the treatment continuation rate at week 26
and adverse events (AEs). The observed CR rates at week 12 were:
36% (12 of 33) for IFX, 32% (11 of 34) for VED, and 43% (13 of
30) for UST. We used 100,000 resamples to approximate p-values
for the exact Pearson chi-square test, the WR perturbation test,
and the WOR perturbation test when testing the null hypothesis:
H: m=m,=m, versus H,: not all m, are equal.

. Pearson exact chi-square test: p=0.675
° WOR test: p=0.663
. WR test: p=0.649

For the secondary endpoint of rectal bleeding score of 0 at
week 1, the rates were: 39% (13 of 33) for IFX, 50% (17 of 34)
for VED, and 70% (21 of 30) for UST. The corresponding p-values
were:

° Pearson exact chi-square test: p=0.052
. WOR test: p=0.043

. WR test: p=0.044
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In this case, different conclusions would be drawn from the
WR and WOR tests as compared to the Pearson exact chi-square
test at a significance level of a=0.05.

Conclusion

In this note we introduced two new perturbation tests for the

hypothesis H : =, versus H: 1>, (or T <),

together with the two-sided alternative H,: w, #m,. The with-
replacement (WR) and without-replacement (WOR) perturbation
tests are both simple to implement, only a handful of Monte-Carlo
resampling lines in R suffice, yet their operating characteristics
differ in a way that is practically important. Overall, the WR
perturbation test was superior.

Some Key Features of the WR Test

° Consistently higher power: Across an extensive grid of
sample size configurations, we benchmarked WR against Fisher’s
exact, Barnard’s, and Boschloo’s tests. In every scenario the WR
perturbation test delivered the greatest power, with the advantage
most pronounced in the small sample setting that dominates
Phase I/II clinical trials and rare-event studies. Even a seemingly
modest uptick, for example improving power from 0.80 to 0.85,
can flip a borderline p-value across the prespecified o threshold,
changing the scientific conclusion.

° Exact type-l1 error control: Like Fisher’s and
Boschloo’s procedures, WR maintains the nominal level without
the conservatism that plagues Fisher’s exact test. Type-I error

protection is therefore not sacrificed for power.

° Generalizes seamlessly: We extended the method to
the g-group hypothesis H; m=m,= - - - =m, versus H: not all m,
are equal, and demonstrated that WR outperforms the Freeman-
Halton exact test while maintaining the desired Type I error
rate. The same resampling blueprint naturally accommodates

multinomial outcomes, a direction of future work.

° Computational simplicity and transparency: Because
the test statisticis distribution-free under H, Monte-Carlo p-values
are obtained in seconds on a lap top, obviating large enumeration
tables or specialized software. This lowers the barrier to adoption
for practicing analysts.

Conclusion

When a more powerful test requires no additional modelling
assumptions, is trivially programmed, and retains exact size,
there is little rationale for defaulting to less efficient competitors.
The evidence presented here positions the WR perturbation test
as the new small sample gold standard for binary proportion

comparisons.
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