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Introduction
We begin with the simple linear regression model given by 

                                               Y X β ε= +                                          (1)

Where, ( )1 2, , , nY y y y=   is an 1n×  vector of responses, X  is 
an n p×  design matrix comprised of p n<  columns representing 
each of the potential predictor variables, n  is the number of 
individuals in our sample and ( )20,n nN Iε σ  is an 1n×  vector of 
independent errors. The least squares (LS)/maximum likelihood 
(ML) estimator of the regression coefficients is given by

                                    ( ) 1ˆ T TX X X Yβ
−

=

and ( ) ( ) 1 2ˆ .TVar X Xβ σ
−

=  Notably, in the case that the columns 
of X  are highly correlated, TX X  will be singular and we replace 
( ) 1TX X

−  with ( )TX X
−  where ‘-’ denotes the generalized inverse, and 

a unique solution to equation (1) does not exist. Further, in the 
case of high correlation where TX X is still invertible, the resulting 
coefficient estimates will have largely inflated variances, which in 
turn, results in low predictive precision.

Ridge regression, designed specifically to handle correlated 
predictors, involves introducing a shrinkage penalty λ  to the 
least squares equation, and subsequently solving for the value 
such that 

                      ( ) ( ){ }2ˆ arg min T T
R Y X Y X

β
β β β λ β β= − − +                        (2)

The solution to equation (2) is given by 

                                        
( ) 1ˆ T T

R X X YI Xβ λ
−

= +

 
and we have [2],

        ( ) ( ) ( )1 1ˆ
T

T T T T
RVar X X I X X X I Xβ λ λ

− −   = + +      
Further, dividing β̂  by root n  times the square root of its 

variance has a Student’s t-distribution with effective degrees of 
freedom (EDF) given by ( )( 1)T TEDF tr X X I X Xλ

−
 = +   [3-5]. However, 

the ridge regression estimator ˆ
Rβ  is non-linear with respect to 

λ  and its estimation is challenging. An alternative approach is 
proposed by Mayer & Willke [6]. The key idea is ˆdβ  is closer to 
the true β  for 0 1.d< <  In section 2, we will develop their idea for 
longitudinal mixed model.

Linear mixed effects model
Now, consider the setting in which multiple measurements are 

observed for each individual over time. The mixed effects model 
for this setting is given by 

                                       T
i i i i iy X z bβ ε= + +                                               (3)

Where, 1, ,i n= 

 represents individuals, ( )1 2, , ,
i

T

i i i iny y y y=   
is a vector of in  observations for individual ,i  and iX  is the 
corresponding in p×  design matrix of fixed effect covariates. We 
further assume ( )0,i qb N D  are person-specific random effects, 

iz  is the corresponding random effects design matrix, and 
( )20,i n ni niN Iε σ ×  are independent random errors. Finally, we let 

,Y X  and Z  be appropriately defined matrices representing the 
concatenation of the corresponding variables over all individuals 
.i
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The log-likelihood function of Y  based on this model is given 
by 

       
( ) ( ) ( ) ( ) ( )1

1

1 1log 2 log
2 2 2

Tn
ii

Nl Y V Y X V Y Xπ β β−
=

= − − − − −Σ           (4)

Where ( ) 2TV Var Y ZDZ Iσ= = +  and iV  is component corresponding 
to individual .i  Maximizing this function with respect to the 
fixed effects parameter vector, β  in the non-penalized setting is 
equivalent to minimizing the least squares objective function that 
gives the estimate of β  as 

                             ( ) 1 11ˆ T TX V X V YXβ
−−=                                      (5)

Mixed-liu regression
In this section, we introduce a penalized regression approach 

to estimation for the mixed model given in equation (3). To begin, 
we assume the variance parameters ( ), Dθ σ=  are known and add 
a penalization term to objective function of mixed model, which 
yields 

    
( ) ( ) ( ) ( ){ }1ˆ ˆ ˆarg min

p

TT
MLiu Y X V Y X d d

β
β β β β β β β−

∈
= − − + − −



           (6)

Differentiating the objective function in equation (6), setting 
the resultant equal to 0 and solving, we have: 

                ( ) ( ) ( ) ( )1 ˆ ˆ0
TTY X V Y X d dβ β β β β β

β
−∂  = − − + − −  ∂

     

1 1 1 1 2 ˆ ˆ ˆT T T T T T T T TY V Y Y V X X V Y X V X d dβ β β β β β β β β β
β

− − − −∂  = − − + + − + ∂

                                   
1 1 ˆ2 2 2 2T T TX V Y X V X dβ β β− −= − + − +

Hence,

( ) ( )11 1ˆ ˆ1T T
MLiu X V X X V Y dβ β

−− −= + +

( ) ( )( )( )1 11 1 1 1 ˆ1T T T TX V X X V X X V X X V Y dβ
− −− − − −= + +

                                ( ) ( )11 1 ˆ1T TX V X X V X dI β
−− −+ +

                                (7)
Additionally, it can be shown that

 ( ) ( ) ( )( ) ( )( )1 1 11 1 1 1 1ˆ 1 1 .T T T T T
MLiuVar X V X X V X dI X V X X V X dI X V Xβ

− −− − − − −= + + × + +

We suggest to estimate d  in equation (7) by

          ( ) ( ) ( )( ) ( ){ }21ˆ arg min 2T T

d
d Y Y Y Y n tr S Y Yn Y Y− −= − − + − −

         
 (8)

Where
( ) ( )( )
( ) ( )( )

11 1 1 1

1 1 11

1

1 1

T T T T

T

T

T T T

S ZDZ

I

X X V X I X V X dI X V X X V

X V X I X V X dI X V X X VX

−− − − −−

−− − − −−

+= +

 − 

+

+


+

And

                                                  
ˆ .MLiuY X β=

More generally, consider the setting in which the variance 
parameters ( ), Dθ σ=  are unknown. Eliot et al. [1] proposed 
an extension of the expectation-maximization (EM) algorithm 
described by Laird & Ware [4], that includes an additional step 
for estimation of the ridge component. Here, we exhibit an 
EM algorithm to solve ˆ

MLiuβ  for unknown .θ  This approach is 
summarized by the following step-by-step procedure. 

I. (E-Step) Initialize 
( )

0
ˆ tθ θ=  and 

( )
0

ˆ .td d=  Solve for ( )ˆ t
MLiuβ  and 

the sufficient statistics ( )
1̂

tt and ( )
2̂

tt  given by:

                            

()()()
() 11ˆˆ ˆ,,

n ttt T
iiiMLiu i tEY εεβθ = =Σ

                            
( ) ( ) ( )( )2 1

ˆ ˆˆ , ,nt t tT
i i i MLiuit E b b Y β θ

=
= Σ

 II. (M-Step) Solve for ( )1ˆ tθ −  where  
( )

( )
2 1 1̂ˆ ,

t
t t

N
σ + =  

( )
( )

1 2̂ ,
t

t tD
N

+ =  
1

n
iiN n

=
= Σ  and n is the number of 

individuals in our sample, and let

                                ( ) ( ) ( )1 1 2 1ˆt t tTV ZD Z Iσ+ + += +

III. Update  ( )1ˆ td +  and let
( ) ( )( ) ( ) ( )( ) ( )11 1 1 11 1ˆ ˆtt t
MLiu

t tT TX V X I X V X d Iβ β− + − + +− ++ +=

IV. Repeat Steps (1)-(3) a large number of times and until a 
convergence criterion is met.

In the forthcoming section we evaluate the performance of the 
mixed Liu estimator by a Monte Carlo simulation study. 

Simulation study
A simple simulation study is conducted to characterize the 

relative performances of mixed Liu regression and the usual mixed 
effects modeling approach in the context of multiple, correlated 
predictors. For simplicity of presentation, the simulation study 
assumes repeatedly measured outcomes, while the predictor 
variables are measured at a single, baseline time point, as in Eliot 
et al. [1]. We further assume
Table 1: Results of the Monte Carlo simulation study.

Mixed Mixed-Liu

ρ   

   

 β Estimate sd Estimate sd

0

0 -0.0036 0.107 -0.0032 0.107

0.4 0.3982 0.12 0.3984 0.1199

1 1.01052 0.1239 1.0104 0.1238

1.6 1.6031 0.0901 1.6029 0.0901

2 1.9917 0.1061 1.9914 0.1061

0.3

0 0.001 0.1302 0.0015 0.1301

0.4 0.3978 0.1439 0.3981 0.1438

1 1.0113 0.1437 1.01125 0.1436

1.6 1.6002 0.1054 1.6 0.1054

2 1.9893 0.128 1.9888 0.128

0.6

0 0.0097 0.1746 0.0105 0.1745

0.4 0.3958 0.1859 0.3963 0.1857

1 1.0133 0.1912 1.0132 0.191

1.6 1.599 0.1365 1.5986 0.1364

2 1.9816 0.172 1.9808 0.1719
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0.9

0 0.0344 0.3271 0.0373 0.3264

0.4 0.395 0.3755 0.3968 0.3743

1 1.0264 0.3833 1.0261 0.3821

1.6 1.5959 0.2588 1.5942 0.2581

2 1.9474 0.3645 1.9445 0.3638

4in =  measurements for each subject i  and generate data 
according to the model of equation(3) where ( )0,0.4,1,1.6,2 ,β =  

( )0,0.6ijkb N  and ( )0,1 .ijk Nε   Each predictor variable is 
assumed to arise from a normal distribution with mean equal 
to 5 and variance equal to 1. The correlation between predictor 
variables, given by ρ  in Table 1, is assumed to take on values 
between 0 and 0.9. Starting values for the variance components are 
derived based on fitting a mixed model with no Liu component. In 
total, 100M =  simulations are conducted for each condition based 
on sample sizes of 40n =  individuals. According to the results of 
Table 1, the mixed Liu estimates often have lesser bias than the 
mixed ones. Also the mixed Liu is superior, in standard deviation 
(sd) sense. 

Real data analysis
The data set we are analyzing here is the Mayo Clinic Primary 

Biliary Cirrhosis data, from the package “JMbayes” in R software. 
It consists of 312 randomized patients with primary biliary 
cirrhosis, a rare autoimmune liver disease, at Mayo Clinic. In this 
study we have 1945 observations on the 20 variables, listed in 
Table 2. The response variable is the number of years, indicated 
as “years” in Table 2 and the variables considered as fixed and 
random effects are marked as “F” and “R”, respectively in this table. 
Since the variables have been measured number of times for each 
individuals, so we have a longitudinal data set. On the other hand, 
some of the variables like sex in this data set will put the subjects 
in special groups, so we can consider these variables as random 
effects, as marked as “R” in Table 2, so we should use mixed 
model for analyzing this data set. The estimate of coefficients 
are obtained using the EM algorithm as outlined in Section 2. To 
compare the performance of the mixed Liu estimator, we evaluate 
the mean prediction error (MPE); the lesser, the better. In what 
follows, we describe the scheme we used to derive the MPE.

Table 2: Introduction to data and variables format.

Variables Description Effect

 id patients identifier; in total there are 312 patients. F

 Years number of years betweenregistration and the earlier ofdeath,transplantion, or studyanalysis 
time. F

 Status a factor with levels alive, transplanted and dead. R

 Drug a factor with levels placebo and D-penicil. R

 Age at registration in years. F

 Sex a factor with levels male and female. R

 Years number of years between enrollment and this visit date, remaining values on the line of data 
refer to this visit. F

 Ascites a factor with levels No and Yes. R

 Hepatomegaly a factor with levels No and Yes. R

 Spiders a factor with levels No and Yes. R

 edema a factor with levels No edema, edema no diureticsand edema despite diuretics. R

SerBilir serum bilirubin in mg/dl. F

 SerChol serum cholesterol in mg/dl. F

 Albumin albumin in gm/dl. F

 Alkaline alkaline phosphatase in U/liter. F

 SGOT SGOT in U/ml. F

 Platelets platelets per cubic ml / 1000. F

 Prothrombin prothrombin time in seconds. F

 Histologic histologic stage of disease. F

 Status2 a numeric vector with the value 1 denoting if the patient was dead, and 0 if the patient was alive 
or transplanted. R

For our purpose, a K - fold cross validation is used to obtain 
an estimate of the prediction errors of the model. In a K -fold 
cross validation, the dataset is randomly divided into K  subsets 
of roughly equal size. One subset is left aside, ( ){ }, ,test estX Y  termed 
as test set, while the remaining 1K −  subsets, called the training 
set, are used to fit model. The resultant estimator is called ˆ .trainβ  

The fitted model is then used to predict the responses of test data 
set. Finally, prediction errors are obtained by taking the squared 
deviation of the observed and predicted values in the test set, i.e. 

2k test test
k kPE X yβ= −
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Where ˆ .test test train
k k ky X β=  The process is repeated for all K  

subsets and the prediction errors are combined. To account for the 
random variation of the cross validation, the process is reiterated 
N  times and is estimated the average prediction error is given by 

11 1

1 1, ,k kk k
Nk kMPE median PE PE

k k= =

 =  
 Σ Σ

Where k
NPE  is the prediction error of considering kth  

test set in ith  iteration. Our result are based on 200N =  case 
resampled bootstrap sample. In Table 3, we report the estimates 
and MPE values. Based on the results, the proposed mixed-Liu 
estimator performs better than the mixed one, in MPE sense. 
Further, the absolute value of estimates in the mixed Liu estimates 
are lesser than the mixed.
Table 3: Estimates of read data.

Covariate Mixed Mixed-Liu

Age -0.0056 -0.0053

Year 0.7095 0.7085

Serbilir -0.1711 -0.1724

Serchol -0.0004 -0.0004

Albumin 2.3504 2.3236

Alkaline 0.0001 0.0001

SGOT 0.0023 0.0023

Platelets 0.0009 0.001

Prothrombin -0.008 -0.0037

Histologic -0.5086 -0.5046

MPE 0.01559 0.01535

Conclusion
In this paper, we developed a linear unified procedure called 

Liu in the linear mixed model for longitudinal data analysis. Hence, 
we considered a penalized likelihood approach and propose the 
Liu-mixed regression estimator for the vector of regression 
coefficients. An EM algorithm also exhibited to solve the penalized 
likelihood for the unknown parameters. Numerical studies 
demonstrated the good performance of the proposed mixed Liu 
estimator for the multicollinear situation.
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