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Appendix

Proof of Theorem 1

Let 4, be the true parameter value generating the observed data,?,(8)=0¢,(B8)/8f and Z, (ﬁ)=52f,,(ﬂ)/[3ﬂ5ﬂ':|~ Since # is the MLE,
1,(B)=0, sowehave -7 (5)=1,(B)-1,(8)="1,(8)(B-5)

Where S, liesbetween 4 and /. Since - 5, (ass.), we have 8, - 4, (a.s.). We get

Jn(B=p) = (-n'1,(8,)) 070, ()

Note that —n"'7,(8,)—"—1(,) andthat /,(8)=>" v,

v, =& (v -x8,)/08]/f (v;=x/,) The %S areiid with £(v)=0 and Var(v,)=E(vy)=1(,) consequently,
\/Z(ﬁ—ﬁo)%zv(o,rl(ﬁo)) (A1)

To simplify notation, assume the columns with partial deletions are (1.--%). Denote (n,....n,) be the numbers of %S deleted from columns
(L..k) of X,, 50 (msony)/n=(7>-n7;) denote my=n—(m+-+n) and 7, =m/n Let (,(5,) be the likelihood with proportions (7,....7,) be
deleted from columns (1,...k) in Xx,, and denote r, (B) and 7,(B) be the partial derivatives accordingly. Write

L(B)= Lo B+, (B),

Where /,,, (#) is the part of log-likelihood for the #, data without covariate deletion, and € i, (B) isthatforall the n; datawith the J"
covariate deleted. Denote - _7 ko accordingly. k
En(ﬂ)—fo,no (beta)+ j:lﬁ_j’nj (ﬁ) gy

k
For the log-likelihood without data deletion we make the similar decomposition as ¢ ( £y "U + Zf} n ’ accordingly.
=

Where i, (A) is the part of log-likelihood using data from the same individuals as those in £_;, (,3) but without covariate deletion, and

denote .én (ﬁ) = "0 " (ﬁ) + Zj 14, (,B) accordingly. Note that the same term 4,, (#) appears in both the decompositions of ¢,(5) and
¢,(B), the same term f,, (B) appears in both the decompositions of 7,(p) and '@; (ﬂ) and that for j=1,....k, fm (ﬂ) is different from
¢_,, (p) inthat there is no deletionin £, , (B) although both partial log-likelihoods use data from the same set.

We have
zn(ﬁ)%(ﬂo)—kn(B)(ﬂo—B)—%(ﬁ—ﬂo)"én(ﬂn)(ﬁ—ﬂo)
) (3 B 0B (-], )51
Also, let Z=(Z,....Z,) with Zs iid N(1). and note =, (B,)—==1(f,) for (j=0....%). so we have
~(B-B) 1, (BIB-B) =7 Nn(B=5) m'T,, BIWNn (BB} 7,2 2.
So we get

. 1 ,
En(ﬂ)zfn(ﬂo)qLE;ijZnLop. (1)

Similarly to (A.1) we have, with B, lies between B“ and ﬂo,



Consequently,
\/;(,5% —ﬁo)‘—% N(0,17'(8,)) (A.2)
Where 1_(8,)=E,, (Vf"f') and V; is V;withthe j” covariate being removed with probability 7;(j=1...k).

Also,
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Jj=1

and we have

(B8 T (85 = B ) T (82 Wi -2
Note that '{ffj,nj ( ﬂn‘) isa Jx g matrixwiththe ;" rowand J” column be zeros, so

(/8_ _/Bo ) z—j,nj (ﬂn_)(B_ _ﬂo) = (,BA_‘,' _ﬁo,—j ) 2—],;1]. (/Bn_)(:é—/ _IBO,—/')

Where ﬁ,j is the (a' —1) dimensional vector with the jth element removed from ,5' ﬁ’, is the (4-1) dimensional vector with the
7" element removed from B,, and .7%7/_ (3;) isthe (d 71)>< (d - 1) matrix with the :# column and jth row removed from > (ﬂ )
a, (P o (B,

|
Since under H, ¢, (3y) = ¢, (B,) now we have, under

20 (8)- )] =X ) (o ) ()
~n(B=B) (', (BN (B, -5,

- Z/ Wn(B=5,) (-1, (B,))Nn (- 5,)

(B, =Aos) (=T, (B (B, =5y ) 0,0,

note that the first term in the above bracket is asymptotically a #° random variable with d-degrees of freedom, while the second term is
asymptoticallya »° random variable with (d-1) degrees of freedom. As in the proof of Wilks’ Theorem (or some more recent proofs, such as
in Stat701, 2002), for each j we have

A T . A
-1
Ja(B-8,) (=n'1,,, (B,))Nn(B-5,)
p ' 17 - 5 D 2
_*/;(IB—/' ~b ) (_”_/ £, ('Bn ) n (ﬂ—j ~b ) >Xj»
Where Z,z is a chi-squared distribution with 1-degree of freedom, and the }[jz-’S are independent for different /- hence we get

o[ (B)-l )2



Proof of Theorem 2
i)  Isfrom standard argument for the consistency of MLE.

ii)  After deleting the irrelevant covariates, the modelis ); = Xl_ﬂ +(‘)l., Q ~ f(),

where the X; ’S areiid. X » and X =X, with probability 7, (#=0.1,...k) where X_ isan iid. copy ofthe X;,’S, whose components

with index in Cj

. in particular C, is the index set for those covariates without partial deletion. The log-likelihood is

r (ﬁ) _ Zlogf(y[ —x;ﬂ) By the standard result on regression param.eter estimation (eg. Proposition 4.3.1 D and Example 4.3.1 in
ologf(y-xp) fly-xpB),
= (x =),

op f(y=x8)

[17]), the efficient score for f based on (B is Z(ﬂ)

Where &; = E(xi)- Under the common assumption that o=y-xfis independent of X (orjust conditioning on X ), it follows that
\/;(ﬂ7 _ﬂo)—D—)N(m ’)

Where,

2=, 1) (] (v - ) ) o




