
Appendix

Proof of Theorem 1
Let 0β   be the true parameter value generating the observed data, ( )( ) /n nβ β β= ∂ ∂
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Where nβ   lies between β̂   and 0.β   Since 0β̂ β→   (a.s.), we have 0nβ β→   (a.s.). We get 
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To simplify notation, assume the columns with partial deletions are ( )1,..., .k   Denote ( )1,..., kn n   be the numbers of ’ijx s   deleted from columns
( )1,..., k    of ,nX   so ( ) ( )1 1,..., ,...,k knn n γ γ=   denote  ( )0 1 kn n n n= − + +  and 0 0 / .n nγ =   Let ( )0n β−

   be the likelihood with proportions ( )1,..., kγ γ   be 
deleted from columns ( )1,..., k   in  ,nX  and denote ( )n β−
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   and ( )n β−
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Where ( )
00,n β   is the part of log-likelihood for the 0n   data without covariate deletion, and ( ), jj n β−   is that for all the jn   data with the thj    

covariate deleted. Denote  ( ) ( )
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For the log-likelihood without data deletion we make the similar decomposition as ( ) ( ) ( )
00, ,

1

,
j

k

n n j n
j

β β β
=

= +∑     accordingly.

Where ( ), jj n β   is the part of log-likelihood using data from the same individuals as those in  ( ), jj n β−  but without covariate deletion, and 
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 and that for 1,..., ,j k=  ( ), jj n β     is different from  
( ), jj n β−  in that there is no deletion in ( ), jj n β   although both partial log-likelihoods use data from the same set. 
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Also, let  ( )1,..., dZ Z Z=  with ’jZ s   iid  ( )0,1 ,N  and note ( ) ( )1
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Similarly to (A.1) we have, with  nβ
−  lies between  β̂ −  and  0 ,β
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Where  ( ) ( )'
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  is   iv with the  thj  covariate being removed with probability  ( )1,..., .j j kγ =
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Where ˆ
jβ−   is the ( )1d −   dimensional vector with the  thj  element removed from   β̂   ˆ ,β −     is the  ( )1d −  dimensional vector with the  
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Since under 0H  ( ) ( )0 0n nβ β−=      now we have, under   
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note that the first term in the above bracket is asymptotically a 2χ   random variable with d-degrees of freedom, while the second term is 
asymptotically a  2χ  random variable with ( )1d −  degrees of freedom. As in the proof of Wilks’ Theorem (or some more recent proofs, such as 
in Stat701, 2002), for each j   we have 
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Where  
2
jχ  is a chi-squared distribution with 1-degree of freedom, and the 2’j sχ   are independent for different ,j   hence we get 

( ) ( ) 2

1

.ˆ ˆ2
k

D
n n j j

j

β β γ χ− −

=

 − →  ∑ 

 



Proof of Theorem 2 

i)	 Is from standard argument for the consistency of MLE.

ii)	 After deleting the irrelevant covariates, the model is  ,     ( ),i i i iy x fβ−= + ∼ ⋅ò ò

where the ’ix s−   are i.i.d. ,x−
  and  rx x− −=  with probability ( )0,1,...,r r kγ =   where rx−   is an i.i.d. copy of the , ’ ,i rx s−

  whose components 
with index in jrC   in particular 0jC   is the index set for those covariates without partial deletion. The log-likelihood is 
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Where ( ).j E xµ− −=    Under the common assumption that  0y x β−= −ò  is independent of  x−
 (or just conditioning on  x− ), it follows that 
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