Biostatistics and Biometrics
Open Access Journal
ISSN: 2573-2633

» Juniper

™. J key to the Researchers

R rch Articl
esearc Uz Biostat Biom Open Access ]

Copyright © All rights are by Mingan Yang

Volume 12 Issue 1 - January 2025
DOI: 10.19080/BB0AJ.2025.12.555828

Treatment Effects Estimation for Incomplete
Crossover Trial with Binary Data

Mingan Yang!, Huining Kang?, Vernon S Pankratz?
Division of Epidemiology, Biostatistics and Preventive Medicine, University of New Mexico, United States

2Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM; Department of Internal Medicine, University of New Mexico School of Medicine,
Albuquerque, NM

JDepartment of Internal Medicine, University of New Mexico Health Sciences Center, the United States of America; University of New Mexico Comprehensive
Cancer Center, the United States of America

Submission: December 10, 2024; Published: January 06, 2025

*Corresponding author: Vernon S Pankratz, Department of Internal Medicine, University of New Mexico Health Sciences Center, the United States
of America; University of New Mexico Comprehensive Cancer Center, the United States of America. Email: vpankratz@salud.unm.edu

Abstract

Incomplete crossover design, which only considers a subset of treatments under comparison, is frequently employed to evaluate the effects of
various drug treatments. This design frequently involves binary data, presenting unique challenges such as restricted information, small sample
sizes, and a lack of flexible analytical approaches. In this manuscript, we review several approaches for the incomplete crossover design and focus
more on the recent approaches proposed, which overcome the above mentioned challenges.
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Introduction

Crossover trials, a popular variant of the randomized block
design, involves administering multiple treatments to subjects
across several periods, allowing each individual to serve as their
own control and reducing variability in treatment comparisons.
They are widely used in pharmaceutical and medical studies
to compare treatments for diseases. For example, in the most
commonly used crossover design [1,2] with only 2 treatments A
and B, some subjects receive treatment A first and B second, while
the others receive treatment B first and A second. Many current
statistical literature focuses on crossover trials with continuous
outcomes. However, there are more and more studies with a binary
response, e.g., reflief/no relief or improvement/no improvement
to evaluate drugs effects. However, limited approaches are

proposed to address such studies.

Incomplete block crossover designs (IBCD) Senn [3] are
often employed due to practical considerations such as resource
constraints and potential subject dropout. In IBCD, each subject
receives only a subset of treatments, presenting unique challenges
like small sample sizes and limited data. There are some limited
studies evaluating the IBCD. For example, Senn [3] proposed an

approach for continuous data. Lui and Chang [4] proposed the

weighted least squares approach for binary data. Lui (2017)
further developed a conditional likelihood approach for binary
data. However, the previous approaches have some limitations:
either for only continuous data or difficulties to accommodate
zero counts with binary data and subject to asymptotic theorem.
Yang [5] proposed a Bayesian approach for the IBCD. In this article,
we review and compare several popular approaches for the IBCD

and their performance.

The article is organized as follows: Section 2 describes
the Frequentist approaches. Section 3 describes the Bayesian
approach of Yang [5]. Section 4 provides a simulation study. And

section 5 concludes with a discussion.
Frequentist Approaches
General Description

Jones and Kenward [6] considered a study in a three-period
crossover trial which compared two treatments and placebo for
the relief of primary dysmenorrhea. They proposed a log-linear
linear model which mirrored the analysis of continuous data.
However, such studies have common challenges such as logistic

supports, longer duration of studies and potential risk of being lost
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or follow-up in crossover trials. In addition, Jones and Kenward
[6] proposed a fairly complicated model. Its main drawback with

higher-order designs is that many extra parameters are needed.

To overcome the challenges of the IBCD, Lui [7] fitted
a random effects logistic regression model and derived teh
conditional maximum likelihood estimator (CMLE) for the relative
effect between treatments with binary responses. For a study
comparing two experimental treatment A and B with a placebo
(P) under a 2-period crossover trial, denote X-Y the group with the
treatment sequence in which a patient receives treatment X and
then crossover to receive treatment Y and the second period. Lui

[7] derived the logistic regression model:
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where ylfg denotes the random effects with the i patient
assigned to group g; n,, and n,, denote the relative treatments
effect of Aand B to the placebo, respectively. The relative treatment
effect is estimated as
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and an estimated asymptotic variance for log({,, ) is obtained

as
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where y,, = exp(n,, ). Based on the above equations, Lui [7]

derived an approximate 100(1- a%) confidence interval for g, , as
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All the other relative treatment effects are derived similarly.
Obviously, we can see the above results are fairly complicated. In
particular, the IBCD studies generally have small sample sizes and
thus the results might not be accurate. More detailed info can be
referred to Lui [7].

Later on, Lui and Chang (2017) developed much simpler
results using a logistic random effect model. For example, the
estimated relative treatment effects 0,

1.2
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where N, denotes the number of patients in group g withe
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the vector of response Yl.‘% = r,Yl.% =c¢,, where r=1,0, c=1,0

amongn, patients.

Although the results seem very straight forward, however,
there are many times those values n,. or n,. are 0. Thus, it
would be very difficult to obtain the estimated treatment effects

and the corresponding variances [8].
Bayesian Approach Yang [5]

To overcome the above challenges of the Frequentist
approaches, Yang [5]proposed a Bayesian approach for the IBCD
studies. For a general crossover design consisting of ] periods and
M treatments, denotedas T, T,, - - -, T . A subset of M treatments
is applied during the ] periods with the crossover design. For
instance, a sequence (g(1), g(2), - - -, g(])) is formed when the

treatments T -, T, are applied for the ] periods. (Let y

gy gij
denote the continuous outcome from subject i at period j under

treatment sequence g, the model can be specified as

Yaij =t +1g +'/’j +tl(g,j) +f“gi +ggij’ ggl-j ~ N(O,oz) (5)
where s, is the fixed effect of the j™* period; u0 is the overall
mean; 1, is the fixed effect of the g sequence,g=1, - -,G; b IS
the fixed treatment effect, and I(g, j) is the treatment index; and
€, isa random error assumed to follow a normal distribution, Hy
is the random effect of i subject from the g sequence,i=1, - - -
, |, with Hai ~ N(O,pz) In the above model, the carryover effect

is omitted assuming sufficient washout between dosing periods.

Yang [5] further used several cutting-edge algorithms such
as data augmentation, scaled mixture of normals representation,
parameter expansion to improve efficiency. Specifically, the

logistic model [9] is defined as follows:

- ALy .. -
Ygij Bemoulll(H (ng]))> Xij_u0+’7g+wj+tl(g,j)+ﬂgi (6)

where H(.) is the logistic link function with H(x) = log(x/(1 -
K)).

Obviously, the conditional conjugacy cannot be achieved with
the posteriors since the logistic model is nonlinear. To overcome
the cumbersome nonlinear issue, Yang [5] take several approaches
of approximation to convert the nonlinear model to the standard
linear models. First, we take the approach that the logistic
distribution can be closely approximated by the t distribution
(Albert and Chib [10]; Holmes and Knorr-Held [11]; O’Brien and
Dunson [12]). With auxiliary variables, Model (6) is equivalent to

the following representation:

%
ygl-jzlzygij>0

0:y <0
ygij7 'ygij7
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Second, as noted by West [13], the t distribution can
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be expressed as a scale mixture of normals. Thus y s
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approximated as a non-central t distribution with location
parameter u +n Pt i, degree of freedom v and scale
parameter 0. Then we can express it as a scale mixture of normals

and get the following model:
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where <|)gi]. has a Gamma prior G(v/2, v/2). As suggested by
O’Brien and Dunson [12], we take v = 7.3 and o= (v - 2)/3v to

make the approximation almost exact.
Priors and Posteriors

Yang [5] used the same priors for the continuous outcomes as
in model (5). Yang [5] specified a normal distribution N(yl,alz)
for the overall mean u = N(,ul,af) . Similar priors are selected for
the sequence effect, period effect, and the treatment effect: n, ~
N(ﬂz,gzz), v; ~N(y3,cr32)and t, ~N(ﬂ4’o'42). The random
effect pgi is specified as ugi~N(0,p2), the hyperparameter p? is
placed an Inverse Gamma distribution p? ~ 1G(a,, b,), and ¢gi]. is
placed a prior of Gamma distribution G(v/2, v/2). Based on the
model and prior specifications, we can easily derive the joint
posterior distribution for 0= (u,m Wt @) as follows:
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where wgij = {1(*a* > 0) Vgij + 1(v,< 0)(1 - Ygif)}
p(d,,), and p(.) = p(p?)p(uy)p(t)p(m)p(). Obviously, this is a very
complicated posterior formula that we cannot sample directly.
By introducing the latent variable y;_j we have applied a data
augmentation|[14] algorithm and can easily sample the parameters
and hyperparameters of interest using Gibbs sampler. From the
above model, the auxiliary variable can be easily updated using
the Gibbs sampler from a posterior normal distribution truncated

below or above 0 according to the value ofygij .

The conditional posterior of the auxiliary variable is:

N(vgijidgij o 9gii) 1gij>0) gy +1(7 gy <ON1-rgij)}
¢(0;qu,az/¢gy')(1_y 8ij ){1*¢(0§‘]gij,52/¢gij)}y 8ij

=u0+ng+q;i g The full conditional posterior

(10)

*
p(ygij 10, ygi) =

where Ay
distributions is specified in (9). The procedures and most of the
conditional posterior distributions [14] are very similar to those
of the continuous outcomes. The detailed sampling steps are listed

in the Appendix. We run the Gibbs sampler by iteratively sampling
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all the parameters, and hyperparameters of interest.
Simulation

To evaluate the performance of the above mentioned
approaches, we conduct a simulation example for a logistic
mixed effects models. We consider comparing two experimental
treatments A, B, and placebo P under a two-period crossover
design. We use C-D to denote the group with the treatment
sequence in which a subject receives treatment C at the first
period and treatment D at the second period. Thus, there are
totally 6 groups (A-P, B-P, P-A,P-B, A-B, B-A). We assume that there
are no carry-over effects with an adequate washout period for the
simulation. We arbitrarily set the overall mean u0 equal to 0.10.
We generate the random effects pgi independently and identically
from a normal distribution with mean 0 and standard deviation
0.5, 1.0, and 2.0, respectively; We set the following four cases for
treatment effects (placebo, A, and B): -0.15, 0.30, -0.15 (case 1);
-0.25, 0.00, 0.25 (case 2);-0.15, -0.15, 0.30 (case 3); 0.15, 0.15,
-0.30 (case 4); and the number of patients per group n=15, 20, 25.
In clinical trials [15], researchers are generally interested in the
relative effects among treatments. Thus, we focus on the results
of the relative effects in the simulation. We use t , = t -t, to denote
the relative treatment effect between treatment c and d. For the
above 4 cases, the relative treatment effects (t,,, t,,, t,,) are: 0.45,
0.00, -0.45 (casel); 0.25, 0.50, 0.25 (case 2); 0.00, 0.45, 0.45 (case
3); 0.00, -0.45, -0.45 (case 4); and the period effect and group
effect are all set 0 since they are much less of interest compared
to the relative treatment effects. For the priors, we specify

H,=k,=p,=1,=0.5, 0,=0,=0,=0,=5.0, and a,=b =0.2.

We generate 500 simulated samples of n subjects per group
). About 5% (n=25, ¢ = 0.5)
to 70% (n=15, o = 2.0) data sets have zero frequency cells. We

with the bivariate outcome (an' Yeiz
run the Gibbs sampling algorithm as described in the previous
section and the Appendix. Three independent chains with widely
dispersed starting values were run to assess convergence. After
an initial 5,000 iterations, the scale reduction factors of the
Gelman- Rubin [16] approach (Gelman and Rubin [17]) indicate
good convergence. We use the next 20,000 iterations to calculate
the parameter estimate for the parameters of interest. We also run
simulations by varying the means and variances of the priors for
the hyperparameters to evaluate the effects. We do not observe

any noticeable differences in the parameter estimation.

(Table 1) provides the bias and mean square error (MSE)
of the relative treatment effect difference of varying scenarios.
(Table 2) provides the 95% coverage of the relative treatment
effect difference. From the tables, we can see that the performance

of our approach is pretty good. In particular, the approach of
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Yang [5], unlike those of Lui and Change [4] and Lui [7], does not be up to almost 80% for some cases. Although Lui [5] and Lui
suffer from zero frequencies for some cells. We also note that the and Chang [4] suggested to add 0.5 for cells with zero counts, this

percentage of generated data sets with zero frequency cells can  would significantly impacted the estimated results.

Table 1: The estimated bias and MSE (in parenthesis) of the relative treatment effect difference.

c 21 31 32 n t,, t, t,
05 0.45 0 -0.45 15 0.0540(0.223) 0.003(0.215) -0.051(0.216)
20 0.018(0.163) 0.013(0.152) -0.017(0.153)
25 -0.023(0.123) -0.014(0.126) 0.009(0.123)
0.25 05 0.25 15 0.017(0.230) 0.007(0.228) -0.011(0.220)
20 0.008(0.148) 0.035(0.143) 0.027(0.146)
25 -0.001 (0.113) 0.010(0.123) 0.012(0.111)
0 0.45 045 15 0.001(0.230) 0.050(0.216) 0.048(0.237)
20 -0.008(0.146) 0.017(0.149) 0.026(0.144)
25 0.009(0.110) 0.008(0.110) -0.001(0.117)
0 -0.45 -0.45 15 0.002(0.207) -0.022(0.199) -0.025(0.202)
20 0.003(0.137) -0.012(0.136) -0.015(0.146)
25 0.006(0.112) -0.024(0.111) -0.029(0.117)
1 0.45 0 -0.45 15 -0.033(0.212) -0.011(0.192) 0.022(0.206)
20 -0.058(0.141) -0.030(0.145) 0.028(0.136)
25 -0.023(0.123) -0.014(0.126) -009(0.123)
0.25 05 025 15 -0.009(0.176) -0.046(0.175) -0.037(0.180)
20 -0.019(0.136) -0.050(0.140) -0.031(0.128)
25 -0.036(0.105) -.0.06(0.107) -0.028(0.104)
0 045 045 15 -0.007(0.194) -0.029(0.207) -0.021(0.191)
20 0.021(0.137) -0.042(0.147) -0.063(0.138)
25 -0.002(0.105) -0.044(0.105) -0.042(0.108)
0 -0.45 -0.45 15 -0.003(0.200) 0.029(0.203) 0.032(0.206)
20 0.008(0.150) 0.029(0.147) 0.021(0.164)
25 -0.007(0.099) 0.058(0.107) 0.065(0.105)
2 0.45 0 -0.45 15 -0.006(0.428) 0.001(0.364) 0.007(0.427
20 0.101(0.396) 0.0085(0.369) -0.103(0.399)
25 0.095(0.298) -0.002(0.265) -0.097(0.286)
0.25 05 0.25 15 -0.040(0.292) -0.072(0.325) -0.032(0.312)
20 0.008(0.289) -0.032(0.267) 0.005(0.269)
25 0.040(0.275) 0.098(0.279) 0.058(0.272)
0 0.45 045 15 -0.009(0.467) 0.013(0.466) 0.023(0.450)
20 0.019(0.397) 0.035(0.314) 0.016 (0.337)
25 -0.008(0.255) 0.094(0.292) 0.087(0.304)
0 -0.45 -0.45 15 0.007(0.596) -0.079(0.576) -0.086(0.610)
20 0.007(0.415) -0.087(0.413) -0.093(0.394)
25 0.002(0.211) -0.009(0.220) -0.011(0.231)

How to cite this article: Mingan Y. Treatment Effects Estimation for Incomplete Crossover Trial with Binary Data. Biostat Biom Open Access J. 2025;
12(1): 555828. DOI: 10.19080/BB0AJ.2025.12.555828



http://dx.doi.org/10.19080/BBOAJ.2025.12.555828

Biostatistics and Biometrics Open Access Journal

Table 2: The estimated coverage of the relative treatment effect difference.

o t, t, t, n v, v, v,
0.5 0.45 0 -0.45 15 0.946 0.948 0.944
20 0.933 0.94 0.946
25 0.952 0.936 0.943
0.25 0.5 0.25 15 0.939 0.94 0.945
20 0.958 0.952 0.951
25 0.951 0.943 0.947
0 0.45 0.45 15 0.94 0.943 0.939
20 0.944 0.954 0.953
25 0.949 0.954 0.951
0 -0.45 0.45 15 0.942 0.952 0.951
20 0.961 0.955 0.954
25 0.954 0.956 0.948
1 0.45 0 -0.45 15 0.95 0.953 0.951
20 0.962 0.953 0.958
25 0.952 0.936 0.943
0.25 0.5 0.25 15 0.957 0.965 0.962
20 0.956 0.961 0971
25 0.96 0.956 0.96
0 0.45 0.45 15 0.954 0.951 0.957
20 0.965 0.958 0.959
25 0.962 0.96 0.959
0 -0.45 -0.45 15 0.959 0.963 0.961
20 0.944 0.955 0.941
25 0.965 0.96 0.959
2 0.45 0 -0.45 15 0.919 0.928 0.927
20 0.922 0.924 0.92
25 0.923 0.935 0.925
0.25 0.5 0.25 15 0.955 0.951 0.968
20 0.939 0.947 0.952
25 0.935 0.928 0.934
0 0.45 0.45 15 0.945 0.934 0.938
20 0.937 0.936 0.931
25 0.929 0.921 0916
0 -0.45 -0.45 15 0.93 0.925 0.921
20 0.934 0.928 0.937
25 0.944 0.938 0.932
Discussion issues of identifiability, reliability, intense computation etc. In this

For crossover trials [18-20], there are many challenging issues
such as logistic support, long duration of experiment, small sample

size etc. Even for modelings of IBCD, there are many challenging
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manuscript, we review several popular approaches to compare
their results and performance: the frequentist approaches of
Kenward and Jones [6], Lui and Chang [7]; Lui (2017); and the

Bayesian approach of Yang [5]. Obviously, we can see that the
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frequentist approaches for IBCD easily suffer from barriers of cell
counts of 0 while the Bayesian approach of Yang [5] does not. In
particular, the approach of Yang [5] used several cutting-edge
algorithms such as data augmentation, scaled mixture of normal
representation, parameter expansion etc. and get the closed form
for posterior distributions and improve efficiency. By extensive
simulation, we can see that the Bayesian approach [21,22]

provides very reliable and good results and performance.
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