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Introduction

Since the Weibull distribution is the best probability density 
function (pdf) used to model the behavior of a quadratic form 
[1,2], as they are any response surface model [3], the stress and 
strain matrix used in mechanical and structural analysis [4], the 
covariance matrix used in principal component analysis [5], and 
the branching process behavior [1]. Then an understanding of 
the Weibull distribution features is needed. Based on the above, 
this paper presents the advances on Weibull analysis to perform 
it from the planning data collection phase to the monitoring 
process phase. Therefore, the papers’ structure is as follows. In 
section 2, the general new background of the Weibull distribution 
and the formulation to determine the sample size  to perform a 
zero failure Weibull demonstration test plan are presented. In 
section 3, the formulation to determine the capability cp and 
cpk indices and the formulation of the control charts which let 
us to monitor the estimated Weibull parameters are given. In 
section 4, the formulation to fit the Weibull shape β and scale  η
parameters directly from the applied stress values is presented. 
In section 5 a numerical example for constant stress is given. In 
section 6 a numerical example for variant stress is given. Finally, 
in section 7 the conclusions are presented. The analysis is as 
follows:

Weibull distribution background and sample size

The two parameter Weibull distribution [6] is given by

1
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From Eq. (1), the Weibull reliability function is given by

( ) exp tR t
β

η

   = −  
   

      (2)

And since the Weibull distribution is generated by a non-
homogenous Poisson process (NHPP) [7] sec 4.3, then the 
Weibull risk function depends on the time also. Thus, the mean 
power function of the related NHPP in Weibull analysis is used 
as the cumulative hazard risk function ( ).H t  From Eq. (2), ( ).H t  is 
given by

( ) ln( ( ))tH t R t
β

η
 

= = − 
 

        (3)
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In Weibull analysis Eq. (3) is of special interest because for 
the desired time t and known β value the effect that the stress 
variable s has on the estimated R(t) index is given by the linear 
relationship between η and s as

 { }exp t Zη α=      (4)

In Eq. (4), α is a regression coefficient vector { }0 1, ,..., pbα β β=  
and Z is a nxp matrix which contains the k  stress variables 
( )1 2, ,..., ks s s  and p  represents the k variables effects plus the 
possible effects generated among the k  variables (e.g. interaction 
and quadratic effects). Also note from Eq. (2), that for known t 
and β   values, the η  value which corresponds to a desired R(t) 
index is completely addressed and it is given as

1/[ ln( ( ))]
t

R t βη =
−

       (5)

On the other hand, because by setting H(t)=1 in Eq. (3)  the 
sample size n which have to be tested to accurately estimate η , 
was derived in [8]. as

 1
ln( ( ))

n
R t
−

=
       (6)

Then, from Eq. (5 and 6) η   in terms of n is given by 

1/n tβη =    (7)

Eq. (6) is too important in Weibull analysis because by using 
it in Eq. (7), theη  value which corresponds to any feasible or 
desired ( )0 ,t t >   ( )0β β >  and ( )R t  values is completely 
determined without any experimentation or observed lifetime 
data. As an example suppose we desire to determine theη  
value which corresponds to R(t)=0.9535 for 1500t hrs=  and   

3.β = Thus from Eq. (6) n=21 and by using it with 3.β =  and 
1500t hrs=  in Eq. (7), 1/321 1500 4138.38 .hrsη = =  Hence, because 

the  value estimated in Eq. (6) completely determine η , then 
this n  value also represents the sample size which has to be 
tested without failures in order to accurately estimate the 
minimumη  value for which the tested element will present at 
least the desired reliability index. As a simple example suppose 
we have to demonstrate a product fulfills with ( ) 0.95R t = for

1500t hrs=  Thus, because from Eq. (6) 19.4957,n =   then 19 
parts has to be tested by 1500hrs each and one part has to be 
tested by 0.4957(1500)=743.595hrs. It is to say, n in Eq. (6) is 
not a discrete value, instead it is continuous and it represents the 
times the desired time t has to be tested in order to demonstrate 
the tested product fulfills at least with the desired R(t) index. 
Now we know n  in Eq. (6) represents the right sample size to 
design a zero failure Weibull demonstration test plan, let present 
the capability indices and the corresponding control charts.

Weibull capability indices and control charts
When the Weibull analysis is being performed for example 

in the quality field or in an improvement process, the related 
capability index cp and ability index cpk are of interest. 
Fortunately by using the log-mean ( )xµ  and the log-standard  
( )xσ  deviation parameters of the observed (or expected) 
failure times, as was demonstrated in [9] and [10], the Weibull 
cp and cpk indices can both be estimated. In particular, they 
are formulated based on the direct relationships between the 
Weibull β  η  parameters with the log xµ  and parameters. These 
relationships are 

 
y

x
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β
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=     (8)
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In Eq. (8), R is the multiple correlation coefficient between 
the responses iY  values and the logarithm of the failure times

( )( )lni iX t=   (here after, by supposing data is Weibull, 1R = ). 
In Eq. (9) yµ  and in Eq. (8) yσ are the mean and the standard 
deviation of the response vector given by 

ln( ln(1 ( )))i i iY F t bo BX= − − = +   (10)

In Eq. (10), 0b  and B are parameters to be estimated and the 
cumulated failure probability ( )( )iF t  is given by the median 
rank approach here approximated by the well-known Bennard 
formula as 

0.3( )
0.4

iF t
n
−

=
+

     (11)

Therefore, based on the  yσ  parameters given in Eqs.(8 and 
9), the corresponding cp and cpk indices are

( )
6pW

x

USL LSLC
σ
−

=
                  (12)
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σ σ

 − −
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(13)

In Eq. (10 and 11), USL and LSL are the upper and lower 
product’s specifications limits measured in time units. And if 
they are unknown, then the minimum and maximum expected 
lifetimes of the Weibull analysis can be used to estimate them. 
These maximum and minimum lifetimes are estimated from Eq. 
(10) by using the nY  maximum element to estimate the maximum 
lifetime and by using the iY  minimum element to estimate the 
minimum lifetime as

0 ln( )exp expi i
i

Y b Yt β η
β β

   + +
= =   

         (14)

On the other hand, based on the facts that 

1) In Weibull analysis the ( )R t  index is completely defined 
by the β  and η  parameters, and 
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2) The β  and η  are determined by the ( )xσ [Eqs. 8 and 9].

Then in [12], the Weibull control charts to monitor β and
η  were formulated by setting ( )xσ  as the upper control limit 
to monitoring. And by setting ( )xµ as the lower control limit 
to monitoring η. Here it is too important to highlight because 
represent the central parameters in logarithm scale, then in the 
case where we are analyzing several variables can be estimated 
by using the Taguchi method as it is made in [11]. And of course, 
once they had been already estimated, they can be used in Eqs. 
(8 and 9) to estimate the corresponding β  and η  parameters, 
as well as in Eqs. (12 and 13) to determine the corresponding 
capability indices; for details see [12]. Now let present how to 
estimate β  and η  directly from the applied stresses values.

Estimation of β  and η  directly from the stresses 
values

Since in Weibull analysis β  and η  completely determine the 
estimated ( )R t  index, and because β  represents the aging of 
the analyzed system, then their accurate estimation is needed. 
Fortunately, as demonstrated in [4] both β  and η  can be directly 
estimated from the maximum and minimum applied stresses 
values. The estimation is made by using the eigen values of the 
analyzed quadratic form as the maximum and minimum applied 
stress values. As examples of quadratic forms suppose we are 
analyzing a biological phenomenon by using a response surface 
model given by

2 2
0 1 1 2 2 11 1 22 2 12 1 2Y b X X X X X Xβ β β β β= + + + + + (15)

Thus, its quadratic form is 
11 12

21 22

/ 2
.

/ 2
Q

β β
β β
 

=  
    Similarly 

suppose from the stress analysis we know the normal stresses   
and the shear stress xyτ  values. Hence, the stress

 quadratic form is .x xy

yx y
Q

σ τ
τ σ
 

=  
     As a third example of quadratic 

form suppose in a principal component (pc) analysis we know 
the variance and the covariance among the variables. Thus, the

 pc quadratic form is 
11 1 2

2 1 22

Q
σ σ σ
σ σ σ
 

=  
 

  Therefore based on [4], by

 using the eigen values  
1λ  and 

2λ  of the quadratic form Q, the β 
value is given as

1 2

4
ln( / )

yµβ
λ λ
−

=       (16)

In Eq. (16)  yµ  is the mean of the response vector defined in 
Eq. (10). And because the log-mean is directly given as the square 
root of the determinant of the Q matrix (for details see sec. 2.2 
in [4]), then by using yµ  and the estimated β  values in Eq.(9),
η  is directly estimated. It is to say from Eq. (16) β  is estimated 
and from Eq. (9) the corresponding η  value is estimated. Now let 
present the numerical examples. 

Numerical example for constant stress behavior
In this section two numerical example with constant stress 

behavior are presented. In the case of single stress variable, the 
temperature (T) is used as the stress variable. And for several 
stress variables the Taguchi method is used. 

Analysis with a single stress variable
Table 1: Data for single constant stress analysis.

Stress 393K 408K 423K

Time

3850 3300 2750

4340 3720 3100

4760 4080 3400

5320 4560 3800

5740 4920 4100

6160 5280 4400

6580 5640 4700

7140 6120 5100

7980 6840 5700

8960 7680 6400

In this section let used data published in [13]. The 10n =
collected lifetimes are given in Table 1. Data corresponds to 
an accelerated life time data (ALT) subjected to a single stress 
variable (temperature in Kelvin degrees). The normal level is 

323N K=  and the accelerated levels are lower 393 ,L K=  
middle 408M K=  and higher 423 .H K=   Thus, because 
data of Table 1 is an ALT data, then first the η   parameter of the 
normal level 323T K=  has to be determined. And because the 
stress variable is a fixed temperature value, then the life/stress 
Arrhenius models is used. (If the stress is a range of temperature, 
then the Coffin Mason model should be used). The Arrhenius 
model ([14] sec.5.5.1) is given as 

( ) i

B
T

i iL T Ceη = =       (17)

In Eq. (17) C and B are parameters to be estimated. Thus, by 
using Eq. (1) and Eq. (17) in the ALTA software, the estimated 
Arrhenius parameters are 4.2916,β =  58.9848C =  and 

1861.6187.B =   As a consequence, by using the estimated C and 
B values with T=323 in Eq. (17), the normal scale parameter 
is 18784.83 .hrsη =  Therefore the Weibull distribution of the 
normal setting is W(4.2916, 18784.83). On the other hand, the    
values which corresponds to R(t)=0.9535 are estimated by using 

0.545624yµ = −  and 1.1751169.yσ =  were estimated by using 
( ) ( )1 0.9535R t F t= − =  in Eq.(10)

Therefore, from Eq. (9), 9.7136675xµ =  and from Eq. 
(8)   0.2738179.xσ = And because ( )1 ln 0.9535 21,n = − =  then

( )( )( )( )ln ln 1 21 0.3 21.4 1.22966,nY = − − − =  1 3.403483.Y = −  Thus, 
from Eq. (14) UCL= 10.12733 and LCL=9.04774. And as a 
consequence from Eq.(12), cpw=0.657118. And from Eq. (13) 
cpkw=min(0.5035, 0.8106)=0.5035.. Finally, 0.2738179xσ =  has 
to be set as the maximum allowed value to monitor β . Similarly

9.7136675xµ =  has to be set as the lower allowed value to monitor 
η. Now let present the multivariate analysis.
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Analysis with several stress variables
In this section, the analysis is based on [11]. The used data 

given in Table 2 was first published in [15]. The analyzed factors 
were the aluminum-alloy content in manganese (Mn) and 
magnesium (Mg) as well as hot mill pass counts (HMPC) and 
cold mill reduction rate (CMR). Mn, Mg, and CMR were measured 

in percentage units until dome yielded 1mm on a constantly 
applied external pressure of 500psi. From the Taguchi analysis 
([11] sec.3.3.2) the robust level is Mn=1.6, Mg=1.8, HMPC=35, 
and CMR=30. The found robust’s log-parameters  are 3.5442xµ =   
and  0.024141.xµ =  Thus, from Eq.(8) 40.82715β =  and from 
Eq.(9)  35.0307.η =

Table 2: Taguchi data for constant stress analysis.

Control Factors Replicates (Life Data)

Mn Mg HMP C CMR R 1 R1 R3 R4 Rs

0.4 0.6 25 30 17 21 23 18 16

0.4 1.2 30 45 23 24 21 20 18

0.4 1.8 35 60 23 26 27 25 22

1 0.6 30 60 15 13 17 17 14

1 1.2 35 30 20 21 22 22 20

1 1.8 25 45 25 27 26 21 24

1.6 0.6 35 45 24 25 24 22 22

1.6 1.2 25 60 28 26 28 25 23

1.6 1.8 30 30 32 34 31 36 33

On the other hand, because in [11] ( ) 0.90R t =  was used, then 
in this case   µy=-0.52311 and  1.115.34.xσ =  Hence, from Eq. (6) 

( )1 ln 0.90 10,n = − =  and from Eq. (10) 0.992689,nY =  1 2.66384.Y = −    
Similarly, from Eq. (14) UCL= 3.580539 and LCL=3.490978. 
And from Eq. (12) 0.618321WCp =  . And from Eq. (13) 

( )min 0.501764,    0.734878 0.501764WCpk s= =   Finally in a control 
chart, to monitoring β   0.024141xσ =  represents the maximum 
allowed value. Similarly in a control chart to monitoring η  

3.5442xµ =  represents the lower allowed value to be monitored. 
For details on how a Weibull analysis with several variables can 
be performed see [16]. Now let present the analysis for non-
constant stress variable.

Numerical example for variable stress behavior
In this section two numerical example with variable stress 

behavior are presented. In the first case data published in [4] 
is used to show how a product can be designed. In the second 
case data published in [17] is use to show how the ALT analysis 
can be used to analyze variable stress behavior. The analysis is 
as follows

Variable stress analysis focused on product’s design
In this section the focus is on product’s design. The 

analysis is performed following [4]. The objective consists on 
determining the ( )R t  index of a mechanical or structural design 
subjected to the normal stresses 100 ,x mpaσ =  70 ,y mpaσ =   
and a shear stress 40 .xy mpaτ =   Thus, as mentioned in section 
4, the stress matrix Q which model the variant stress behavior 
is   100 40

.
40 70

Q  
=  
 

From the Q matrix, the principal stresses or eigen values are 
1 127.72mpaσ =   and 2 42.28 .mpaσ =   And as a consequence, the 

principal stress behavior is in the interval [ ]42.28 –  127.72 .mpa   
And because in [4]  ( ) 0.9535R t =  was used, then from the   iY
elements generated in Eq. (10), their mean is 0.545624yµ = −  and 
their standard deviation is 1.1751169.yσ =   Hence, by using the 

yµ  value and the 1σ  and 2σ   values in Eq. (16), the estimated 
Weibull shape parameter is  1.984693.β =  And by using the yσ  
and β  values in Eq. (8), 0.592090.yσ =  Finally, because from the 
logarithm of the square root of the determinant of the stress 
matrix Q, 4.29707726,xµ =   then from Eq.(9), the Weibull scale 
parameter is 96.73676 .mpaη =   Therefore the addressed Weibull 
family is W(1.984693, 96.7367). However, because in variable 
stress analysis, the stress variable instead of be a single value 
it is a range of stress values, then the addressed Weibull family 
only represents the stress distribution which models the stress 
range behavior as shown in Table 2 in [4]. As a consequence, in 
order to determine the ( )R t  index of the analyzed product, the 
Weibull distribution which models the strength of the product 
to overcome the applied stress has to be determined. In [4] sec. 
4.4.2, because the used material strength was sy=400mpa, then 
the addressed strength Weibull family is W(1.984693, 455.2318). 
Finally, by using both the stress and the strength distributions in 
the Weibull/Weibull stress/strength methodology ([18] chapter 
4 to 6), the stress/strength ( )R t  index is given as

( ) S

S

R t
β

β β

η
η η

=
+

      (18)

In Eq. (18) 1.984693,β =  96.73676η =  and 455.2318.Sη =   
As a consequence, the addressed stress/strength ( )R t  index 
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is ( ) 95.58.R t =  It is to say a product designed with sy=400mpa 
performing in a variant stress range of [42.28, 127.72]mpa will 
present a ( ) 95.58.R t =   [4].

On the other hand, although in variable stress analysis the 
cp and cpk indices defined in Eqs. (12 and 13) are not defined 
for the Weibull/Weibull stress/strength function yet, the related 
control charts can be used to monitor the stress and the strength 
Weibull parameters. Thus, 0.592090xσ =  should be used as 
the maximum value to monitor the common β  value, and 

4.29707726xµ =  should be used as the maximum value to monitor 
the stress η  value. Also observe because here  represents the 
stress distribution it was set as the maximum allowed value. On 
the other hand, when it represents the strength distribution, it 
should be set as the minimal allowed value. Finally, the value 
to monitor the strength Sη   value is determined by using 

0.545624,yµ = −  1.984693β =   and 455.2318Sη =   in Eq. (9). 
The estimated value to be monitored as the minimal allowed 
stress value is 5.845891.xµ =   Now let present the stress variable 
case using ALT data.

Variable stress analysis by using ALT data
In this section the focus is to show how the ALT analysis can 

be used to analyze variable stress behavior. The used data was 
published in [17]. Data represents a set of 65 ball bearings tested 
at loads of 3500, 3800 and 4500 pounds. (Observe because the 
stress variable behavior by itself represents the normal stress 
behavior, then in the ALT analysis no extrapolation is needed). 
In the analysis the lognormal distribution with log parameters 

7.6xµ =  and 0.4xσ =   were used to represent the stress variable 
behavior. And the Weibull distribution was used to represent 
the corresponding life times behavior of the ball bearings. From 
the collected 65 ALT data, the Weibull β   parameter and the K   
and n   parameters of the used inverse power model (IP)were 
estimated. The IP model [14] is given by

1( ) nL V
KV

=
     (19)

In Eq. (19), V represents the stress variable (pounds in this 
case). From the ALT analysis in [17], 1.847127,β =   n=3.624360, 
and K=7.166599E-18. Then 21 stress values in the interval 
[1000, 4000] punds were selected, and by using them with the 
estimated IP parameters in Eq. (19) 21 η  values were predicted. 
Then by using 1.847127,β =  and the 21 estimated η   values 
in Eq. (2), the corresponding R(t) indices for t=30000 were 
estimated and used in Eq. (10) to determine the corresponding 
21 iY  elements. Finally by using the logarithm of the 21 stresses 
values and the estimated 21 iY  elements, in a regression, the 
Weibull parameters of the strength distribution were estimated. 
The fitted Weibull parameters of the strength distribution are 

6.694655,β =  and 3126.926895.η =  Therefore, the addressed 
Weibull strength distribution is W(6.694655, 3126.926895). 
Here it is too important to observe the addressed Weibull family 
only represents the behavior for fixed t=30000, if other t value 

is desired the above process has to be repeated [17]. Finally, by 
using the lognormal stress distribution and the Weibull strength 
distribution in the lognormal/Weibull stress/strength analysis 
[18], the corresponding ( )R t  index was determined. The found  
( )R t  index is ( ) 0.7954;R t =  [17].

On the other hand, although the cp and cpk indices are not 
defined for the lognormal/Weibull stress/strength analysis yet, 
the monitoring process of the addressed stress and strength 
parameters can be performed. This can be done because both 
the lognormal and the Weibull distribution are based on the log 
parameters. Therefore the lognormal parameter 7.6xµ = can be 
monitored by set 7.6xµ =  as the maximum allowed stress level 
in a control chart. Note it was set as the maximum because it 
represents the stress distribution. It is to say, because In the 
stress/strength analysis the higher the stress value the lower the 
R(t) index then it has to be set as the maximum allowed value. 
Similarly, the log normal parameter can be monitored by using 

0.4xσ =  as the maximum allowed value also [18].

On the other hand, because in the monitoring process the 
variables which determine the values are the process variables 
which have to be monitored. And because in order to correctly 
monitor the contribution that each variable has on the observe 
values have to be determined, then their contribution have to be 
determined also. Fortunately because µx is directly given from 
the determinant of the Q matrix as it is made in [4], then the 
decomposition method given in [19] can be used to determine the 
mentioned variable contributions. Also it is important to mention 
that the mathematical formulation to determine the value and 
the variables which determine its value, can be performed by 
partitioning the Q matrix as it is made in [20]. Finally the value 
to monitor 1.847127β =  is determined by using 1.1751169yσ =  
in Eq. (8). The ( )xσ  value to be set in the corresponding chart 
as the maximum allowed value is 0.636186.xσ =  And because 

3126.926895η =  and 0.545624,yµ = −  then from Eq. (9) the value to 
be set in the corresponding chart as the minimum allowed value 
to monitoring η  is 8.343197.xµ =  

Finally, it is important to note the estimated stress/strength 
( ) 0.7954R t =  index was not used to estimate 0.545624yµ = −  

and   1.1751169yσ =  instead ( ) 0.9535R t =  was used. This is 
made in this way because in the stress/strength analysis, the 
stress distribution is independent of the strength distribution. 
Therefore, the generated stress/strength function only 
represents the effect that all possible stress values have over the 
all possible strength values [18]. 

Conclusion

In this paper the advances on the theoretical interpretation 
of the features of the Weibull distribution which let practitioners 
to perform an integral analysis from the test planning phase to 
the monitor phase are presented. This is made based on the 
fact the Weibull distribution efficiently model a quadratic form. 
Among the more important features given in this article are 
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The Weibull parameters β  and η  are completely determined 
from the maximum and minimum eigen values of the analyzed 
quadratic form (see sec. 4). 

Because the addressed n value in Eq.(6) only depends on 
the desired  ( )R t  index, then the estimated n value is robust 
under any uncertainties of the used t  and β  values; and in 
particular observe from Eq. (61) in [4] that because this n value 
also represent the base lifetime of any Weibull analysis, then Eq. 
(6) can be used to determine the expected lifetimes after any 
reliability improvement process. 

The mean of the expected logarithm of the lifetimes is 
completely determined by the logarithm of the square root of 
the determinant of the analyzed quadratic form Q. 

Although the Weibull cp and cpk indices are estimated by 
using the logarithm parameters  because they are dimensionless 
they are efficient. 

By monitoring the log-parameters the β  and η  parameters 
are completely controlled. 
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