Biostatistics and Biometrics Open Access Journal ISSN: 2573-2633

Appendix

Proof of Theorem 1

Let β_0 be the true parameter value generating the observed data, $\dot{\ell}_n(\beta) = \partial \ell_n(\beta) / \partial \beta$ and $\ddot{\ell}_n(\beta) = \partial^2 \ell_n(\beta) / [\partial \beta \partial \beta']$. Since $\hat{\beta}$ is the MLE, $\dot{\ell}_n(\hat{\beta}) = 0$, so we have $-\dot{\ell}_n(\beta_0) = \dot{\ell}_n(\beta_0) = \dot{\ell}_n(\beta_0) = \ddot{\ell}_n(\beta_0) = \ddot{\ell}_n(\beta_0) = \ddot{\ell}_n(\beta_0) = \ddot{\ell}_n(\beta_0) = \dot{\ell}_n(\beta_0) =$

Where β_n lies between $\hat{\beta}$ and β_0 . Since $\hat{\beta} \rightarrow \beta_0$ (a.s.), we have $\beta_n \rightarrow \beta_0$ (a.s.). We get

 $\sqrt{n} \left(\hat{\beta} - \beta_0 \right) = \sqrt{n} \left(-n^{-1} \dot{\ell}_n \left(\beta_n \right) \right)^{-1} n^{-1} \dot{\ell}_n \left(\beta_0 \right)$ Note that $-n^{-1} \dot{\ell}_n \left(\beta_n \right) \xrightarrow{P} I\left(\beta_0 \right)$ and that $\dot{\ell}_n \left(\beta_0 \right) = \sum_{i=1}^n v_i$ $v_i = \left[\partial f\left(y_i - x_i \beta_0 \right) / \partial \beta \right] / f\left(y_i - x_i \beta_0 \right)$. The v_i 's are iid with $E(v_i) = 0$ and $Var(v_i) = E\left(v_i v_i^T \right) = I\left(\beta_0 \right)$ consequently, $\sqrt{n} \left(\hat{\beta} - \beta_0 \right) \xrightarrow{D} N\left(0, I^{-1}(\beta_0) \right)$ (A.1)

To simplify notation, assume the columns with partial deletions are (1,...,k). Denote $(n_1,...,n_k)$ be the numbers of X_{ij} 's deleted from columns (1,...,k) of X_n , so $(n_1,...,n_k)/n = (\gamma_1,...,\gamma_k)$ denote $n_0 = n - (n_1 + \cdots + n_k)$ and $\gamma_0 = n_0/n$. Let $\ell_n^-(\beta_0)$ be the likelihood with proportions $(\gamma_1,...,\gamma_k)$ be deleted from columns (1,...,k) in X_n , and denote $\dot{\ell}_n^-(\beta)$ be the partial derivatives accordingly. Write

$$\ell_n^{-}(\boldsymbol{\beta}) = \ell_{0,n_0}(\boldsymbol{\beta}) + \sum_{j=1}^k \ell_{-j,n_j}(\boldsymbol{\beta}).$$

Where $\ell_{0,n_0}(\beta)$ is the part of log-likelihood for the n_0 data without covariate deletion, and $\ell_{-j,n_j}(\beta)$ is that for all the n_j data with the j^{th} covariate deleted. Denote $\tilde{\ell}_n^-(\beta) = \tilde{\ell}_{0,n_0}(beta) + \sum_{i=1}^k \tilde{\ell}_{-j,n_i}(\beta)$ accordingly.

For the log-likelihood without data deletion we make the similar decomposition as $\ell_n(\beta) = \ell_{0,n_0}(\beta) + \sum_{j=1}^k \ell_{j,n_j}(\beta)$, accordingly.

Where $\ell_{j,n_j}(\beta)$ is the part of log-likelihood using data from the same individuals as those in $\ell_{-j,n_j}(\beta)$ but without covariate deletion, and denote $\tilde{\ell}_n(\beta) = \tilde{\ell}_{0,n_0}(\beta) + \sum_{j=1}^k \tilde{\ell}_{j,n_j}(\beta)$ accordingly. Note that the same term $\ell_{0,n_0}(\beta)$ appears in both the decompositions of $\ell_n(\beta)$ and $\ell_n^-(\beta)$, the same term $\tilde{\ell}_{0,n_0}(\beta)$ appears in both the decompositions of $\tilde{\ell}_n(\beta)$ and $\tilde{\ell}_n^-(\beta)$ and that for j = 1, ..., k, $\ell_{j,n_j}(\beta)$ is different from $\ell_{-i,n_j}(\beta)$ in that there is no deletion in $\ell_{j,n_j}(\beta)$ although both partial log-likelihoods use data from the same set.

We have

$$\ell_{n}\left(\hat{\beta}\right) = \ell_{n}\left(\beta_{0}\right) - \ell_{n}\left(\hat{\beta}\right)\left(\beta_{0} - \hat{\beta}\right) - \frac{1}{2}\left(\hat{\beta} - \beta_{0}\right) \ddot{\ell}_{n}\left(\beta_{n}\right)\left(\hat{\beta} - \beta_{0}\right)$$
$$= \ell_{n}\left(\beta_{0}\right) - \frac{1}{2}\left(\left(\hat{\beta} - \beta_{0}\right) \ddot{\ell}_{0,n_{0}}\left(\beta_{n}\right)\left(\hat{\beta} - \beta_{0}\right) + \sum_{j=1}^{k}\left(\hat{\beta} - \beta_{0}\right) \ddot{\ell}_{j,n_{j}}\left(\beta_{n}\right)\left(\hat{\beta} - \beta_{0}\right)\right)$$

Also, let $Z = (Z_1, ..., Z_d)$ with Z_j 's iid N(0,1), and note $-n_j^{-1} \dot{\ell}_{j,n_j}(\beta_n) \xrightarrow{P} I(\beta_0)$ for (j = 0, ..., k), so we have

$$-\left(\hat{\beta}-\beta_{0}\right)'\ddot{\ell}_{j,n_{j}}\left(\beta_{n}\right)\left(\hat{\beta}-\beta_{0}\right)=-\gamma_{j}\sqrt{n}\left(\hat{\beta}-\beta_{0}\right)'n_{j}^{-1}\ddot{\ell}_{j,n_{j}}\left(\beta_{n}\right)\sqrt{n}\left(\hat{\beta}-\beta_{0}\right)\xrightarrow{D}\gamma_{j}Z'Z.$$

So we get

$$\ell_n\left(\hat{\beta}\right) = \ell_n\left(\beta_0\right) + \frac{1}{2}\sum_{j=0}^k \gamma_j Z' Z + o_p.$$
⁽¹⁾

Similarly to (A.1) we have, with β_n^- lies between $\hat{\beta}^-$ and β_0 ,

$$\sqrt{n}\left(\hat{\beta}^{-}-\beta_{0}\right)=\sqrt{n}\left(-n^{-1}\dot{\ell}_{n}^{-}\left(\hat{\beta}^{-}\right)\right)^{-1}n^{-1}\dot{\ell}_{n}^{-}\left(\beta_{0}\right).$$

Consequently,

$$\sqrt{n}\left(\hat{\beta}^{-}-\beta_{0}\right) \xrightarrow{D} N\left(0,I_{-}^{-1}\left(\beta_{0}\right)\right), \quad (A.2)$$

Where $I_{-}(\beta_{0}) = E_{H_{0}}(v_{i}v_{i})$ and v_{i} is v_{i} with the j^{th} covariate being removed with probability $\gamma_{i}(j=1,...,k)$. Also,

$$\ell_{n}^{-}(\hat{\beta}^{-}) = \ell_{n}^{-}(\beta_{0}) - \frac{1}{2} \left(\left(\hat{\beta}^{-} - \beta_{0} \right)' \tilde{\ell}_{0,n_{0}}(\beta_{n}^{-}) \left(\hat{\beta}^{-} - \beta_{0} \right) + \sum_{j=1}^{k} \left(\hat{\beta}^{-} - \beta_{0} \right)' \tilde{\ell}_{-j,n_{j}}(\beta_{n}^{-}) \left(\hat{\beta}^{-} - \beta_{0} \right) \right)$$

and we have

$$-\left(\hat{\beta}^{-}-\beta_{0}\right)'\ddot{\ell}_{0,n_{0}}\left(\beta_{n}^{-}\right)\left(\hat{\beta}^{-}-\beta_{0}\right)=-\gamma_{0}\sqrt{n}\left(\hat{\beta}^{-}-\beta_{0}\right)'n_{0}^{-1}\ddot{\ell}_{0,n_{0}}\left(\beta_{n}^{-}\right)\sqrt{n}\left(\hat{\beta}^{-}-\beta_{0}\right)\xrightarrow{D}\gamma_{0}Z'Z.$$

Note that $\ddot{\ell}_{-j,n_j}(\beta_n^-)$ is a $d \times d$ matrix with the j^{th} row and j^{th} column be zeros, so $(\hat{\beta}^- - \beta_0)' \ddot{\ell}_{-j,n_j}(\beta_n^-)(\hat{\beta}^- - \beta_0) = (\hat{\beta}_{-j} - \beta_{0,-j})' \ddot{\ell}_{-j,n_j}(\beta_n^-)(\hat{\beta}_{-j} - \beta_{0,-j})$

Where $\hat{\beta}_{-j}$ is the (d-1) dimensional vector with the j^{th} element removed from $\hat{\beta}$ $\hat{\beta}^-$, is the (d-1) dimensional vector with the j^{th} element removed from β_0 , and $\ddot{\ell}_{-j,n_j}(\beta_n^-)$ is the $(d-1)\times(d-1)$ matrix with the j^{th} column and j^{th} row removed from $\ddot{\ell}_{-j,n_j}(\beta_n)$.

Since under $H_0 \ell_n(\beta_0) = \ell_n^-(\beta_0)$ now we have, under

$$2\Big[\ell_n\left(\hat{\beta}\right) - \ell_n^{-}\left(\hat{\beta}^{-}\right)\Big] = \sum_{j=0}^k \gamma_j \sqrt{n} \left(\hat{\beta} - \beta_0\right)^{'} \left(-n_j^{-1} \tilde{\ell}_{j,n_j}\left(\beta_n\right)\right) \sqrt{n} \left(\hat{\beta} - \beta_0\right)^{-1} \left(-n_0^{-1} \tilde{\ell}_{j,n_j}\left(\beta_n\right)\right) \sqrt{n} \left(\hat{\beta}_{-j} - \beta_{0,-j}\right)^{T} \left(-n_0^{-1} \tilde{\ell}_{j,n_j}\left(\beta_n\right)\right) \sqrt{n} \left(\hat{\beta}_{-j} - \beta_{0,-j}\right)^{-1} \left(-n_0^{-1} \tilde{\ell}_{j,n_j}\left(\beta_n\right)\right) \sqrt{n} \left(\hat{\beta} - \beta_0\right)^{-1} \left(-n_0^{-1} \tilde{\ell}_{-j,n_j}\left(\beta_n\right)\right) \sqrt{n} \left(\hat{\beta}_{-j} - \beta_{0,-j}\right) + o_p(1),$$

note that the first term in the above bracket is asymptotically a χ^2 random variable with d-degrees of freedom, while the second term is asymptotically a χ^2 random variable with (d-1) degrees of freedom. As in the proof of Wilks' Theorem (or some more recent proofs, such as in Stat701, 2002), for each j we have

$$\sqrt{n} \left(\hat{\beta} - \beta_0 \right)^T \left(-n_j^{-1} \tilde{\ell}_{j,n_j} \left(\beta_n \right) \right) \sqrt{n} \left(\hat{\beta} - \beta_0 \right)$$

$$-\sqrt{n} \left(\hat{\beta}_{-j} - \beta_{0,-j} \right)^{\prime} \left(-n_j^{-1} \tilde{\ell}_{-j,n_j} \left(\beta_n^{-} \right) \right) \sqrt{n} \left(\hat{\beta}_{-j} - \beta_{0,-j} \right) \xrightarrow{D} \chi_j^2,$$

Where χ_j^2 is a chi-squared distribution with 1-degree of freedom, and the χ_j^2 's are independent for different j_i hence we get

$$2\Big[\ell_n\Big(\hat{\beta}\Big) - \ell_n^-\Big(\hat{\beta}^-\Big)\Big] \xrightarrow{D} \sum_{j=1}^k \gamma_j \chi_j^2$$

Proof of Theorem 2

- i) Is from standard argument for the consistency of MLE.
- ii) After deleting the irrelevant covariates, the model is $y_i = x_i^{-}\beta + \dot{\mathbf{o}}_i$, $\dot{\mathbf{o}}_i \sim f(\cdot)$,

where the x_i^- 's are i.i.d. x^- , and $x^- = x_r^-$ with probability $\gamma_r(r=0,1,...,k)$ where x_r^- is an i.i.d. copy of the $x_{i,r}^-$'s, whose components with index in C_{jr} in particular C_{j0} is the index set for those covariates without partial deletion. The log-likelihood is

 $\ell_n^-(\beta) = \sum_{i=1}^n \log f\left(y_i - x_i^-\beta\right) \text{ By the standard result on regression parameter estimation (eg. Proposition 4.3.1 D and Example 4.3.1 in [17]), the efficient score for <math>\beta$ based on $\ell^-(\beta)$ is $\dot{\ell}(\beta) = \frac{\partial \log f\left(y - x^-\beta\right)}{\partial \beta} = \frac{\dot{f}\left(y - x^-\beta\right)}{f\left(y - x^-\beta\right)} \left(x^- - \mu^-\right),$

Where $\mu_j^- = E(x^-)$. Under the common assumption that $\dot{\mathbf{O}} = y - x^- \beta_0$ is independent of \mathbf{X}^- (or just conditioning on x^-), it follows that $\sqrt{n}(\hat{\beta}^- - \beta_0) \xrightarrow{D} N(\hat{\mathbf{0}}, \cdot)$

Where,

$$\Omega = E_{\beta_0} \left[\dot{\ell} \left(\beta_0 \right) \dot{\ell} \left(\beta_0 \right) \right] = E \left[\left(x^- - \mu^- \right) \left(x^- - \mu^- \right) \right] \int \frac{\dot{f}^2(\dot{\mathbf{o}})}{f(\dot{\mathbf{o}})} d\dot{\mathbf{o}}$$