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Treatment Effects Estimation for Incomplete  
Crossover Trial with Binary Data

Introduction

Crossover trials, a popular variant of the randomized block 
design, involves administering multiple treatments to subjects 
across several periods, allowing each individual to serve as their 
own control and reducing variability in treatment comparisons. 
They are widely used in pharmaceutical and medical studies 
to compare treatments for diseases. For example, in the most 
commonly used crossover design [1,2] with only 2 treatments A 
and B, some subjects receive treatment A first and B second, while 
the others receive treatment B first and A second. Many current 
statistical literature focuses on crossover trials with continuous 
outcomes. However, there are more and more studies with a binary 
response, e.g., reflief/no relief or improvement/no improvement 
to evaluate drugs effects. However, limited approaches are 
proposed to address such studies.

Incomplete block crossover designs (IBCD) Senn [3]  are 
often employed due to practical considerations such as resource 
constraints and potential subject dropout. In IBCD, each subject 
receives only a subset of treatments, presenting unique challenges 
like small sample sizes and limited data. There are some limited 
studies evaluating the IBCD. For example, Senn [3] proposed an 
approach for continuous data. Lui and Chang [4] proposed the  

 
weighted least squares approach for binary data. Lui (2017) 
further developed a conditional likelihood approach for binary 
data. However, the previous approaches have some limitations: 
either for only continuous data or difficulties to accommodate 
zero counts with binary data and subject to asymptotic theorem. 
Yang [5] proposed a Bayesian approach for the IBCD. In this article, 
we review and compare several popular approaches for the IBCD 
and their performance.

The article is organized as follows: Section 2 describes 
the Frequentist approaches. Section 3 describes the Bayesian 
approach of  Yang [5]. Section 4 provides a simulation study. And 
section 5 concludes with a discussion.

Frequentist Approaches

General Description

Jones and Kenward [6] considered a study in a three-period 
crossover trial which compared two treatments and placebo for 
the relief of primary dysmenorrhea. They proposed a log-linear 
linear model which mirrored the analysis of continuous data. 
However, such studies have common challenges such as logistic 
supports, longer duration of studies and potential risk of being lost 
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or follow-up in crossover trials. In addition, Jones and Kenward 
[6] proposed a fairly complicated model. Its main drawback with 
higher-order designs is that many extra parameters are needed.

To overcome the challenges of the IBCD, Lui [7] fitted 
a random effects logistic regression model and derived teh 
conditional maximum likelihood estimator (CMLE) for the relative 
effect between treatments with binary responses. For a study 
comparing two experimental treatment A and B with a placebo 
(P) under a 2-period crossover trial, denote X-Y the group with the 
treatment sequence in which a patient receives treatment X and 
then crossover to receive treatment Y and the second period. Lui 
[7] derived the logistic regression model:

exp( 1 ( 2))1 2( 1 | , ,1 )1 2 1 1 exp( 1 ( 2))1 2
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where g
iµ denotes the random effects with the ith patient 

assigned to group g; ηAP and ηBP denote the relative treatments 
effect of A and B to the placebo, respectively. The relative treatment 
effect is estimated as
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and an estimated asymptotic variance for log(ψAP ) is obtained 
as


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where ψAP = exp(ηAP ). Based on the above equations, Lui [7] 
derived an approximate 100(1- α%) confidence interval for ψAP as

[ exp( (log( ))), exp( (log( )))]AP AP AP AP/2 /2Z Var Z Varψ ψ ψ ψα α= −

All the other relative treatment effects are derived similarly. 
Obviously, we can see the above results are fairly complicated. In 
particular, the IBCD studies generally have small sample sizes and 
thus the results might not be accurate. More detailed info can be 
referred to Lui [7].

Later on, Lui and Chang (2017) developed much simpler 
results using a logistic random effect model. For example, the 
estimated relative treatment effects ηAP
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and the estimated variance of ηAP

( ) 1 2 1 21 / 4(1 / 1 / 1 / 1 / )AP 01 10 10 01Var η η η η η= + + +     (4)

where n g
rc  denotes the number of patients in group g withe 

the vector of response , ,Y Y1 2r cg g
i i= = , where r=1,0, c=1,0 

among ng patients.

Although the results seem very straight forward, however, 
there are many times those values 1nrc  or 1nrc  are 0. Thus, it 
would be very difficult to obtain the estimated treatment effects 
and the corresponding variances [8].

Bayesian Approach Yang [5]

To overcome the above challenges of the Frequentist 
approaches, Yang [5]proposed a Bayesian approach for the IBCD 
studies. For a general crossover design consisting of J periods and 
M treatments, denoted as T1, T2, · · · , TM. A subset of M treatments 
is applied during the J periods with the crossover design. For 
instance, a sequence (g(1), g(2), · · · , g(J)) is formed when the 
treatments Tg(1), · · · , Tg(J) are applied for the J periods. (Let ygij 

denote the continuous outcome from subject i at period j under 
treatment sequence g, the model can be specified as

2,  ~ (0, )0 ( , )y u t j Nggij j gi gij gil g jη ψ µ ε ε σ= + + + + +       (5)

where ψj is the fixed effect of the jth period; u0 is the overall 
mean; ηg is the fixed effect of the gth sequence, g = 1, · · · ,G; tl(g,j) is 
the fixed treatment effect, and l(g, j) is the treatment index; and 
ϵgij is a random error assumed to follow a normal distribution, μgi 
is the random effect of ith subject from the gth sequence, i = 1, · · · 
, ng with 2(0, )Ngiµ ρ

 In the above model, the carryover effect 
is omitted assuming sufficient washout between dosing periods.

Yang [5] further used several cutting-edge algorithms such 
as data augmentation, scaled mixture of normals representation, 
parameter expansion to improve efficiency. Specifically, the 
logistic model [9] is defined as follows:

( )1~ Bernoulli ( ) ,   0 ( , )y H X X u tgij ggij ij j gil g jη ψ µ− = + + + +          (6)

where H(.) is the logistic link function with H(κ) = log(κ/(1 − 
κ)).

Obviously, the conditional conjugacy cannot be achieved with 
the posteriors since the logistic model is nonlinear. To overcome 
the cumbersome nonlinear issue, Yang [5] take several approaches 
of approximation to convert the nonlinear model to the standard 
linear models. First, we take the approach that the logistic 
distribution can be closely approximated by the t distribution 
(Albert and Chib [10]; Holmes and Knorr-Held [11]; O’Brien and 
Dunson [12]). With auxiliary variables, Model (6) is equivalent to 
the following representation:
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where *y
gij

is an underlying value with the logistic distribution 
with location parameter u0+ηg+ψj +tl(g,j)+μgi and density function as 
follows:
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Second, as noted by West [13], the t distribution can 
be expressed as a scale mixture of normals. Thus *y

gij
 is 

approximated as a non-central t distribution with location 
parameter u0+ηg+ψj+tl(g,j)+μgi, degree of freedom υ and scale 
parameter σ2. Then we can express it as a scale mixture of normals 
and get the following model:

* 2,  ~ (0, / )0 ( , )y u t j Ng j gi gij gi gijl g jgij
η ψ µ ε ε σ φ= + + + + +        (8)

where ϕgij has a Gamma prior G(υ/2, υ/2). As suggested by 
O’Brien and Dunson [12], we take υ = 7.3 and σ2 = π2(v − 2)/3υ to 
make the approximation almost exact.

Priors and Posteriors

Yang [5] used the same priors for the continuous outcomes as 
in model (5). Yang [5] specified a normal distribution 2( , )1 1N µ σ  
for the overall mean u0= 2( , )1 1N µ σ . Similar priors are selected for 
the sequence effect, period effect, and the treatment effect: ηg ∼ 

2
2( , )2N µ σ , 3~ 2( , )3j Nψ µ σ and 4

2( , )4~m Nt µ σ . The random 
effect μgi is specified as μgi∼N(0,ρ2), the hyperparameter ρ2 is 
placed an Inverse Gamma distribution ρ2 ∼ IG(a0, b0), and ϕgij is 
placed a prior of Gamma distribution G(υ/2, υ/2). Based on the 
model and prior specifications, we can easily derive the joint 
posterior distribution for θ = (u0,η,ψ,t,ϕ) as follows:

2 2( | ) ( )[ ( ; ) ( ; ; / ) |]0 ( , )p y p N N y u tggi gij j gi gij gijl g jg ji
θ α µ ρ η ψ µ σ φ ω+ + + +∏ ∏∏
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where wgij = {1( *ygij  > 0) ygij  + 1( *y
gij < 0)(1 − ygij )}

p(ϕgij), and p(.) = p(ρ2)p(u0)p(t)p(η)p(ψ). Obviously, this is a very 
complicated posterior formula that we cannot sample directly. 
By introducing the latent variable *y

gij we have applied a data 
augmentation[14] algorithm and can easily sample the parameters 
and hyperparameters of interest using Gibbs sampler. From the 
above model, the auxiliary variable can be easily updated using 
the Gibbs sampler from a posterior normal distribution truncated 
below or above 0 according to the value of ygij .

The conditional posterior of the auxiliary variable is:
2 *( ; , / ){1( 0) 1( 0)(1 )}**( | , ) 2 (1 ) 2(0; , / ) {1 (0; , / )}
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where qgij=u0+ηg+ψj +tl(g,j)+μgi. The full conditional posterior 
distributions is specified in (9). The procedures and most of the 
conditional posterior distributions [14] are very similar to those 
of the continuous outcomes. The detailed sampling steps are listed 
in the Appendix. We run the Gibbs sampler by iteratively sampling 

all the parameters, and hyperparameters of interest.

Simulation

To evaluate the performance of the above mentioned 
approaches, we conduct a simulation example for a logistic 
mixed effects models. We consider comparing two experimental 
treatments A, B, and placebo P under a two-period crossover 
design. We use C-D to denote the group with the treatment 
sequence in which a subject receives treatment C at the first 
period and treatment D at the second period. Thus, there are 
totally 6 groups (A-P, B-P, P-A,P-B, A-B, B-A). We assume that there 
are no carry-over effects with an adequate washout period for the 
simulation. We arbitrarily set the overall mean u0 equal to 0.10. 
We generate the random effects μgi independently and identically 
from a normal distribution with mean 0 and standard deviation 
0.5, 1.0, and 2.0, respectively; We set the following four cases for 
treatment effects (placebo, A, and B): -0.15, 0.30, -0.15 (case 1); 
-0.25, 0.00, 0.25 (case 2);-0.15, -0.15, 0.30 (case 3); 0.15, 0.15, 
-0.30 (case 4); and the number of patients per group n=15, 20, 25. 
In clinical trials [15], researchers are generally interested in the 
relative effects among treatments. Thus, we focus on the results 
of the relative effects in the simulation. We use tcd = tc−td to denote 
the relative treatment effect between treatment c and d. For the 
above 4 cases, the relative treatment effects (t21, t31, t32) are: 0.45, 
0.00, -0.45 (case1); 0.25, 0.50, 0.25 (case 2); 0.00, 0.45, 0.45 (case 
3); 0.00, -0.45, -0.45 (case 4); and the period effect and group 
effect are all set 0 since they are much less of interest compared 
to the relative treatment effects. For the priors, we specify 
μ1=μ2=μ3=μ4=0.5, σ1=σ2=σ3=σ4=5.0, and a0=b0=0.2.

We generate 500 simulated samples of n subjects per group 
with the bivariate outcome (ygi1, ygi2). About 5% (n=25, σ = 0.5) 
to 70% (n=15, σ = 2.0) data sets have zero frequency cells. We 
run the Gibbs sampling algorithm as described in the previous 
section and the Appendix. Three independent chains with widely 
dispersed starting values were run to assess convergence. After 
an initial 5,000 iterations, the scale reduction factors of the 
Gelman- Rubin [16] approach (Gelman and Rubin [17]) indicate 
good convergence. We use the next 20,000 iterations to calculate 
the parameter estimate for the parameters of interest. We also run 
simulations by varying the means and variances of the priors for 
the hyperparameters to evaluate the effects. We do not observe 
any noticeable differences in the parameter estimation.

(Table 1) provides the bias and mean square error (MSE) 
of the relative treatment effect difference of varying scenarios. 
(Table 2) provides the 95% coverage of the relative treatment 
effect difference. From the tables, we can see that the performance 
of our approach is pretty good. In particular, the approach of 
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Yang [5], unlike those of Lui and Change [4] and Lui [7], does not 
suffer from zero frequencies for some cells. We also note that the 
percentage of generated data sets with zero frequency cells can 

be up to almost 80% for some cases. Although Lui [5] and Lui 
and Chang [4] suggested to add 0.5 for cells with zero counts, this 
would significantly impacted the estimated results.

Table 1: The estimated bias and MSE (in parenthesis) of the relative treatment effect difference.

σ t21 t31 t32 n tˆ21 tˆ31 tˆ32

0.5 0.45 0 -0.45 15 0.0540(0.223) 0.003(0.215) -0.051(0.216)

20 0.018(0.163) 0.013(0.152) -0.017(0.153)

25 -0.023(0.123) -0.014(0.126) 0.009(0.123)

0.25 0.5 0.25 15 0.017(0.230) 0.007(0.228) -0.011(0.220)

20 0.008(0.148) 0.035(0.143) 0.027(0.146)

25 -0.001 (0.113) 0.010(0.123) 0.012(0.111)

0 0.45 0.45 15 0.001(0.230) 0.050(0.216) 0.048(0.237)

20 -0.008(0.146) 0.017(0.149) 0.026(0.144)

25 0.009(0.110) 0.008(0.110) -0.001(0.117)

0 -0.45 -0.45 15 0.002(0.207) -0.022(0.199) -0.025(0.202)

20 0.003(0.137) -0.012(0.136) -0.015(0.146)

25 0.006(0.112) -0.024(0.111) -0.029(0.117)

1 0.45 0 -0.45 15 -0.033(0.212) -0.011(0.192) 0.022(0.206)

20 -0.058(0.141) -0.030(0.145) 0.028(0.136)

25 -0.023(0.123) -0.014(0.126) -.009(0.123)

0.25 0.5 0.25 15 -0.009(0.176) -0.046(0.175) -0.037(0.180)

20 -0.019(0.136) -0.050(0.140) -0.031(0.128)

25 -0.036(0.105) -.0.06(0.107) -0.028(0.104)

0 0.45 0.45 15 -0.007(0.194) -0.029(0.207) -0.021(0.191)

20 0.021(0.137) -0.042(0.147) -0.063(0.138)

25 -0.002(0.105) -0.044(0.105) -0.042(0.108)

0 -0.45 -0.45 15 -0.003(0.200) 0.029(0.203) 0.032(0.206)

20 0.008(0.150) 0.029(0.147) 0.021(0.164)

25 -0.007(0.099) 0.058(0.107) 0.065(0.105)

2 0.45 0 -0.45 15 -0.006(0.428) 0.001(0.364) 0.007(0.427

20 0.101(0.396) 0.0085(0.369) -0.103(0.399)

25 0.095(0.298) -0.002(0.265) -0.097(0.286)

0.25 0.5 0.25 15 -0.040(0.292) -0.072(0.325) -0.032(0.312)

20 0.008(0.289) -0.032(0.267) 0.005(0.269)

25 0.040(0.275) 0.098(0.279) 0.058(0.272)

0 0.45 0.45 15 -0.009(0.467) 0.013(0.466) 0.023(0.450)

20 0.019(0.397) 0.035(0.314) 0.016 (0.337)

25 -0.008(0.255) 0.094(0.292) 0.087(0.304)

0 -0.45 -0.45 15 0.007(0.596) -0.079(0.576) -0.086(0.610)

20 0.007(0.415) -0.087(0.413) -0.093(0.394)

25 0.002(0.211) -0.009(0.220) -0.011(0.231)
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Table 2: The estimated coverage of the relative treatment effect difference.

σ t21 t31 t32 n tˆ21 tˆ31 tˆ32

0.5 0.45 0 -0.45 15 0.946 0.948 0.944

        20 0.933 0.94 0.946

        25 0.952 0.936 0.943

  0.25 0.5 0.25 15 0.939 0.94 0.945

        20 0.958 0.952 0.951

        25 0.951 0.943 0.947

  0 0.45 0.45 15 0.94 0.943 0.939

        20 0.944 0.954 0.953

        25 0.949 0.954 0.951

  0 -0.45 0.45 15 0.942 0.952 0.951

        20 0.961 0.955 0.954

        25 0.954 0.956 0.948

1 0.45 0 -0.45 15 0.95 0.953 0.951

        20 0.962 0.953 0.958

        25 0.952 0.936 0.943

  0.25 0.5 0.25 15 0.957 0.965 0.962

        20 0.956 0.961 0.971

        25 0.96 0.956 0.96

  0 0.45 0.45 15 0.954 0.951 0.957

        20 0.965 0.958 0.959

        25 0.962 0.96 0.959

  0 -0.45 -0.45 15 0.959 0.963 0.961

        20 0.944 0.955 0.941

        25 0.965 0.96 0.959

2 0.45 0 -0.45 15 0.919 0.928 0.927

        20 0.922 0.924 0.92

        25 0.923 0.935 0.925

  0.25 0.5 0.25 15 0.955 0.951 0.968

        20 0.939 0.947 0.952

        25 0.935 0.928 0.934

  0 0.45 0.45 15 0.945 0.934 0.938

        20 0.937 0.936 0.931

        25 0.929 0.921 0.916

  0 -0.45 -0.45 15 0.93 0.925 0.921

        20 0.934 0.928 0.937

        25 0.944 0.938 0.932

Discussion

For crossover trials [18-20], there are many challenging issues 
such as logistic support, long duration of experiment, small sample 
size etc. Even for modelings of IBCD, there are many challenging 

issues of identifiability, reliability, intense computation etc. In this 
manuscript, we review several popular approaches to compare 
their results and performance: the frequentist approaches of 
Kenward and Jones [6], Lui and Chang [7]; Lui (2017); and the 
Bayesian approach of Yang [5]. Obviously, we can see that the 
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frequentist approaches for IBCD easily suffer from barriers of cell 
counts of 0 while the Bayesian approach of Yang [5] does not. In 
particular, the approach of  Yang [5] used several cutting-edge 
algorithms such as data augmentation, scaled mixture of normal 
representation, parameter expansion etc. and get the closed form 
for posterior distributions and improve efficiency. By extensive 
simulation, we can see that the Bayesian approach [21,22] 
provides very reliable and good results and performance.
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