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Abstract 

This study aims to assess the actual utility of the sample size tables calculated by Diletti et al. [1] for planning bioequivalence studies. This 
objective emerged from numerous simulation experiments using data from a real experiment that, during routine statistical analysis (crossover 
ANOVA), demonstrated complete bioequivalence between reference and test substances.

For each simulated pilot number (N=6, N=8, ..., N=18), we calculated 10,000 %CV values needed to verify the recommended sample size in a real 
experiment to achieve a bioequivalence response. The comparison between the size proposed by Diletti and that suggested by the simulation was 
negative due to the high and low under- and over-estimations obtained. Equal estimates were very rare.

We propose conducting a pilot experiment comparing three volunteers in each group. These real data can then be used to simulate 10,000 
experiments of 4 vs. 4 and calculate 10,000 Schuirmann tests, checking how often bioequivalence is achieved. If power is below 70%, the next 
step involves 10,000 simulations of 5 vs. 5, and so on until the desired power is reached. This provides the required sample size [2] for the final 
experiment.
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Evaluation of the Utility of Pilot Studies 
 in Establishing Bioequivalence

Introduction 

To establish a coherent experimental plan for investigating 
bioequivalence, the following steps are necessary:

i. Determine the required power (70%, 80%, ..., as 
the probability of correctly establishing the existence of 
bioequivalence).

ii. Establish an alpha value (5%, 2.5%, ..., as the probability 
of observing bio-inequivalence).

iii. Calculate a test/reference ratio (Ut/Ur) (0.95, 1, 1.05,...) 
and a suitable bioequivalence interval (80-125%, ...).

iv. Calculate the sample size for the experiment.

The complex problem raised in step 4 can be addressed by 
following this strategy:

i. Assume the s2 variability of the parameter (AUC, Cmax).

ii. Select an appropriate experimental design for 
observations to compensate for potential detrimental effects of  

 
variability on the outcome (ANOVA Crossover design - AC).

Unfortunately, the most challenging step is determining the 
value of s2. It is common practice to rely on the results of previous 
studies or conduct a “pilot trial”.The latter should allow solving 
the following formula for the sample size suggested by Diletti et al. 
[1] for the correct size of a trial (1):

2 2 2exp( ) 1  with s  in place of  CV σ σ= −

Digression

In a comparative clinical trial, the clinical researcher tries to 
detect a difference between treatments by ensuring that the study 
is adequately sized, based on the premise that more observations 
provide more information. Consequently, the null hypothesis 
of drugs with the same effect (Ho) will have a high probability 
of being rejected in favor of the alternative, that the drugs have 
different efficacy (H1). Experimental pharmacokinetics, however, 
follows a different path. Here, the scientist tries to validate the null 
hypothesis Ho to demonstrate that a treatment has at least the 
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2The bootstrap method says: “Define a hypothetical universe - the sample itself - representing the best fit for the real universe. Extract a large number 
of samples from it and examine the distribution.” The regular method says: “Describe the hypothetical distribution – the normal one - that would have 
generated the sample. Then use parameters such as the average and standard deviation to describe the distribution. Finally, resort to formulas and tables 
to verify the features of the samples extracted from that hypothetical universe.”
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same activity as an existing one (bioequivalence). In the domain 
of statistical inference, however, there is no real reason for such 
a conclusion. At most, a negative inference test can indicate that 
the observations made were not actually inconsistent with the 
null hypothesis Ho. This explains the need to resort to statistical 
procedures to determine the most appropriate sample size and 
assess the bioequivalence of the tested drugs (Schuirmann test) 
[3]. End of digression.

Methods

Considering the importance of s2, we posed the following 
question: “Can the coefficient of variation (CV) calculated from 
s2 obtained in a pilot study indicate the optimal sample size to 
demonstrate bioequivalence?” To answer this, we analyzed Cmax 
data from a clinical study on 18 volunteers, following the scheme 
illustrated in (Tables 1&2).

F treatments=0.02206, F carry-over=0.2069, F 
period=0.66536; Schuirmann test: t1=2.4, t2=4.0, both significant 
at p<0.01 with 16 df from the AC design. At the conclusion of the 
statistical analysis, bioequivalence proved indisputable, allowing 
us to virtually consider Cmax as if it came from a single population 
where we could randomly construct many simulated versions of 
the experiment presented in Table II, using a different number of 
individuals in each replication (our pilot experiments).

Table 1: The group-by-period means – Cmax.

Group Period 1 Period 2

1 (RT) 14.6 14.8

2 (TR) 14.9 16.1

Where R= Reference; T= Test

Table 2: Individual volunteers’ data – Cmax.

Vol. R T Vol. T R

2 14.4 14.5 1 10.3 9.3

4 16.3 13.8 3 17.4 15.1

6 9.3 12.6 5 14.5 12.8

8 10.7 15.7 7 10.5 13.3

11 13.8 12.9 9 13.7 13.5

12 27.8 24.2 10 23.2 18.3

14 15.0 13.2 13 16.3 17.2

16 12.6 12.7 15 13.3 28.8

18 11.4 13.4 17 15.1 16.4

Where Vol.= Volunteers

Simulations – Bootstrap Approach

Search for the smallest number needed to establish 
bioequivalence

Bootstrap methods are intensive statistical analysis methods 
that use simulation to calculate standard errors, confidence 
intervals, and significance tests. The key idea is to sample from the 
original data, directly or using a fitted model, to obtain replicated 
datasets from which the variability of the quantities of interest 
can be assessed without lengthy and error-prone analytical 
calculations.

From the population in Table II, we extracted 10,000 random 
samples (2) of N=18 each. We then calculated the Schuirmann 
test [3] for each (3) and found that in 75% of the simulations, 
bioequivalence could be demonstrated with 18 volunteers (75% 
power). With 16 volunteers, the power was lower, at 71% (Table 
3).

Table 3: Minimal sample size.

Bootstrap samples
 

% Power ventied
by Schuirmann test

5 RT vs 5 TR 50.0

6 RT vs 6 TR 53.0

7 RT vs 7 TR 61.0

8 RT vs 8 TR 71.4

9 RT vs 9 TR 74.5

Further simulations and Bootstrap samples2 for the AC design

From Table II, we selected a first random sample with 
replacement3 consisting of three volunteers from the RT group 
(total of six measurements: three in the first period with treatment 
R and three in the second with treatment T); the second sample 
included three volunteers from the TR group, following the same 
criteria as the first (Table 4).

From this information package, using the AC design, we 
obtained the following results for

F treatment = 0.64967 ; s2 = 0.06065 ; %CV = 24.9
2% exp( ) 1 . 100CV σ= −

We then asked: “To what sample size does an estimated %CV 
from six randomly selected volunteers (Table 4) lead?”

The tables of Diletti et al. [1] provide a number of 20 patients 
for a power of 70%, α= 5%, Ut/Ur = 1, and a confidence interval for 
bioequivalence ranging from 0.8 to 1.25. We performed another 
9,999 simulations for experiments with three or eight volunteers 
per group, meaning 9,999 Latin square ANOVAs, as suggested 

3In sampling a finite population, the use of the “with replacement” technique makes the “n” observations independent and equally distributed, validating 
the Central Limit theorem.
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by Jones & Kenward (4). This large number of repetitions 
ensures considerable stability of the results, allowing a correct 
interpretation of %CV distributions (one for each N) needed to 
obtain the proposed 10,000 sample sizes to verify the reliability of 
power tables. In this case, s2 refers to the W-S residual or error (b) 

of a Split-Plot design; the two values are identical. Diletti et al. [1] 
argue that to calculate CV, “the mean square of the error, obtained 
from ANOVA, must be used after transforming the experimental 
data into LN values.”

All these simulations led to the following conclusions.

Table 4: Cmax in 12 data sets from two-formulation crossover design. LN transformation.

Vol. R T Vol. T R

2 2.6672 2.6741 5 2.6741 2.5494

11 2.6247 2.5572 9 2.6174 2.6027

16 2.5337 2.5416 15 2.5878 3.3604

Mean 2.6085 2.591 Mean 2.6264 2.8375

SdDev 0.0682 0.0724 SdDev 0.0439 0.4536

n 3 3 n 3 3

70% Power

The results of the pilot study of 10,000 (Table 5) do not 
confirm the number of the two Cmax populations we started with 
(18 volunteers) or the 8 vs. 8, with 16 volunteers, which gave a 
power of 70%.

Table 5: Sample size suggested by Diletti et al. using 10.000 simulated 
%CV values (pilot study witn N=6).

Sample size to  
attain a power  

of 70%
Count Count/10.000  

or probability

4 1456 0.14560

6 1227 0.12270

8 1416 0.14160

10 1673 0.16730

12 1025 0.10250

14 328 0.03280

16 350 0.03500

20 613 0.06130

24 945 0.09450

28 700 0.07000

>28 267 0.02670

Total 10,000

The main information obtained from the above table is:

i. the high probability of underestimating the size of the 
original population

(71.25%, i.e., 1456+...+328=7125/10,000)

ii. the probability of overestimation (19.12%, i.e., 
1912/10,000)

iii. the disappointing proportion of “pilot studies” 
suggesting the correct sizes for the experiment (9.63%, between 
16 and 20 volunteers, i.e., 963/10,000).

(Table 6) lists various tables obtained from similar calculations 
as those discussed but for pilot studies with 8-16 volunteers.

These additional simulations confirm the disappointing 
sizing information already observed in the study with six 
volunteers (Table 7).

In conclusion, with every change in N, the probability of 
underestimating sample sizes increases, the probability of an 
equal estimate worsens and the probability of overestimation 
decreases. In any case, this procedure provides disappointing 
information. Our population consisted of 18 volunteers, and the 
simulation provided this data with a very low frequency.

The simulation results make the sample size formula shown 
at the beginning less useful since both the %CV calculation and, 
subsequently, the sample size calculation is based on hypotheses 
hardly satisfied in the real-life pharmacological response.

80% Power

We repeated the entire procedure, changing the power 
from 70% to 80%, to operate under more typical conditions 
of experimental planning. The results of these simulations are 
represented in (Tables 8,9&10).

Discussion

The breadth of the simulated confidence interval makes power 
size tables practically useless (Table 11). The distribution of the 
residual error from ANOVA applied to LN-transformed data, does 
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not correspond to what should result from the Owen algorithm, 
which is what Diletti et al. [1] used, with some modifications, to 
compile their sample size tables (2). T1 and T2 also use the same 

error, making it impossible to apply %CV. But T1 and T2 benefit 
from the “robustness” of the Student’s t-test, used to calculate 
them.

Table 6:. Sample size suggeted by Diletti et al. Using 10.000 simulated %CV values.

Sample size to  
attain a power  

of 70%

Probability  
Pilot study  
with N=8

Probability  
Pilot study  
with N=10

Probability  
Pilot study  
with N=12

Probability  
Pilot study  
with N=14

Probability  
Pilot study  
with N=16

4 0.08260 0.04840 0.19580 0.01860 0.01030

6 0.11290 0.09800 0.02930 0.07010 0.06020

8 0.17120 0.19220 0.08570 0.18600 0.18190

10 0.18200 0.17770 0.16440 0.14580 0.13480

12 0.06840 0.04570 0.04320 0.06290 0.09660

14 0.32100 0.07050 0.14720 0.23470 0.27720

16 0.09440 0.18520 0.21140 0.16640 0.13670

20 0.01453 0.13030 0.08100 0.09030 0.08680

24 0.08990 0.04020 0.03920 0.02400 0.01450

28 0.01820 0.01140 0.00270 0.00120 0.00100

>28 0.00300 0.00040 0.00010

Total 10000 10000 10000 10000 10000

Table 7: Probability (%) of sizing calculated from 10,000 simulations-Power 70%.

Estimate

Pilot study

N=8 N=10 N=12 N=14 N=16

% Probability of different estimates

Under 58.08 58.68 62.24 65.52 66.44

Equal 23.97 31.55 29.24 25.67 22.35

Over 11.11 5.20 4.20 2.52 1.55

Table 8: Sample size suggested by Diletti et al. using 10.000 simulated %CV values (pilot study witn N=6).

Sample size to  
attain a power  

of 80%
Count Count/10.000  

or probability

4 415 0.04150

6 2286 0.22860

8 1449 0.14490

10 1640 0.16400

14 1035 0.10350

16 319 0.03190

20 344 0.03440
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24 661 0.06610

28 876 0.08760

32 717 0.07170

>32 258 0.02580

Total 10,000  

Table 9: Sample size suggeted by Diletti et al. Using 10.000 simulated %CV values.

Sample size to  
attain a power  

of 80%

Probability  
Pilot study  
with N=8

Probability  
Pilot study  
with N=10

Probability  
Pilot study  
with N=12

Probability  
Pilot study  
with N=14

Probability  
Pilot study  
with N=16

4 0.01890 0.00670 0.00260 0.00140

6 0.17590 0.14310 0.10750 0.08750 0.06880

8 0.17620 0.19320 0.19400 0.18860 0.17730

10 0.18060 0.17590 0.16840 0.14520 0.14070

14 0.06970 0.05000 0.04390 0.06270 0.09710

16 0.03130 0.06630 0.14500 0.23710 0.27400

20 0.08630 0.18010 0.21220 0.16500 0.13800

24 0.15180 0.13400 0.08360 0.09090

28 0.08750 0.04040 0.03930 0.02050 0.01350

32 0.01800 0.00990 0.00340 0.00110 0.00080

>32 0.00380 0.00040 0.00010   

Total 10000 10000 10000 10000 10000

Table 10: Probability (%) of sizing calculated from 10,000 simulations-ower 80%.

Estimate

Pilot study

N=8 N=10 N=12 N=14 N=16

% Probability of different estimates

Under 62.13 56.89 51.64 48.54 48.42

Equal 11.76 24.64 35.72 40.21 41.20

Over 26.11 18.47 12.64 11.25 10.36

Table 11: Confidence interval (CI) for CV% and sample size, drawing bootstrap samples of different sizes (Ni).

Simulated study No. 
Vol.

Bootstrap  
Mean for  

%CV

CV

Bootstrap CI 95%

3 RT vs 3TR N=6 15.556 4.109 30.066

4 RT vs 4 TR N=8 16.029 5.385 27.219

5 RT vs 5 TR N=10 16.238 6.284

6 RT vs 6 TR N=12 16.372 7.239 25.728

7 RT vs 7 TR N=14 16.585 7.898
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8 RT vs 8 TR N=16 16.644 8.597 24.427

9 RT vs 9 TR N=18 16.719 8.994 23.963

Your next submission with Juniper Publishers    
      will reach you the below assets

• Quality Editorial service
• Swift Peer Review
• Reprints availability
• E-prints Service
• Manuscript Podcast for convenient understanding
• Global attainment for your research
• Manuscript accessibility in different formats 

         ( Pdf, E-pub, Full Text, Audio) 
• Unceasing customer service

              Track the below URL for one-step submission 
     https://juniperpublishers.com/online-submission.php

This work is licensed under Creative
Commons Attribution 4.0 Licens
DOI: 10.19080/BBOAJ.2024.11.555820

Suggestion

A true pilot experiment should be conducted with six 
volunteers (3 vs. 3). The results could then be used to simulate an 
initial set of 10,000 T1 and T2 calculated for samples with eight 
volunteers (4 vs. 4) using the simulation method; then a second 
series could be performed, with..., until 80% of the 10,000 pairs 
of T1 and T2 show bioequivalence. The number, N, confirming this 
power can then be used for the final experiment.

All statistical procedures were performed on a MacBook Pro 
computer using (2) and JMP14 Pro of the Sas Institute Inc.
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