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Abstract

Understanding of child growth patterns typically requires longitudinal follow-up of children with serial anthropometrics. Current statistical 
models used for growth prediction tend to ignore individual level dynamic changes, require intensive computational efforts, or be so complex that 
are hardly interpretable in a clinical meaningful way. Vector autoregression is an econometric method that has been improved to accommodate 
longitudinal data with a small number of repeated measures over time, and dynamic panel estimation (DPE) method further improved vector 
autoregression to incorporate individual variations with more flexible model assumption. Thus, the DPE method is well suited to predict child 
growth in which a relatively small number of repeated measures are collected over years without a definitive beginning measuring point. In 
this study we extended the use of the econometric dynamic panel estimation to child growth prediction, in which one step generalized method 
of moments was used for parameter estimations. Model goodness of fit was evaluated by residuals and cross validation strategy, and external 
validation was also performed using different child growth data. We found that the DPE method fits well in development and validation samples 
in child growth prediction, and the model was easy to interpret.
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Dynamic Panel Estimation in Prediction 
 of Child Growth

Introduction

Predicting future growth is important to many areas in 
children’s care, but its accuracy is particularly important in 
musculoskeletal care where growth asymmetry necessitates 
precise estimates to balance growth based upon differential rates. 
Prior models of growth have not achieved the degree of accuracy 
needed for precise growth modulation as needed by newer 
techniques such as spinal tethering for spinal deformities. Human 
postnatal growth follows very distinct phases [1-13] starting with 
rapid but decelerating infant growth. This is followed by the second 
phase of slower and somewhat linear childhood growth beginning 
at age 3 or 4 years and extending until the adolescent grow 
spurt which is a period of rapid growth acceleration followed by 
deceleration terminating in growth cessation. Most growth models 
assume children remain a constant percentile in height compared 
to their same sex peers through growth, but this is incorrect. When 
children enter the childhood phase, their trajectory is relatively 
constant, and percentile crossing is uncommon until adolescence. 
This consistent trajectory is termed “canalization”. With illness or 
environmental challenges such as starvation, growth is stunted, 
but recovery, if sufficient time allows, results in “catch up” growth. 
While the pattern of growth during third phase or the adolescent  

 
growth spurt is similar between children, the timing of the growth 
spurt is non-uniform. Boys undergo their growth spurt about two 
years later than girls, and the change in percentiles as a child ages 
can be very impressive as some children are growing rapidly at 
one time while their peers are not. This variation in timing limits 
the utility of cross-sectional studies to predict growth. Because 
the childhood phase is not as tied to skeletal maturity as the 
adolescent phase, knowing how long the childhood phase will 
persist is not known when a child is still prepubescent. However, 
as the growth spurt approaches, skeletal maturity becomes tightly 
related to growth. An ideal model to advance childhood growth 
predictability would join childhood growth prediction with 
maturity prediction to estimate adolescent growth spurt initiation 
when future growth becomes predictable.

Different statistical methods have been developed and applied 
for child growth predictions.

The Centers for Disease Control and Prevention (CDC) reported 
their methodology of growth charts using the locally weighted 
regression (LWR) procedure followed by Box transformation, 
in which parameter estimates were obtained from the modified 
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Least Mean Square (LMS) method [14,15]. The World Health 
Organization (WHO) applied the same methodology in their 
development of child growth standards [16]. Hierarchical mixed 
models have also been applied to provide average growth curve 
estimates at the population level and to control for within-subject 
variations [17,18]. Recently, functional data analysis has been 
developed and used in child growth data to relax assumptions 
in the mixed models and to better predict growth trajectory 
at the individual level. In functional data analysis, functional 
derivatives are constructed and estimated using nonparametric 
method in order to estimate outcome trajectories against changes 
in predictors [19]. Functional data analysis is computationally 
intensive, and the resulting prediction model can hardly be 
interpreted in a clinically meaningful way.

Autoregressive time-series data are commonly seen in 
econometric studies, in which a sequence of the same outcome(s) 
is measured over time. Vector autoregression (VAR), one of the 
most commonly used econometric methods in autoregressive 
time-series data analysis, assumes that the outcome measure is 
a function of the previous value(s) of the same measure at the 
aggregate level [20-22]. When VAR is used to analyze longitudinal 
(or panel) data with a few repeated measures over time such as 
the growth prediction, however, the homogeneity assumption is 
likely violated. Holtz-Eakin, et. al., developed the dynamic panel 
estimation (DPE) method by adding individual variations into 
VAR to accommodate heterogeneity [23-26]. The DPE model is 
shown to provide unbiased estimates at the individual level, and 
its interpretations are relatively easy to non-statisticians.

In this study we implemented the DPE method in child 
growth prediction using the Bolton-Brush study data and the 
Berkley longitudinal growth study data, and generalized method 
of moment (GMM) method was used to obtain consistent 
parameter estimates [27,28]. After summarizing the DPE model 
and its parameter estimation, we fit the grow prediction model 
on the Berkley study data, evaluate goodness of fit of the model 
using studentized residuals and cross-validation strategy, and 
extrapolate model prediction to the Bolton-Brush data for external 
validation. Finally, we conclude this study with discussions of the 
strengths and limitations of the DPE model when used for child 
growth predictions.

Methods

Dynamic Panel Estimation (DPE)

Vector autoregressions (VA) are widely applied in time series 
data analysis especially in econometric studies on dynamic 
data with repeated measures from same subjects over time 
23,24. However, its application to panel data, data with fewer 
number of repeated measures than the number of subjects, 
violates the assumption required for vector autoregression of 
stationary individual effects. To address this issue, Holtz-Eakin, 
et al., improved the VA method with the approach introduced 

by Chamberlain [29] to allow for individual effects and non-
stationarities across time in panel data prediction. In addition, the 
DPE model does not require the projection to be based on all past 
measures [23]. The specification of the DPE model is:
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In this model, ity   denotes the outcome measure for subject i 

at time t, , m is the lag length, 1ity − denotes the m

past outcome measures, 1itx −   denotes the m past independent 
variables, εit  is the error term, and oβ , mtβ , and γ𝑚𝑡 are corresponding 
coefficients. Consistent parameter estimates can be obtained 
through the two-stage least square (2SLS) strategy [23,30,31]. 
Holtz-Eakin et al., also indicated that the number of repeated 
measures (T) and the number of past outcome measures included 
in the model (m) should follow this rule in order for parameters to 
be estimable: 3 2T M≥ + .

Human growth studies typically recruit participants with 
different characteristics and collect several repeated clinical 
measures during follow-ups. According to the model specification, 
DPE is reasonable choice for such longitudinal clinical data 
analyses and can accommodate well the relatively small number 
of repeated measures in growth predictions as well as participant 
individual growth patterns.

Data sources

Two important longitudinal data sets of childhood growth 
include the Brush Foundation. Study, and the Berkeley Guidance 
Study. The Brush Foundation Study of Child Growth and 
Development is the largest and most complete longitudinally 
collected collection of combined anthropometrics and skeletal 
radiographs. The prospective study started in 1931 enrolling 
healthy children from 3 months to 14 years of age during each 
successive year until 1942. Subjects had measurements and 
radiographs every 3 months until 1 year of age, every 6 months 
until age 5 and annually thereafter. The study contains records of 
4483 children with follow-up ranging from two to twelve years 
[1]. This study is most well-known for the Greulich and Pyle [2] 
hand and wrist skeletal maturity atlas. The Berkeley Guidance 
Studies of the Institute of Human Development [3], best known 
for Bayley’s work on mental development [4,32] enrolled every 
third child born in Berkeley in 1928-1929 and followed them to 
growth completion with serial anthropometrics. Both the Brush 
and the Berkley study data included participants’ sex, and age and 
standing height at each follow-up visit in longitudinal format.

In this study, we took advantage of the child growth stage data 
available from the Berkley study to fit the longitudinal prediction 
model using the DPE method. We fit the prediction model of child 
height with age for boys and girls separately given their substantial 
differences in start ages of growth spurt. The models were further 
externally validated using the Brush data.
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Statistical Analysis

Several strategies were implemented in this study to identify 
the best cutoffs for child growth stages, to fit the childhood growth 
model, and to validate model prediction using external data. First, 
threshold analysis by child sex was performed to divide child 
growth into infantile growth phase, childhood growth phase, and 
adolescent growth spurt phase using the Berkley data. Informed 
by clinical knowledge we assumed the lower cut-off point for 
the three phases to be between 2 and 5 years of age, and the 
higher cut-off point to be between 7 and 12 years. Regression 
model of child height was then fit against age, cutoff points, and 
the interactions between age and cutoff points. The interactions 
between the second and third order age polynomials and both 
cutoff points were also included in the model to accommodate 
non-linear growth pattern within each of the three major growth 
phases. Alternative cutoff points for each child were considered 
and the ones with the smallest Aikaike Information Criteria (AIC) 
were selected. After identification of the best cutoff points, we 
plotted the age and height association using 50% random samples 
from the original data based on the Bernoulli sampling approach.

We then fit dynamic panel estimation (DPE) models for boys 
and girls separately. In each sex group, we fit DPE models with 
different number of past observations up to the maximum number 
of past observations which were estimable according to Holtz-
Eakin et al. criterion. Ten-fold cross validation was applied, and 
the DPE model with lowest root mean square error (RMSE) was 
chosen to be the best fitted model [33,34]. Studentized residuals 
obtained from the final DPE model were plotted against child age 
to demonstrate the goodness of fit of the model across age, in 
which the absolute values of studentized residuals were expected 
to be less than 3 under good model fitting [35].

In addition to the ten-fold cross validation, we performed 
external validation of the growth prediction models developed 
on Berkeley Guidance Study data. In the external validation, the 
prediction models were applied to the Bolton child phase data for 
boys and girls separately, and residuals and studentized residuals 
obtained after predictions were plotted against child age to 
examine goodness of fit of the models. In addition, we plotted the 
histogram of residuals by child age to examine potential outliers 
by age.

Results

Berkley boys

The Berkley data collected 2416 longitudinal age and height 
measures for 66 boys. Threshold analyses indicated that the 
lower and upper cutoffs of 3 and 12 years provided the smallest 
AIC value (Figure 1). panel A illustrates the growth patterns of 
randomly selected 33 boys from the data, and it suggests that the 
linear assumption of childhood growth pattern for boys at this age 
range was reasonable. Our prediction model of Berkley boys was 
then focused on those aged 3-12.

According to Holtz-Eakin’s suggestion, we fit first order and 
second order DPE models and compared their performance using 
the ten-fold cross-validations. Our analyses showed that the first 
order DPE model provided much smaller RMSE (1.35) comparing 
to the second order model (RMSE=134.92).

Therefore, the first order DPE model was chosen as the best 
prediction model. This prediction model was estimated as

( ) ( ) ( )414.28 0. 1 5.5 6.4783 1height age ageE height += + × − × ×

in which height(1) and age(1) are age and height of the boy, 
respectively, that were previously measured, and age is the boy’s 
current age.

(Figure 1) Panel B and Panel C show the residual plot and the 
studentized residual plot, respectively, obtained from the above 
DPE model. From both plots we identified two potential outliers, 
one at age 4 and the other at age 12. The residual plot showed a 
4.0cm difference between the observed (111.0cm) and predicted 
(107.0cm) height for the subject at age 4, and a 4.1cm difference 
between the observed (163.6cm) and predicted (159.5cm) height 
for another subject at age 12 (Figure 1).

Berkley girls

The Berkley data collected 2,472 longitudinal age and height 
measures for 70 girls. Threshold analyses indicated that the lower 
and upper cutoffs of 3 and 9 years provided the smallest AIC value 
(Figure 2). panel A illustrates the growth patterns of randomly 
selected 35 girls from the data, and similarly suggests that the 
linear assumption of childhood growth pattern for girls at this age 
range was reasonable. Our prediction model of Berkley girls was 
then focused on those aged 3-9 years.

According to Holtz-Eakin’s criterion only the first order DPE 
model was appropriated to fit on the Berkley girls data. Our 
analyses further showed that the RMSE of the ten-fold cross-
validated, first order DPE model was 3.89. This prediction model 
was estimated as

( ) ( ) ( )119.99 0. 1 3.9 4.6980 1height age ageE height += + × − × ×

(Figure 2) Panel B and Panel C show the residual plot and 
the studentized residual plot, respectively, obtained from the 
above DPE model. From both plots we identified three potential 
outliers. The residual plot showed a 4.3cm difference between the 
observed (152.5cm) and predicted (148.2cm) height for a subject 
at age 9, a 6.3cm difference between the observed (120.5cm) and 
predicted (114.2cm) height for the second subject at age 6, and a 
5.2cm difference between the observed (95.3cm) and predicted 
(100.5cm) height for the third subject at age 4. (Figure 2).

External Validation: After the DPE models were fit on the 
Berkley boys and girls data, we applied the exact models obtained 
from the Berkley data to predict boy and girl growth patterns at 
their child phase using the Bolton data for external validation. 
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The prediction models using Bolton data included 215 height 
measures for 24 boys and 256 height measures for 31 girls. (Figure 
3) Panel (a) and Panel (b) show the residual plot and studentized 
residual plot, respectively, for the growth prediction model of boys 
aged 3 to 12 years with ±3 months variation. It can be seen that 
most predicted heights based on the Berkley DPE model were 
close to the observed heights, except for two subject measures 
(outliers) at ages of 11 and 12, respectively. (Figure 3) Panel (c) 

shows the residual histograms by subject approximate age with 
±3 months variation (e.g., the first set of histograms are for Bolton 
boys with ages of 3.5 years ±3 months). The results suggest that 
younger boys had relatively unbiased height predictions with DPE 
prediction model, and that the predictions were slightly skewed 
to the left (slight over-predictions) when boys were older than 7 
years old (Figure 3).

Figure 1: Height trajectory and prediction for Berkley boys aged 3-12 years. Panel (a) – height trajectory; Panel (b) – residual plot; and 
Panel (c) – studentized residual plot of the Dynamic Panel Estimation (DPE) model.
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Figure 2: Height trajectory and prediction for Berkley girls aged 3-9 years. Panel (a) – height trajectory; Panel (b) – residual plot; and 
Panel (c) – studentized residual plot of the Dynamic Panel Estimation (DPE) model.

http://dx.doi.org/10.19080/BBOAJ.2022.11.555803


How to cite this article: Xueya C, Shan G, Sarah O, James S. Dynamic Panel Estimation in Prediction of Child Growth. Biostat Biom Open Access J. 
2022; 11(1): 555803. DOI: 10.19080/BBOAJ.2022.10.55580306

Biostatistics and Biometrics Open Access Journal

Figure 3: External validation using the Bolton boys data. (a) Residual plot; (b) Studentized residual plot; and (c) Histogram of residuals by 
age.
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Figure 4: External validation using the Bolton girls data. (a) Residual plot; (b) Studentized residual plot; and (c) Histogram of residuals by 
age.
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(Figure 4) Panel (a) and Panel (b) show the residual plot and 
studentized residual plot respectively, for girls growth prediction 
from age 3 to 9 with ±3 months variation. The residual plots show 
only one outlier at age 9, and the studentized residual plot shows 
a slightly increasing trend over age. This slight increasing pattern 
can also be found in (Figure 4) Panel (c), which suggests that girl 
heights in the Bolton sample tended to be slightly over-predicted 
at younger ages (between age 3 and 5), but predictions remained 
overall unbiased at older ages (between age 6 and 9) (Figure 4).

Discussion

This study introduced the dynamic panel estimation (DPE) 
method for prediction of childhood growth, and analyses in both 
the development and the external validation samples suggest 
overall excellent predictive abilities for growth patterns among 
boys and girls separately. The DPE method has been widely used 
in econometric analyses for the prediction of various micro- and 
macro-economic behaviors. The DPE method allows for dynamic 
individual growth patterns in model prediction and theoretically is 
a promising method for predicting childhood growth. Our results 
of goodness of fit of the DPE models in child growth predictions 
and small root means square errors in alternative samples provide 
empirical evidence supporting this expectation.

As shown in the model specifications as well as model fitting 
in separate samples of boys and girls, the DPE method is able to 
effectively take into account children’s variations in dynamic 
growth patterns at different ages, which is similar to functional 
data analyses method that has been applied in Berkley child grow 
prediction [19]. While both functional data analysis and the DPE 
method rely on differential equations, the specification of the 
DPE model is much more straightforward than that of functional 
data analysis and coefficient estimates of the DPE model can be 
interpreted in a clinically meaningful way. Another advantage of 
the DPE method is that it is computationally much less intensive 
comparing to the functional data analysis method without loss of 
accuracy.

The two data sets used in this study are some of the most 
important longitudinal studies of childhood growth in existence. 
The Berkeley study has complete longitudinal data for height and 
sitting height though growth but does not have the granularity of 
the Brush study which has very detailed anthropometrics but with 
children only followed for various periods through their growth. 
While the model caused some overestimation in younger children 
in the Brush collection, it was very accurate during the more 
important later childhood phase where accuracy is most crucial..
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