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Introduction
Classical statistics rest heavily on means, variances, 

correlations, skewness and kurtosis, requiring moments to 
fourth order. To the contrary, probability distributions having 
excessive tails, often void of first or second moments, arise in 
a variety of circumstances. These encompass radar tracking, 
image processing, acoustics, risk management, portfolios in 
finance, biometrics, and other venues. Supporting references 
include Bonato & Matteo [1], Cheng & Rachev [2], Kim et al. 
[3], Kuruoglu & Zerubia [4], Qiou et al. [5], Tsionas & Efthymios 
[6]. Salient monographs are Arce [7], Chernobai & Rachev [8], 
Ibragimov et al. [9], and Samorodnitsky & Taqqu [10]. In these 
settings the classical foundations accordingly must be reworked.

Excessive tails typically are modeled through stableα −   
distributions with index [ ]0,2 .α ∈  These comprise all limit 
distributions for standardized partial sums, of which Gaussian 
central limit theory applies under second moments with   2.α =
Despite the circumstances cited, usage has been limited for want of 
explicit expressions, apart from special cases, for stableα −  density 
and cumulative distribution functions. Nonetheless, signal progress 
is supported through the use of characteristic functions ( ) ,chfs  as 
undertaken in this study. Even here a divide emerges between 
independent, identically distributed ( )iid  stableα −  variables, or 
dependent stableα −  ( )S Sα  sequences. An outline follows. Notation 
and technical foundations are provided in Section 2. The findings 
in Section 3 are twofold: First, that limit properties diverge widely 
between and ( )iid  spherically dependent ( )S Sα  sequences; and 
second, that conventional inferences, though largely lacking in the 
former, may be validated in large part in the latter. Conclusions are 
tallied in Section 4.

Preliminaries
Notation: Spaces include N



 as Euclidean N-space. Vectors 
and matrices are set in bold type; the transpose, inverse, trace,  

 
and determinant of A  are 1A , A , ( ),tr A−′  and ;A  the unit vector in  

N


is [ ]1 1, ,1 ;N
′=   and NI  is the ( )N N×  identity. Moreover, Diag ( )1, , kA A  

is a block-diagonal array.

Special distributions
For [ ]1, , ,N

NY Y Y ′= ∈   its distribution, mean, and dispersion matrix 
are denoted by ( ) ( )L ,Y E Y µ=  and ( ) ,V Y = Σ  say, with variance  ( ) 2Var Y σ=

on 1.  Specifically, ( ) ( )L ,NY N µ= Σ  is Gaussian on N


 with parameters 
( ), .µ Σ  Distributions on 1



 include the ( )2 ; ,u vχ λ  having  degrees of 
freedom and non centrality parameter ;λ  and the corresponding 
Student’s ( )2 ; , .t u v λ  The ( )chfs  for Y  is the expectation ( ) it YY t E eφ ′ =     
with argument [ ]1, , ;Nt t t′ =    a standard source is Lukacs & Laha [11]. 
Reference is drawn subsequently to probability density (PD) and 
cumulative distribution (CD) functions.

Foundations
A random process { };tZ t τ= ∈  is spherically invariant if for each

Ν , the joint ( )chfs  of [ ]1, , NZ Z  has the form ( ) ( ) ,Z t t tφ ψ ′=  for some 
function ( ).ψ  not depending on N  [12,13]. Averages and limits are 
basic in statistical analysis; for example, notions of consistency 
in estimation and of large–sample distributions. These are 
undertaken here without benefit of moments in keeping with 
excessive tails. Specifically, the sequence { };tZ t τ= ∈  supplies the 
context for taking limits. In addition, the following is central to 
this study, where [ ],δ Σ  respectively comprise a location vector 
and a matrix of scale parameters, the latter taking the value NIΣ =  
in the case of spherical symmetry on .N


 

Definition 1: ( ) ( ),NL Z Sα δ∈ Σ  designates an elliptical stableα −   
law on N


 centered at Nδ ∈  with scale parameters Σ  and 

stable index ( ]0,2 ,α ∈  having the ( )chfs  ( ) ( ) 2exp .Z t it t t
α

φ δ ′ ′= − Σ 
 

   

Each marginal distribution of ( )1 ,N N NS Iα δ  on 1


, namely ( )1 ,1 ,Sα δ  
has the ( )chfs    ( ) { }exp .iz t it t αφ δ= −

Remark 1: For ( )0,2α ∈  these have moments of order up 
to but excluding ,α  but with moments of all orders at 2.α =  
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Included are elliptical Cauchy and Gaussian laws at { }1,2 ,α =  
respectively. In addition, the following is central to subsequent 
developments.

Lemma 1: Let ( ); ,N ng z Iδ   be the density for ( )2,N NN Iδ σ  and  
( ); ,N nf z Iα δ  the SaS  density for ( ) ( ), .N NL Z s Iα δ∈  Then there chfs   

and pdfs  are related as follows.

(i) ( ) ( ) ( )/2

0
z ;it t t it t t st e e d sδ δφ α

∞′ ′− ′ ′−= = Ψ∫   with  ( );s αΨ  as a mixing  
cdf on 1;

(ii) ( ) ( ) ( )1

0
f ; , g ; , ; .N n N nz I z s I d sα δ δ α

∞ −= Ψ∫  

Proof: Hartman & Wintner [12] gave a necessary and 
sufficient condition that the process { };tZ t τ∈   be spherically 
invariant, namely, that for each N  and [ ]1, , ,NZ Z Z=   the chfs   

( )Z tφ  is a scale mixture of N–dimensional spherical Gaussian 
chfs.  This applies in context to give conclusion (i). To continue,  

( ) ( ) ( ) ( )2 N

N it z
Z zf z e t dtπ φ− ′−= ∫ ∧



 is the standard inversion formula from 
chfs to densities with ( )Λ ⋅  as Lebesgue measure. Accordingly, 
we invert both sides of the second and third expressions in 
conclusion (i) to get the density on the left of conclusion (ii). We 
then recover the right side of conclusion (ii) on reversing the 
order of integration in the iterated integral found on inverting 
the third expression of conclusion (i).

The Principal findings
Sequences of iid and S Sα  Variables: Much of classical 

statistics rests on iid  random variables. In the present context it is 
germane to ask whether spherical S Sα   Variables [ ]1, , NZ Z   might 
also be independent. To the contrary, for any spherical sequence. 
Maxwell [14] showed this to be the case if and only if Gaussian. 
In view of this, it remains to examine the limit properties of    iid
S Sα Variables in comparison with spherically dependent S Sα
Variables in N



 of critical interest to users. Limit properties of 
these are shown next to be widely disparate, despite the fact that 
their marginals coincide. At issue are statistics ( )1 ,N NS Z Z= + +   

,N N
N

Z S=  and ( )
1
2 ,NNU N Z δ= −  taking [ ], , Nδ δ δ ′= ∈    in order to be 

iid.   A principal finding follows. 

I. Theorem 1

Take elements of [ ]1Z = , , NZ Z′
  to be either iid  ( )1 ,1 ,Sα δ  with

chfs  ( ) { }exp ,
iZ t it t αφ δ= −  or to be spherical S Sα   on N

  with chfs   

( ) ( ) 2exp 1 .
iZ Nt i t t t

α

φ δ ′ ′= − 
 

Let ( )1N NS Z Z= + +  and 1 ,N NZ N S−=   and consider the standardized 
variables ( )

1
2 .NNU N Z δ= −   

(i) For iid   sequences the  chfs  for { }, ,NN NS Z U are
( ) ,

N

iNt N t
S t e

αδφ −= ( ) ( )1 ,
N

it N
Z t e t αδ αφ − −= and ( )

( )2
2 ,

N

N

U t e t
α

αφ
−

−
=  

respectively.

(ii) For S Sα  sequences the principal chfs  are given by 

( ) 2 ,
N

Nt N

S t e t
αδ αφ

− −
=   ( ) 2 ,

N

it N

Z t e t
αδ αφ

− − −
=  and  ( ) .

N

t
U t e

α

φ −=

Proof: Elementary properties of  ( ) .
N

t
U t e

α

φ −=  for  [ ]1 NZ Z+ +   are: 

a. If independent, then  ( ) ( )1 ;n
Z i Zi it tφ φ== Π

b. The chfs  of NS  is ( ) ( ). , ;
NS Zit t t tφ φ=   and 

c. ( ) ( )
ikZ Zis ksφ φ=  for 0.k ≠  

Conclusions (i) and (ii) follow directly from these. 
Developments to follow invoke the following principles, first for  
iid and then for spherical  S Sα  sequences. 

Remark 2: In the chfs  ( ) ,
N

it N
Z t e t

ε αδφ −=  note that N t N t
αε

αε α=   
factors in as a scale parameter. For consistency in estimating ,δ  
it is necessary and sufficient that ( )lim

N

it
N Z t e δφ→∞ =  which, by 

the Levy–Cramer continuity theorem, is the chfs  of a distribution 
degenerate at .δ  Consistency of NZ  for  then follows using 
the equivalence of convergence in law to degeneracy, and 
convergence in probability.

II. Theorem 2

Limit properties of NZ  and ( )
1
2 NNU N Z δ= −  under iid  ( )1 ,1Sα δ  

variables [ ]1, , NZ Z  are as follow.

(i) For ( )0 1:
N

it N
Z t e t

ε αδα φ −< < =   so that NZ  is inconsistent for .δ   

(ii) For ( ) ( )1: ,
N i

it N
ZZ t e t t

ε αδα φ φ−= = ≡  so that NZ   is inconsistent 
for .δ  

(iii) For ( )1 2 :
N

it N
Z t e t

ε αδα φ −< < =  with 0,ε >  so that NZ  is consistent 
for  .δ

(iv) For 
( )2

20 2 : ( )lim limN

N

U
N N

t e t
α

αα φ
−

−

→∞ →∞

< < =   diverges to an 
improper distribution on 1.  

Proof: Conclusions (i)–(iii) follow as in Remark 2. Factoring  
( )2

2N
α−  to t α  as in Remark 2 for 0 2,α< <  shows divergence of the scale 

parameter as N →∞   giving conclusion (iv).

In parallel with Theorem 2, the following establishes 
corresponding properties for spherically dependent S Sα

 Sequences having chfs  ( ) ( ) 2exp 1 .z Nt i t t t
α

φ δ ′ ′= − 
 

 

III. Theorem 3

Limit properties NZ  of  and ( )
1
2 NNU N Z δ= −  under spherical  S Sα

Sequences are as follow. 

(i) 2( ) ,lim limN

it t N it
Z

N N
t e e

α
αδ δφ −

→∞ →∞

= =  so NZ  is consistent forδ   for every 
0 2,α< <  and at 2,α =  under Gaussian theory.

(ii) ( )lim N

t
U

N
t e

α

φ −

→∞

=  is identical to ( ) ,
iZ tφ δ−   the standardized 

sum having as its limit the same S Sα  Sequences distribution as each 
component.

Proof: Conclusion (i) follows from the second chfs  of Theorem 
1(ii) as in Remark 2, and conclusion (ii) directly per se from the third 
chfs  of Theorem 1(ii). In short, it is seen from Theorem 2 that iid  

stableα −  variables hold little promise to exhibit even basic properties 
in data analysis and statistical inference, where even the consistency

NZ  of δ  for  requires knowing that 1 2.α< ≤  On the other hand, the next 
section motivates circumstances for the occurrence of spherical S Sα  
samples, and sets out to establish useful statistical properties in the 
analysis of data from these models.

Properties of spherical S Sα samples
Consider anew a single sample with parameters ( )2, ,δ σ  

taking  [ ]1, , NZ Z  from ( )21 ,N N NS Iα δ σ  in lieu of the conventional iid  
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( )2
1N ,δ σ  data. To these ends let ( )1 ,NZ Z Z N= + +  and identify 

( ) ( ) ( )1 , , , ,N Ne Z Z Z Z Z Z PZ′ = − − − =  

 as the ordinary residuals, 
with   11 1N N NP I N − ′ = −   as the projection onto the error space, 
and ( )2 1 .S e e N′= −  Recall that the two–sided normal–theory 
test for 0 0 1 0: :H vsHδ δ δ δ= ≠  uses the conventional Student’s 

( )22 2
0 .T N Z Sδ= −   The following is central to our findings.

IV. Theorem 4 

Given that  ( ) ( )21 , ,N N Nl Z S Iα δ σ=   we seek the joint distribution of   ,Z e ′ 

and that of  ( )
222

0, .
S

T N Z δ=  

(i) The joint distribution of ,Z e ′    is given by  ( ) [ ]1, ,0 , ,Nl Z e Sα δ+
 ′′= Σ 
   

with 2 1 , ,Diag P
N

σ  ∑ =  
 

 a distribution  1N+


  on  of rank N.  

(ii) The marginals are ( )
2

1 ,L Z S
N

α σδ
 

=  
  centered at δ  with scale 

parameter 
2

,
N
σ  and ( ) ( )2

1 0, ,L e S Pα σ=  the latter a distribution on N


 of 
rank N-1 centered at 0  with scale parameters  2 .Pσ

(iii) 2 2U S σ=  has density ( ) ( ) ( )
0

; , ; , ;f u v h u v s d sα α
∞

= Ψ∫  with ( ); ,h u v s   
as the scaled central chi–squared density having ( )1v N= −   degrees of 
freedom, and with ( );s αΨ  as a mixing distribution from Lemma 1.

(iv) The test for 0 0 1 0: : ,H vsHδ δ δ δ= ≠  using ( )
222

0 ,
S

T N Z δ= −  is 
exact in level and power as its normal - theory version, for all  
( ) ( )21 ,N N NL Z S Iα δ σ∈  with 0 2.α< ≤   

Proof: Take [ ]1 ,NH N P′ =  of order ( )1 ;N N× +    let , .u Z e HZ ′= =    Its 
chfs  with argument [ ]1, , NS S S +′ ′= 

  is ( ) ( )( ) ( ) ( )i H sis u iv ZE e E e z E e z vφ′′ ′= = =  with argument  v H s′=
replacing t  .

Conclusion (i) follows on substituting into ( ) ( )1
2Ni t t t

z t e
αδ

φ
′ ′−

=   to 
give ( ) ( ) ( ) 2

21 1is s HH s is s s
u s e e

α
α

δ δφ ′ ′ ′− − ∑= =  with 2 1 ,Diag P
N

σ  ∑ =  
 

 since P  is 
idempotent, so that  ( ) [ ]( )1 ,0 ,NL u Sα δ+ ′= ∑  as claimed. 

Conclusion (ii) follows directly.

Conclusions (iii) and (iv) attribute to Hartman & Wintner [12] 
through Lemma 1(ii). Specifically, a change of variables  2u e S→ →

behind the integral on the right of Lemma 1(ii) gives the conditional 
density for ( )2 ,L S s  namely the scaled chi–squared density ( ); ,h u v s  
depending on ,s  so that integrating with respect to ( );d s αΨ  as in 
Lemma 1(ii) gives conclusion (iii). In like manner, the change of 
variables ( ) ( ) ( )

222 2
0,

S
T u Z S T N Z δ→ → = −  behind the integral in Lemma 

1(ii) gives the conditional density for ( )2 .L T s  But this statistic is scale–
invariant and thus independent of the mixing distribution ( ); ,s αΨ  
so that ( ) ( )2 2L T s L T=  unconditionally, the latter being its conventional 
normal–theory distribution  ( ) ( )2 2 ; , ,L T t u v λ= with ( )

22
0 .N σλ δ δ= −  

Remark 3: Despite the diagonal structure 1 ,Diag P
N

 ∑ =  
 

 in 
conclusion (i), ( ),Z e  are independent if and only if Gaussian at  2α =
on applying Maxwell’s (1860) result. The mixtures of Lemma 1 and 
their consequences deserve further mention. Given ( ) ( )2, ,N NL Y N Iδ σ=  
the multivariate t–distribution of [ ]1 , , NY S Y S  is known to be spherical 
S Sα  Cauchy at 1.α =  The following gives details regarding these 
mixtures explicitly for the Cauchy case. 

Corollary 1: Consider ( ) ( ), .n nL Z S Iα δ∈   The Cauchy  chfs   and density 
functions at 1α =  may be represented as follows. 

(i) ( )L Z  in ( )1 ,n nS Iδ  has the mixing distribution ( ) ( );1 ;1s sχΨ =  at  1v =
namely, the chi–distribution with density ( ) ( )

2
2

221 2; 2vv sh s v s e v−− −= Γ  

having  degrees of freedom.

(ii) Beginning with ( ) 0; ,N nf z Iα δ ∞= ∫   ( ) ( )1; , ; ,ngN z s I d sδ α− Ψ the 
spherical Cauchy density is ( ) ( )

( )
( ) ( )

1
2

2

1 2
; , ,1 1 .

1
2

N

N n N

N
f u I u uδ δ δ

π

+
−Γ +    ′= + − −   Γ 

 

 Proof: The conclusions follow on specializing the mixing distribution 
for the multi variate t  at 1v =  degree of freedom, and its known density 
at  1.v =

Conclusion
In practice scale mixtures may arise as conditionally  iid  Gaussian 

variables subject to scaling in a random environment. Linear models 
so structured are treated in Zellner [15] under multivariate Student t  
in lieu of Gaussian errors. The present study complements that work, 
eschewing moments through spherical Cauchy errors having 1v =  
degree of freedom. In summary, we have modeled errors not as iid,  but 
instead as spherical stableα −  errors. The former holds little promise 
as noted, where even the consistency of NZ  for δ  requires that  
1 2,α< ≤ yet α  typically is unknown. On the other hand, spherical 

stableα −   errors offer a reasonable resolution to open topics in 
linear inference without moments. Not only is NZ  consistent for  δ  
for all ( ]0,2 ,α ∈  but a mixture representation is given for the density 
of 2 2 .S σ  Moreover, a corresponding representation for Student’s 2T  
exploits its scale invariance to show that tests using 2T  are exact in 
level and power, as for Gaussian errors, for all ( ) ( )21 ,N N NL Z S Iα δ σ=  
with 0 2.α< ≤
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