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Introduction

The object of two-sample tests (homogeneity tests) is to 
determine whether the underlying distributions behind two sets 
of data are equivalent. More precisely, given two independent 
samples  1,..., m xX X F  and 1,..., ,n yY Y G   we are interested in testing  

0 : x yH F G=   against  1 : .x yH F G≠   	Equation Section (Next) (1)

The two-sample test has a myriad of application in diverse 
areas. In bioinformatics, it is of interest to compare high-
dimensional low sample size data from medical imaging 
techniques (like computed tomography or X-ray radiography), 
chemometrics and microarray data (proteomics and 
transcriptomics) [2]. The test can also be applied to public health 
and social science studies when working with multivariate real 
world data with complex dependence structure and the heavy-
tailed or skewed population distributions [3]. One of the most 
classic methods for testing homogeneity is two-sample t-test, 
which compares the means of two populations. In recent years, 
Gretton et al. [4] propose a nonparametric two sample t-test called 
kernel Maximum Mean Discrepancy (MMD), which compares 
the means of two distributions in a Reproducing Kernel Hilbert 
Space (RKHS). Contrary to the t-test, which is only sensitive to 
mean differences, the test based on MMD can be sensitive to an 
arbitrary difference between two multivariate distributions. The 
distinguishing features of MMD are summarized as follows:

Ability to detect any difference between two multivariate 
distributions 

Applicability to complex and high-dimensional data 

 
Flexibility of the approach depending on the choice of kernel 

Computational efficiency without involving density 
estimates

Despite its attractive properties, MMD has not been fully 
introduced to researchers outside of theoretical statistics and 
machine learning communities. The purpose of this article is 
to review the selected aspects of MMD and describe its testing 
procedure. We also briefly discuss an extension of MMD to the 
multi-sample problems where the interest is in testing

0 1 2 KH F F F= = =
 against 1 :H  at least one of iF  is different.

Maximum mean discrepancy
Let   and   be random vectors from   and   defined on a domain 

.x  It is well-known that X   and Y  have the same distribution if 
and only if 𝔼[ ( )]f x =  𝔼 [ ( )]f y  for all continuous bounded functions   
f The key insight of MMD is that it is possible to reduce the class 

of functions .f  while maintaining the ability to distinguish 
between distributions  XF  and .YG The definition of MMD is as 
follows:

Definition (Maximum mean discrepancy): Let   be 
a class of functions : .f x →  Maximum mean discrepancy is 
defined as

[ ] [ ]( )( )sup ( ) (, ),  .MMD
f

Y fX x f y
∈

−ΕΕ


           (2)  

Suppose the function class    is a unit ball in a universal 
RKHS. Then MMD has the characteristic property.
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Theorem (Characteristic property of MMD): Let    be a 
unit ball in a universal RKHS ,  defined on the compact metric 
space ,x  with associated kernel k (•, •). Then ( ) 0MMD , ,  X Y =   if 
and only if .X YF G=  Let ,X   . .

~
i i d

XX F′ and . .
, ~ .

i i d

YY Y G′   From a practical 
point of view, it is not trivial how to estimate (2). However, if 
the unit ball is used as a function class, MMD has a compact 
representation in terms of the expected values of pair wise 
kernels: 

  ( ) ( ) ( ) ( )2 , 2MM , ,D , , k X X k X Y k Y Yp q = Ε Ε′ ′     − + Ε    F

Which results in a direct empirical estimate based on a 
U-statistic:

  
,

1 1 1 1

1 1 2( , ) ( , ) ( , ).
( 1) ( 1)

m m n n m n

m n i j i j i j
i j i i j i i j

U k x x k y y k x y
m m n n mn= ≠ = ≠ = =

= + −
− −∑∑ ∑∑ ∑∑

An important issue of the MMD-based tests is in the choice of 
kernel. As an approach, Gretton et al. [1] suggest a heuristic way 
to select a radial basis function kernel with a kernel bandwidth 
to be the median distance between points in the aggregate 
sample. Another way to choose the bandwidth is to maximize 
the test statistic. Gretton et al. [4] and Sutherland et al. [5] 
introduce ways to select the kernel that maximizes asymptotic 
power of the test. However, the last two approaches rely on 
sample splitting and thus less efficient than the other methods 
in small sample size. Despite all of the efforts, the optimal choice 
of kernel still remains as an open question. There are many ways 
to implement the two-sample test based on MMD. Here, we focus 
on the permutation test which controls an exact type I error 
under finite sample size. The testing procedure is summarized 
as follows:

1.	 Generate random permutations 1 2, , , m nπ π π +  among  
{ }1, , m n+ .

2.	 Let  1 1 1( , , ) ( , , , , , ).m n m nZ Z X X Y Y+ =  
 Calculate ,m nU  based  

 
on ( )1

, ,
m

Z Zπ π   and  ( )1
, , .

m m n
Z Zπ π+ +

  

3.	 Repeat the previous steps B times to obtain  (1) ( )
, ,, , .B

m n m nU U
 

4.	 Let ,m nU   be the statistic calculated based on the 
original samples. Then evaluate the p-value as 
 
             ( )( )

, ,
1

1 1
1

B
b

m n m n
b

p I U U
B =

 
= + > +  

∑
5.	 Reject the null hypothesis if p α<  where α   is a pre-

fixed significant level.

Kernel DISCO: Extension to multi-sample problem

Beyond the two-sample hypothesis, we can consider the 
K-sample hypothesis 0 1: , 2KH F F K= = ≥  versus 1 : i jH F F≠  for some   

.i j≠ Analogous to the ANOVA decomposition of variance, Rizzo 
& Székely [6] propose distance components (DISCO). DISCO is 
a nonparametric extension of ANOVA based on the partition of 
the total dispersion into between and within components. In the 
next section, we briefly describe the definition of it.

DISCO

Let 
1 21 1{ , , },  { , , }n nA a a B b b= = 

 be two samples and define

                   1 2

1 11 2

1( , ) ,
n n

i j
i j

g A B a b
n n

α
α

= =

= −∑∑ 

 
for 0 2α< ≤  . Let 1, , KA A   be samples of sizes 1, , Kn n  and

1
.K

jj
N n

=
=∑  Based on these notations, the within-sample 

dispersion statistic is defined by

                  

1
( , ).

2

K
j

j j
j

n
W g A Aα α

=

=∑      (3)

Similarly, the total dispersion of the observed response is 
defined by 

                     ( , ),
2
NT g A Aα α=          (4)

Where, A  is the pooled sample. Lastly, the between-sample 
energy statistic is given as

  ( )
,

1
( , )

2 j k

j k j k
n n j k

j k K j k

n n n n
S A A

n n
α

α ε
≤ ≤ ≤

 + 
=    +    
∑   (5)

   
  

1
= (2 ( , ) ( , ) ( , ))  .

2
j k

j k j j k k
j k K

n n
g A A g A A g A A

N α α α
≤ ≤ ≤

 
− − 

 
∑

  (6)

Rizzo & Székely [6] show that ,T S Wα α α= + where both   Sα

and  Wα  are nonnegative. For every 0 2,  Sαα< <  determines 
a consistent test of the multi-sample hypothesis of equal 
distributions. For 2,α =  DISCO decomposition is equivalent 
to classical ANOVA decomposition as 2 2 2.T S W= +  However, 
the ANOVA test statistic measures differences in means, not 
distributions. In this sense, DISCO can be considered as a 
nonparametric generalization of classical ANOVA.

Analogous to the ANOVA test, the K-sample DISCO test is 
carried out by using the ratio statistic

                               / ( 1) ,
/ ( )

S KF
W N K

α
α

α

−
=

−

and reject the null for a large value of .Fα   The p-value can be 
evaluated based on the permutation procedure.

Kernel DISCO
Sejdinovic et al. [7] provide a framework that explains the 

equivalence of MMD and the energy distance when a special 
type of kernel, termed distance kernel, is employed. Motivated 
by this observation, we propose kernel distance components 
(Kernel DISCO) for testing the K-sample hypothesis. Let  ( ),z ρ  
be a semimetric space of negative type. Define ,,W Tρ ρ   and Sρ   by  
 
replacing ( , )g A Bα   in (3), (4) and (5) with 

1 2

1 1
1 2

1( , ) ( , ).n n
i ji j

g A B a b
n nρ ρ

= =
= ∑ ∑   

 
Followed by Sejdinovic et al. [7], there exists a kernel such that   
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( , ) ( , ) ( , ) 2 ( , ).z z k z z k z z k z zρ ′ ′ ′ ′= + − When we further consider k  
to be characteristic, which means that MMDk ( ), 0k i jMMD F F =  if 
and only if ( , ),i jF F   then the following statements hold. 

Theorem: Let ρ be the semimetric associated with a 
characteristic kernel. For all p-dimensional samples 1, , ,KA A   
where 2,K ≥   we have 

      1.   1( , , ) 0.KS A Aρ ≥

      2. 1( , , ) 0KS A Aρ =  if and only if  1 .KA A= =

Proof: Let 1{ , , }
jj nA a a=   and 1{ , , }.

kk nA b b=    Define i.i.d. 
random variables X  and  X ′  uniformly distributed on ,jA  and 
define i.i.d. random variablesY  and Y ′  uniformly distributed on   

.KA Then ( , ) ( , ),j kX Y g A AρρΕ =  ( , ) ( , ),j jX X g A Aρρ ′Ε =  ( , ) ( , )k kY Y g A Aρρ ′Ε =

and  21 2 1 2

1 2 1 2

2( , ) MMD ( , ) 2 .n n n nX Y p q S
n n n nρ ρε = =
+ +

 

This implies that ( , ) 0j kS A Aρ ≥ and the equality becomes zero if 
and only if X and Y have the same distribution since the kernel is 
characteristic. The result for 2K A≥   follows by induction. The next 
theorem is the kernel DISCO decomposition of total dispersion 
into between-sample, which is a weighted combination of pair 
wise MMD statistics and within-sample components.

Theorem: For all integers 2K ≥ , the total dispersion Tρ   of K 
sample can be decomposed into

 1 1 1( , , ) ( , , ) ( , , ),K K KT A A S A A W A Aρ ρ ρ= +  

Where, 0Sρ ≥ and 0Wρ ≥ are the between-sample and within-
sample measures of dispersion, respectively.

Proof: The proof is directly followed by Theorem 2 of Rizzo 
& Székely [6] except jkg   is replaced by   ( , ).j Kg A Aρ

In order to carry out the test, we define the ratio between
Sρ

   and  Wρ  as

( 1)
,

/ ( )
S K

F
W N K

ρ
ρ

ρ

−
=

− 
and reject the null for a large value of .Fρ   The test can be 

carried out by using the permutation procedure. Similar to 
MMD, kernel DISCO statistic also relies on the choice of kernel. 

We recommend to use a radial basis kernel with the median 
heuristic but more theoretical and empirical studies should be 
followed up in the future.

Conclusion 
Modern scientific studies in different fields including public 

health and social science have a common interest in comparing 
non-normal high-dimensional data. Many of classical methods 
for comparing distributions often fail when the dimension of the 
data exceeds the sample size. In addition, some of the methods 
heavily rely on parametric assumptions that are hardly true 
in practice. The MMD test, combined with the permutation 
procedure, addresses these issues by being fully nonparametric 
and applicable to an arbitrary dimension. In this article, we 
reviewed some of the properties of MMD and introduced kernel 
DISCO as an extension of MMD to the k-sample problems. We 
hope that this article encourages practitioners to consider 
the newly developed statistical methods and take them into 
consideration for their applications in the future.
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