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Introduction

The doses of chemotherapy selected in clinical practice 
are routinely obtained by the Maximum Tolerated Dose (MTD) 
approaches. It is believed that an increase in dose will lead to 
an increase in tumor response. The dose selected for phase 2 
and further studies is one dose level below the MTD level in 
Phase I studies [1-3]. However, this conventional dosing of 
chemotherapy has routinely compromised the QOL of patients 
and may lead to a selection of chemo-resistant clones [4-6]. 
The Metronomic Chemotherapy (MC) has been suggested as an 
alternative strategy to overcome such effects. The strategy in 
MC is to administer subtoxic doses (i.e.nearly of MTD) of same 
chemotherapy drugs for long periods to target angiogenesis 
[7-10]. The effect on angiogenesis is achieved by targeting 
Circulating Endothelial Cell(CEC). The effect on CEC is restricted 
to an antiangiogenic window in tumor cell line studies [1,11,12].

In tumor cell line studies a drug would start exerting an 
antiangiogenic effect at a low dose level and it would continue to 
exert it till an upper dose level. Drug levels below the lower dose 
level and above the upper dose level won’t exert an antiangiogenic 
effect. The challenge is to establish the optimal biological dose 
(OBD) of MC which would have maximized inhibiting effect on 
CEC. The inhibiting effect of CEC is required to measure with 

repeated manners and can be considered as Surrogate Marker  
of Angiogenesis [13]. The failure to achieve an inhibiting effect 
of CEC proceeds to the recurrence of tumor and further death to 
a patient. The bridged problems are the determination of OBD of 
MC through consideration of repeatedly measured CEC maker’s 
values on time-to-event data. However, in this paper, we will 
concentrate on reasonably two best performing OBD and their 
effectiveness to maintain continuously measured CEC maker’s 
values on angiogenesis and the further time-to-event rate among 
the treated patients with specific MC dose.

Methods
The simulation techniques adopted within this study are 

given below. All simulations were carried through the freely 
available R statistical software, thus allowing all researchers 
access to any suitable methods identified.

Generating the datasets

There is no consensus on the most appropriate approach 
to surrogate marker response with effective metronomic 
chemotherapy. Therefore a simulation study was performed 
to assess the OBD on the performance of a MC. Datasets were 
generated to resemble the skewed distributions seen in a 
motivating head and neck cancer (HNC) example. The CEC 
count is considered as time dependent surrogate marker. The 
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baseline CEC count in the blood of HNC patients incorporated 
from normal distribution (with mean 114 CEC per ml; SD 15) for 
a total of 220 patients. The dose 1 and dose 2 are considered as 
OBD in this work with simplicity [14]. However, it is possible to 
consider several doses and obtain the best performing optimum 
dose based on the controlled level of surrogate marker i.e. CEC. 
The ID’s of 200 patients were randomly assigned to the dose 1 
and dose 2 with metronomic chemotherapy from the binomial 
distribution. The baseline measurement of four covariates 
named with ECOG (coded 0 and 1), HB Level(<12 and 12), 
Tumor size (mean 4:0 cm; SD 2) and Histological grades (well, 
moderate and poor)were generated randomly for a total of 
220 patients and merged with the excel sheet. The ECOG, HB 
level and Histological grade were generated from binomial and 
multinomial distribution respectively. 

The baseline tumor sizes were obtained through normal 
distribution. Further, the five follow-up visits observations for 
CEC and tumor size were assumed to be distributed with the 
normal distribution. The mean value for CEC at time points t1; 
t2; t3; t4; t5 were assigned with mean 124,128,135,126,120 
respectively. The SD was considered for each time points of CEC 
values to be generated as random measurements. The tumor 
size assigned with mean 4:0; 3:4; 3:2; 3:0; 3:2 with SD (2) for 
the time points t1; t2; t3; t4; and t5 respectively. The continuous 
covariates were postulated with a linear effect on the log relative 
hazard. An exponential distribution with a hazard rate of 0.0003 
was considered to generate the uncensored survival duration. 
It is approximated with the hazard rate in the HNC [15]. The 
censored duration was also generated from the exponential 
distribution with a hazard rate of 0.0003 with approximately 
45% censored observations. The required survival duration 
was defined for each cases as the minimum of the uncensored 
and censored survival duration and the event status defined 
accordingly. The recurrence is considered as event of interest. 
The survival duration is represented as progression free survival 
(PFS).

Model

The  thi  subject’s longitudinal measurement at time 

point t is denoted as ( ).iY t  Further, the time to occurrence of 

event is defined as  iT  and iC  respectively. The term  iT
 and 

iC  are defined as time to outcome-dependent and outcome-
independent dropout respectively. The measured data is defined 

( ){ }, 1,....., ,ij ij iY Y t j n= =  as  for the specific time point .ijt  It is 

assumed that, min( , ),i i iU T C=   the observed event time, and  the 
corresponding event indicator, and the measured observation is 

defined as ( ){ }, 1,....., ,ij ij iY Y t j n= =  the longitudinal responses at 

the specific occasions ijt  at which measurements were taken. The 
subject-specific longitudinal trajectories is defined as

 ( ) ( )ij i iY m t t= +∈   (1)

 ( ) ( ) ( )' '
i t i im t x t z t bβ= +

 
(2)

        ( ) 2(0, ) (0, )
iib t N D N σ∈ 

(3)

In equation (2) the term  ( )ix t
 
is used as fixed effects for 

the  β  and ( )iz t  as the random effects ib t  . The error terms  
are time-dependent and assumed that the errors are mutually 
independent with random effects. The random error is assumed 
with normally distributed with mean zero and variance 2σ  . 

Thereafter, we will give emphasize on ( )im t  as a component of  

( )
i

Y t . The risk of event is defined as

  ( )( ) { }0, lim Pr , ( )i i i dt i ih t M t t T dt T t M t dtω →= ≤ < + ≥
 
(4)

 ( )( ) ( ) ( ){ }0 exp , 0,i i i ih t M t h t m t tγ ω α′= + >  (5)

The unobserved longitudinal process up to time point  is 

defined as  ( ) { }( ),0 .i iM t m s s t= ≤ ≤
 
The baseline risk function 

and covariates are defined as ( )0h ⋅  and  with regression 

coefficients γ  . The parameter α  is used to facilitate the 
effect of the underlying longitudinal outcome on the risk for 
an event. The relative change in the risk for an event at time t   

is covered through  exp( )α  as one unit increase in ( )im t  at the 
same time point. It shows that the relative risk for an event at 
time t   depends only on the current value of the time-dependent 

marker ( )im t . It stands that the survival function depends on 

the whole longitudinal response history ( )iM t  , Mi(t),through 
the relation between the survival function and the cumulative 
hazard function, i.e., 

( ) ( )( ) ( )( ) { }( )0 0Pr exp ( )exp ( )t
i i i i i iS t t M t T t M t h s m s dsγ ω α′= > = − ∫ +  (6)

The estimation of ( )iS t  is dependent on the estimation of 

( )iM t  . Therefore, it is important to specify the time dependent 

structure in ( )ix t   and  ( )iz t  
can be considered with high-

dimensional vector of functions with time t . The splines as a 
vector of choice is preferred due to their numerical suitability 
and local nature [16]. The spline based approach is already 
adopted and found suitable like B-splines with multidimensional 
random effects [17,18] and cubic splines [19]. The joint model is 
defined as
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  ( )( ) ( )
i i iY t m t t= +∈  

(7)

It is assumed with ( )iu t  is independent with ib  and it 

follows mean-zero with stochastic process. The error term  ( )i t∈

, and  ( )im t  has the mixed-effects model structure as defined in 
equation (1) and (2). The latent stationary Gaussian process 
through shared processes [20] and Ornstein-Uhlenbeck Process 
[21] on joint modeling have adopted and those approaches 
found appropriate with different dynamic biological scenario 
that generated with data. The subject specific trajectory is 

dedicated through time independent random effects ib  alone. 
It involves that the shape of the longitudinal pro le of each 
subject is natural feature of this subject that is constant in time. 
It is possible to generate indistinguishable fits to the data, if the 

serial correlation term ( )iu t   has not been addressed properly 
by random-effects structure under the consideration of linear 
mixed model. However, it is difficult to address random effect 
and serial correlation simultaneously through a single model. 
It is easier to consider with random-effects by design matrix 

iz . It is natural practice to avoid the consideration of specific 

distribution for the function ( )0h ⋅
 
of  to withdraw the impact of 

misspecifying the distribution of survival times. Incase of joint 
modeling it leads to underestimate of the parameter of interest 

[22]. It is required to define ( )0h ⋅ . It can be linked with risk 
function corresponding to an know parametric distribution or 
flexible parametric distribution at baseline risk function [23-25].

The objectives of this study raised the challenges. For 
instance, the subject with controlled CEC value may have 
controlled tumor growth, having lesser risk of recurrence and 
relatively lesser risk of death due to cancer. It can be defined 
as “nonignorable” missing data [26,27]. The generic attempt is 
to apply longitudinal data model through consideration of CEC 
value changes, but it may generate biased estimates. The Cox PH 
model can be considered to explore the relation between CEC 
value (i.e. as time-dependent covariate) and time to recurrence 

or death, when the true CEC trajectory ( )i iY T  value is known to 
us. There are two more challenges. First, the CEC value is prone 
to be affected with considerable amount of measurement error 
due to both biological variability and presences of laboratory. 
The widely used method is to substitutes the observed time-
dependent covariate for the true covariate values in the PH 
model. However, this method can leads to biased estimates of 
the relative risk parameters and it can leads towards biased 
estimates of the relative risk parameters on measurement error 
[28,29]. Secondly, the CEC value observed intermittently, it is 
not feasible(due to costly procedure) to repeatedly measured 
at the exact time when failure event occurs for the individual 
in corresponding risk group. The normal procedure is to 
consideration of “Last Observation Carry Forward (LOCF)” as 

a representative of future CEC value from past measurement. 
Although it is not robust procedure because time to event and 
corresponding true CEC value will not be there to be correlated.

The LOCF method fails to consider the measurement error, 
it also overlooks the possible trend of the CEC, resulting very 
inferior inputs about missing markers values. It leads to poor 
estimates of the relative risk of parameters. The measurement 
error can be handled with smoothing technique. The regression 
calibration is suitable to capture the available trend of the 
covariates over time and thereafter impute the missing values 
of covariates for individuals at risk. The imputed values can be 

adopted in the disease risk model if they are fitting *( )iY t   at the 
time of each event. This procedure can be adopted through Cox 
PH model and mixed effect modeling. However, there are certain 
chances to get the biased results and the estimates of the risk 
parameters associated with the longitudinal data may not be 
true, particularly for the relatively sparse longitudinal data. 
We tried to attempt with joint modeling framework through 
consideration of longitudinal and time-to-event data analysis. 

The idea is to maximizing the likelihood ,i i iT Y M     in terms 
of covariate process and time-to-event data. The informative 
drop-out assumed to be adjusted with survival modeling, 
and thereafter unbiased information about the longitudinal 
covariates were included into the survival model. It helped us 
to make joint between the failure time with the longitudinal 
surogate marker. The joint modeling is attempted to build the 
robust estimates of the parameter through modeling [27,28].

Joint model

A separate term 
in  as unobserved latent variables is induced 

to define the relation between surogate marker

process and failure times on conditionally independent given  

with the baseline covariates iM  . The likelihood is formed with 

  , , , ,i i i i i i i i i i i i i iT Y M T Y n M d n M T n M d n M  =     =             ∫ ∫  
(8)

It is required to specify the survival submodel ,i i iT Y M    , 

longitudinal submodel ,i i iY n M    and latent variable model  in  
separately to make relation between the two submodels. 

Survival submodel
The survival submodel is defined as 

  { }0( ) ( ) exp ( , )T T
i i it t q t n Mλ λ α γ= +

 
(9)

The term  
0 ( )tλ  used to define the baseline risk function, 

and  ( ).,..q  is a vector function of time and the latent variables 

in  ,   Tγ  are a vector of regression coefficients associated with 
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baseline covariates  
iM . The term ( , )iq t n   is used to define the 

joint model with *( )iY t  . It is assumed that the risk of event at 
time t  depends only on the current value of the longitudinal 
process. There are different option to specify the distribution of 

the baseline hazard function 0 ( )tλ   under the parametric setup 
like (the Weibull, the log-normal, the Gompertz, and the Gamma 
distributions).

Longitudinal submodel

The continuous value of marker’s ( )*( )iY t   is defined through 
random effects as :

 ( )*( ) ( ); ,
i

T
i i i iY t b f t b M N bµ= Σ

 
(10)

The term ( )if t  is used to define as the function  of time t  

for  q  elements. This equation further modified with through 

consideration of simple linear random effects model for  ( )if t  as

 *
0 1( )i i iY t b b t= +  (11)

The terms 
1ib  and 0ib  are defined for slope and subject-

specific random intercept respectively. It is feasible to consider 

random effects term ib  as latent variable in  [19,17,30,18].

Joint Likelihood formulation and assumptions
The complete log-likelihood conditioned on baseline 

covariates 
iM  is defined as 

( ) 2
01 1

log , , , , ( , ( , , )
inN

c i i i i ij i b ii j

l h T b M h Y b h b Mδ λ α σ µ
=

=

  
= Σ Σ  

   
∏  (12)

Where

 ( ) ( ) ( )21
2 2 2

2
( )

, 2 exp 2

T
ij i ij

ij i

Y b f t
h Y b σ πσ σ

−  − − =  
  

 

(13)

is used to define the density of ijY   at time  ijt . and

 	

( ) ( ) ( )2
1

2
2

( )
, , 2 exp 2

T
ij i ijq

i i

Y b f t
h b b Mµ π σ

−
 − − Σ = Σ  
  

 

(14)

is adopted as density of the random effects  ib  and the part  

( )0, , , ,i i i ih T b Mδ λ α γ
 
is used as the density for the survival data. 

It is denoted as 

] {{ }0 00
( ) exp ( ) exp exp ( )ii

TT T
i i i i i i i iT b f T M b f u M duδλ α γ λ α γ + − +  ∫

 The random effect part  are latent and not observed, the log-
likelihood for the observed data is defined as

 ( ) 2
0 01

1

log , , , , , ( , ) ( , , )
inN

i i i i ij i i i ii
j

l h T b M h Y b h b b M dbδ λ α γ σ
=

=

  = Σ Σ    
∏∫  (15)

It is assumed that the observed marker measurement *( )iY t  
is dependent on the earlier time measurements

With { }1,......i ikY Y   (where  ikt t< ). The latent random effects  

ib  is considered free from the future time point measurement 

of  ( )iY t .

It is also assumed that the observed marker history 

{ }1,......i ikY Y  (where ikt t<  ) and covariates  
iM  are independent 

with latent marker process *( )iY t  for time point t. 

Bayesian methods
The parameters of interest are estimated through Bayesian 

approach on joint modeling. The prior distribution θ  of  is 

defined as 
0

( )h θ θ  through the support of hyperparameters 
0

θ  . 
The joint posterior distribution and latent random effects model 
is defined as 	

( , , , , ; 1,......, )i i i i ih b Y M T i Nθ δ α=

2
0 0

1 1

( , , , , , ) ( , ) ( , , ) ( )
inN

i i i ij i i i
i j

h T b M h Y b h b b M hδ λ α γ σ θ θ
= =

  
∑  

   
∏ ∏   (16)

The unknown parameters and latent random effects were 
obtained through Markov chain Monte Carlo algorithm, using 
the Gibbs sampler [31-34].

The Gibbs sampling procedure provides the iterative 
sampling from the full conditional distribution of each

parameter given the current assignment of all other 
parameters and data. The convergence was assessed through the 
means, medians and variance of the Gibbs samples, and graphs 
of the empirical distributions. This procedure provide us to 
borrow strength from experts and incorporate this information 
in the current analysis and it also permit full and exact posterior 
inference for any parameter or predictive quantity of interest.

Estimation
The joint distribution with the time-to-event and longitudinal 

out comes is defined with  { }, , .i i iP u Yδ  
It is

assumed that the vector of time independent random 

effects  
ib  is shared with longitudinal and survival procedure. 
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The random effects part is used to make association between 
the time-to-event and longitudinal outcomes. The correlation 
between the repeated measurements is considered as conditional 
independence. It defined as 

( ) ( ), , ; , ; ( , )i i i i i i i i ip U y b p U b p y bδ θ δ θ θ=   (17)

 {{ }( , ) ( ) ; ,i i i ij i
j

p y b p p y t bθ θ=∏  (18)

The term θ  is the vector parameter, iy  is the 1in ×  assigned 

as longitudinal vector for the responses with thi  subject, and 

( )p ⋅   provides an appropriate probability density function. It 
is assumed that the longitudinal and survival submodels both 
share the same random effects (the shared parameter modeling). 
The conditional independence assumptions of the joint log-
likelihood contribution for the thi   is defined as

( ) ( ) { }log , , ; log , ; ( ) ; ( ; )i i i i i i i ij i i ip U y p U b p y t b p b dbδ θ δ θ θ θ =  ∏∫   (19)

The likelihood of the survival section is defined as 

 ( ) { }, ; ( ( ); ) ( ( ); )i

i i i i i i i i i i ip U b h U M U S U M U
δ

δ θ θ θ=  (20)

The survival function  ( )ih ⋅  for { }( ) ;i ij ip y t b θ  as the univariate 

normal density for the longitudinal responses, and  ( ; )ip b θ  is 
the multivariate normal density for the random effects. The log-
likelihood function with respect to is a difficult. The challenge is 
integral with the random effects and define the survival function. 
However, the Monte Carlo has been attempted under the joint 
modeling approach [20,35,36] and there are further extension 
through Laplace approximation [17]. In this work, we attempted 
and considered the random effects to deal with ‘missing data’.

Handling with missing data

The missing data mechanism is defined through consideration 
of conditional distribution of the time-to-dropout condition to 

the complete vector of longitudinal outcomes 0( , ).m
i iy y   

The observed part (consisted with all observed 
measurement) is defined as   and the missing part is defined 

{ }0 ( ) : , 1,.... )i i ij ij i iy y t t T j n= < =
 
as

 { }( ) : , 1,.....m
i i ij ij i iy y t t T j n′= ≥ =

 
(21)

It includes the observed measurements taken until the end 
of the study. The dropout mechanism adopted under the joint 
model is 

( ) ( )0 0, ; , , ,m m
i i i i i i ip T y y p T b y y dbθ θ= ∫

 ( )0, , ,m
i i i ip T b y y dbθ= ∫     (22)

( ) ( )0 0, , , , ,m m
i i i i i i ip T b y y p b y y dbθ θ= ∫

 The NMAR technique is considered to define posterior 
distribution of the random effects  ( )0 , ,m

i i ip b y y θ  tohandle the 

time dependent dropout  m
iY . The single random effect ( )ib   

component is adopted to address the survival and longitudinal 
sub-models jointly [37-39]. It is important to make relation 
between α  and missing data procedure. The joint probability 
of the missing data and the longitudinal processes is defined as: 

   ( ) ( ) ( ), , , , , ; ,i i i i i t i y bp U y p U p yδ θ δ θ θ θ=
 

( ) ( ), , ( ; ) ;i i t i i y i b ip U p y b p b dbδ θ θ θ= ∫  
(23)

The defined parameter of the event time is defined with   

( ), , .t y bθ θ θ θ ′′ ′ ′=  
Further, the random effect part is

defined as 
bθ  and 

yθ    parameter for longitudinal outcomes. 
Initially, the parameters for the two submodel estimated 
separately. The log-likelihood for the longitudinal process is 

defined with  ( ) ( )log ; .y i i yl p yθ θ= Σ  It is also applicable for 
MAR and it is assumed that the dropout data is dependent 
on observed response. If it is assumed that 0α =  then it can 
served as MCAR mechanism.

The observed data under the consideration of log-likelihood 

of the complete data is defined as { }0 , m
i iy y   for the longitudinal 

outcome:

( ) 11 log ( , , ; )n m m
i i i i ip U y dyθ δ θ== Σ ∫

( ) ( )0
1
log , , , ; ;n m m

i i i i i i i ii
p U y y b p b dy dbδ θ θ

=
∫∑ ∫
( )1 log , ;n

i i ip bδ θ=Σ ∫

 ( ) ( )1 log , , ; ;n
i i i i i ip U b p b dbδ θ θ=Σ ∫  (24)

It is to be noted that the missing longitudinal processes  

m
iy  is involved as the density of the longitudinal sub-model. 

Incase the dropout is intermittently missing, then the likelihood 
of a joint model can be easily assigned without considering 
integration with respect to the missing outcomes. The subject’s 
number of repeated measurement increases then the there is 
limited effect about miss-specification of the random effect on 

inference [40-42]. Suppose, in the longitudinal model  ( )im t  is 
linked with the risk of event at time point t with parameter α  
through the association. It is possible to consider different types 
of parameterization to link the longitudinal outcomes and risk 
of dropout.

 { }0 1 2( ) ( ) exp ( ), , ; ,i i i i ih t h t f m t bγ ω ω α′= +     
(25)
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The term ( )f ⋅  is assigned as a function of the true level of the 
marker  ( ),im ⋅  with the random effects 

ib  and as extra covariates  

2iω . The general formulation of α  can potentially defined as a 
vector of the parameters. 

Random-effect Component

The longitudinal sub-model through the consideration of the 
linear predictor of the risk model is defined as 

 ( )0( ) ( ) expi ih t h t bγ ω α′ ′= +         
(26)

Where  is considered to make association between random 
effect and hazard rate function. It is assumed that the patients 
who have a lower size of tumor at baseline are more likely to 
increase in their longitudinal trajectories are less likely to 
experience the drop out. The random-intercepts and random-
slopes incorporated longitudinal sub-model is defined as 

 0 1 0 1( ) ( )i t i iy t b b t tβ β= + + + +∈       (27)

The relative risk sub-model with the time dependent slope 
is defined as

 ( ){ }0 2 1 1( ) ( ) expi i ih t h t γ ω α β β′= + +
     

(28)

For  Under this system the relative sub-model is defined as 

 ( )0 1 0 2 1( ) ( ) expi i i ih t h t b bγ ω α α′= + +
       

(29)

This model is flexible because if we consider , then the model 
provides the risk depends on the random-slopes component 
through linear mixed model.

Result
Markov chain Monte Carlo (MCMC) method which assumes 

multivariate normality has been used to impute

the missing values for all the variables in a data set with 
arbitrary missing data pattern. Haemoglobin, ECOG

grade and histological grade were used to impute the tumour 
size. Imputation of CEC values was done from

tumour size. The PROC MI statement is the required 
statement in the MI procedure for imputation. Available

options in the PROC MI statement are considered: 
METHOD=MCMC ,The CHAIN=MULTIPLE option, this

procedure uses multiple chains and completes the default 
200 burn-in iterations before the single imputation.

The 200 burn-in iterations are used to make the iterations 
converge to the stationary distribution before the

imputation. The option INITIAL=EM was used to get the 
starting means and covariance from available cases to commence 
the MCMC process. The resulting imputed CEC values which are 
almost similar in both the groups in all visits are used for joint 

modelling, extended Cox-modelling and Cox regression analysis 
[43-45]. 

Table 1: Baseline Characteristics.

Parameters Statistics OBD dose 
level 1

OBD dose 
level 2

Baseline Haemoglobin

>12 (%)η 277(25.41%) 277(25.41%)

<12 (%)η 273(24.59%) 282(25.41%)

Histological grade

0 (%)η 134(25.28%) 131(24.72%)

1 (%)η 255(24.76%) 260(25.24%)

2 (%)η 161(25.16%) 159(24.84%)

Baseline ECOG

0 (%)η 174(25.22%) 171(24.78%)

1 (%)η 376(24.9%) 379(25.1%)

N 110 110

Mean 133.22 133.3

STD 18.5 20.97

Min 88.2 91.6

Max 176.7 181.3

Tumor Size

N 110 110

Mean 3.6 3.12

STD 0.4 20.2

Min 2.9 2.7

Max 4.5 3.6

Table 1 summarizes baseline characteristics of patients 
receiving Metronomic Chemotherapy (MC). The baseline 
Haemoglobin level was less than 12 for 67(62:6%) patients in 
OBD dose level 1, whereas the baseline Haemoglobin level was 
less than 12 for 54(47:8%) patients in OBD dose level 2. The 
distribution of Histological grade is similar for both OBD dose 
levels. The number of patients with grade 0,1 and 2 are 21 (19.6) 
, 56 (52.3) and 30 (28.0) respectively in OBD dose level 1 where 
as the number of patients with grade 0 ,1 and 2 are 33 (29.2), 44 
(38.9) and 36 (31.9) respectively in dose level 2. The Baseline 
ECOG grade is 1 for 72(67:3%) patients in OBD dose level 1 
while it is 78(69:0%) in OBD dose level 2. The average (SD) value 
of Circulating Endothelial Cell (CEC) Biomarker is reported as 
124.3 (15.44) in dose level 1 and 122.4 (15.46) in dose level 2. 
The average (STD) tumour size is reported as 3.6 (1.14) in dose 
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level 1 and 3.4 (1.29) in dose level 2.

Table 2: describes the parameter estimates obtained through 
individual models and joint models. We observe that the CEC 

value has indeed a strong association with the risk for death for 
extended cox regression model.

Table 2: Parameters estimates through individual and joint models.

Parameters Extended cox model Joint model Cox regression

HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value

Dose 0.883 (0.593,1.316) 0.5402 1.080 (0.966,1.208) 0.1767 0.950 (0.639,1.412) 0.8

CEC Value 1.023(1.012,1.034) 0.0028 1.123(1.061,1.189) 0.0001

    In particular, a unit increase in the CEC value corresponds to a exp ( )=1.023 times increase in the risk for death (95% CI: 1.012,1.034). 

In the results for the event process for joint model, the parameter 
in (4.1) that measures the association between the true CEC 
value and the risk for death. The joint model also finds a strong 
association between the CEC value and the risk for death, with 
a unit increase in the marker corresponding to a  fold increase 
in the risk for death (95% CI: 1.061,1.189). Comparing the point 
estimates and the corresponding 95% confidence intervals 
from the extended Cox model and the joint model, we clearly 
observe non-negligible differences. Table 3 summarizes the 
characteristics of patients receiving Metronomic Chemotherapy 
(MC) in each visit. At visit 5, Haemoglobin level was less than 12 
for 32 (50.8) patients in OBD dose level 1, whereas the baseline 
Haemoglobin level was less than 12 for 33 (51.6)patients in OBD 
dose level 2. The number of patients with Histological grade 0 ,1 
and 2 are 17 (27.0), 32 (50.8) and 14 (22.2) respectively in OBD 
dose level 1 where as the number of patients with grade 0 ,1 and 
2 are 18 (28.1), 32 (50.0)and 14 (21.9) respectively in dose level 

2.The ECOG grade is 1 for 47 (74.6)patients in OBD dose level 1 
while it is 41 (64.1) in OBD dose level 2. The average (SD) value 
of Circulating Endothelial Cell (CEC) Biomarker is reported as 
122.5 (15.77) in dose level 1 and 123.6 (20.01) in dose level 2. 
The average (STD) tumour size is reported as 2.7 (0.78) in dose 
level 1 and 2.6 (0.62) in dose level 2. The average (SD) value of 
Circulating Endothelial Cell (CEC) Biomarker was 124.3 (15.44), 
136.8(15.34) , 151.9(16.11), 133.7(14.69) and 122.5(15.77) in 
visit 1 ,2,3,4 and 5 respectively in OBD dose level 1 while it is 
122.4 (15.46),136.7 (16.38), 155.7(17.10), 136.8(18.64) and 
123.6(20.01) in OBD dose level 2. The average (STD) tumour size 
was 3.6(1.14), 3.4(0.66), 151.9(16.11), 2.9(0.45) and 2.7(0.78) 
in visit 1 ,2,3,4 and 5 respectively in OBD dose level 1 while it is 
3.4 (1.29), 3.3 (0.76), 155.7(17.10), 2.9(0.44) and 2.6(0.62) in 
OBD dose level 2 [46] (Table 3 (Visit 5)).

Table 3: Summary of Parameters by visit -Imputed data through 
MCMC method.

Visit 1 Visit 2

Variables Category statistics Dose 0 Dose 1 P-value Dose 0 Dose 1 P-value

Haemoglobin > 12  (%)η 40(37.4) 59(52.2) 0.02** 50(46.7) 57(50.4) 0.58**

12 (%)η 67(62.6) 54(47.8) 57(53.3) 56(49.6)

Histological 
grade 0 (%)η 21(19.6) 33(29.2) 0.10** 21(19.6) 26(23.0) 0.65**

1 (%)η 56(52.3) 44(38.9) 47(43.9) 52(46.0)

2 (%)η 30(28.0) 36(31.9) 39(36.4) 35(31.0)

ECOG 0 (%)η 35(32.7) 35(31.0) 0.78** 28(26.2) 36(31.9) 0.35**

1 (%)η 72(67.3) 78(69.0) 79(73.8) 77(68.1)

N 107 113 107 113

Mean 124.3 122.4 0.36* 136.8 136.7 0.99

SD 15.44 15.46 15.34 16.38

Median 124.5 121 139.8 137.6

Min,Max 86.8,161.9 76.7,179.1

Tumour size N 107 113 107 113

Mean 3.6 3.4 0.44 3.4 3.3 0.68
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SD 1.14 1.29 0.44 0.66

Median 4.1 4 3.6 3.6

Min,Max 1.1,4.9 1.1,5.0 1.7,4.2 1.0,4.4

Visit 3 Visit 4

Variables Category statistics Dose 0 Dose 1 P-value Dose 0 Dose 1 P-value

> 12 (%)η 38(35.5) 54(47.8) 0.06** 31(48.4) 28(40.6) 0.36**

  12 (%)η 69(64.5) 59(52.2) 33(51.6) 41(59.4)

Histological 
grade 0 (%)η 24(22.4) 26(23.0) 0.88** 13(20.3) 15(21.7) 0.96**

1 (%)η 46(43.0) 45(39.8) 35(54.7) 38(55.1)

2 (%)η 37(34.6) 42(37.2) 16(25.0) 16(23.2)

ECOG 0 (%)η 37(34.6) 34(30.1) 0.47** 27(42.2 ) 21(30.4) 0.15**

1 (%)η 70(65.4) 79(69.9) 37(57.8) 48(69.6)

CEC N 107 113 64 69

Mean 151.9 155.7 0.16 133.7 136.8 0.28*

SD 16.11 17.1 14.69 18.64

Median 153.7 156.6 134.4 135.3

Min , Max 107.9,189.0 104.8,201.8 103.0,170.9 95.3,181.9

Tumour size N 107 113 64 69

Mean 3.2 3.2 0.26 2.9 2.9 0.41

SD 0.42 0.48 0.45 0.44

Median 3.2 3.2 2.7 2.8

Min,Max 1.7,4.1 1.2,4.4 2.0,4.6 1.8,4.3

Visit 5

Haemoglobin > 12 (%)η 31(49.2) 31(48.4) 0.93**

 12 (%)η 32(50.8) 33(51.6)

Histological 
grade 0 (%)η 17(27.0) 18(28.1) 0.98**

1 (%)η 32(50.8) 32(50.0)

2 (%)η 14(22.2) 14(21.9)

ECOG 0 (%)η 16(25.4) 23(35.9) 0.19**

1 (%)η 47(74.6) 41(64.1)

CEC N 63 64

Mean 122.5 123.6 0.73*

SD 15.77 20.01

Median 121.6 121.4

Min , Max 83.9,161.2 82.7,178.4
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Tumour size N 63 64

Mean 2.7 2.6 0.82

SD 0.78 0.62

Median 2.4 2.3

Min , Max 1.7,5.1 1.7,4.0

Figure 1: (A) Longitudinal profiles for all patients. The solid lines 
depict the fitted subject-specific longitudinal profiles.
(B)Longitudinal profiles for Histological grade variable. The solid 
lines depict the fitted subject-specific longitudinal profiles.

An interesting characteristic of the Metronomic 
Chemotherapy (MC) data is the unusual shapes of the subject 
specific longitudinal progresses. In particular, Figure 1 A & 1B 
to Figure 2 C & 2D, exhibit longitudinal profiles for all patients, 
Histological grade, Baseline Haemoglobin and Baseline ECOG. 
The solid lines depict the fitted subject-specific longitudinal 
profiles. Figure 3E, exhibit the Longitudinal response 
measurements for Biomarker for six randomly selected 
patients (a=101, b=129, c=211, d=144, e=155 f=179) from the 
Metronomic Chemotherapy (MC) patient study. The line depicts 
the fitted subject-specific longitudinal profiles based on the 
joint model. The patient profile demonstrates highly nonlinear 
longitudinal profiles for biomarker, which evidently cannot be 
effectively described by simple structures, such as linear or 
quadratic progresses in time. This specific problem motivated 
us to apply joint model that aimed to capture the characteristics 
of the dataset at hand and reveal related information [47]. 

Figure 2: (C) Longitudinal profiles for Baseline Haemoglobin 
variable. The solid lines depict the fitted subject-specific longi-
tudinal profiles.
(D)Longitudinal profiles for Baseline ECOG variable. The solid 
lines depict the fitted subject-specific longitudinal profiles

Figure 3. Longitudinal response measurements for CEC 
Biomarkers for six randomly selected patients.

Figure 4: (F)Martigales residuals plot for subject -specific fitted 
values.
(G)Martingale residuals plot for subject specific fitted values by 
dose level.

To achieve this goal, we model flexibly the key components of 
the joint model while making standard parametric assumptions 
for the remaining parts. To further investigate the suitability of 
the chosen functional form for the CEC outcome, it is advisable 
to additionally check for systematic trends in the martingale 
residuals when we condition on other baseline covariates. 
Figure 4 (F) demonstrates Martingales residuals plot for subject 
-specific fitted values for overall treatment effect for Metronomic 
Chemotherapy (MC) patient study. Figure 4 (G) exhibits 
Martingale residuals versus the subject-specific fitted values 
of the CEC per dose level for the Metronomic Chemotherapy 
(MC) patient study. The black solid lines denote the fitted line. 
In this figure, Martingale residuals versus the subject-specific 
fitted values are displayed for dose level 1 on left side and dose 
level 2 on right side. An another type of residuals for survival 
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models, associated to the martingale residuals, is the Cox-Snell 
residuals. For each subject, these are calculated as the value 
of the estimated cumulative survival function evaluated at the 
observed event time. This cumulative survival will have a unit 
exponential distribution. This identity implies that we can check 
the overall goodness-of-fit by checking whether the Cox-Snell 
residuals are exponentially distributed. In Figure 5 (H), The 
black solid line denotes the

Figure 5: (H) Survival function for cox-snell residuals. (I) Surviv-
al function of cox-snell residuals by dose level.

Kaplan-Meier estimate of the survival function of the 
residuals (with the dashed lines corresponding the 95%

pointwise confidence intervals), and the red solid line, the 
survival function of the unit exponential distribution. 

Figure 6: Diagnostic plots.

Figure 7: Comparison of Subject specific and Martingal residu-
als for fitted values.

Figure 5 (I) demonstrates survival function for cox-snell 
residuals by dose level. The black solid line denotes the Kaplan-
Meier estimate of the survival function of the residuals for 
each dose level, and the red solid line, the survival function of 
the unit exponential distribution. Figure 6 exhibits diagnostic 
plots, which is constructed to inspect the _t of joint models 
with reference distribution of the residuals for the longitudinal 
process is affected by the dropout. Figure 7 (K) compares the 
subject specific and Martingale residuals for fitted values.

Discussion and Conclusion
Low-dose chemotherapy drugs are more effective to 

suppress tumors by restraining tumor vessel growth and

preventing the repair of damaged vascular endothelial cells 
[48]. High dose chemotherapy drugs like Cisplatin

contributes to serious side effects [48]. The target of MC 
therapy is the vascular endothelial cells [47]. The growth 
of new vessels for a long run survival time treated with 
traditional maximum tolerated dose (MTD) through high dose 
chemotherapy has been confirmed [43]. The anti-angiogenic 
plays the important role as clinical potential. The metastasis 
and the growth of tumor cells depends on neovascularization 
[45]. The anti-tumor drugs could cause inhibition of tumor 
neovascularity [46].The low-dose chemotherapy drugs, as one-
tenth of the MTD, administered continuously and frequently, 
could selectively suppress vessel growth in tumor tissues and 
prevent the repair of damaged vascular endothelial cells (VECs) 
[48]. This model is appropriate in dose-response modeling 
having the avoidable level of toxicity in any clinical trial. Based 
on our knowledge this is the first statistical methodological 
attempt that has been considered to deal with OBD with time-
to-event and longitudinal data in MC trial. It is expected that 
this above mentioned methods will be useful for OBD detection 
in MC trials in future as well. The assumption about relation 
between missing data and unobserved longitudinal process is 
difficult [42,49]. Our proposed approach proceeds with random 
effect model. However, the random effect parts assumption and 
distribution is also difficult and there are previous attempt on 
that aspect as well. The random effect section is suitable to 
handle with flexible model through the class of densities [50], 
and semi-parametric estimation procedure [51]. However, there 
are some high amounts of standard error generation problem for 
miss-specification of parameter distribution. The results here 
suggest that metronomic chemotherapy can be efficacious in 
improving relapse free survival and survival, and have much less 
toxicity. This elaborated method can be considered to measure 
the effect CEC in long run improvement of overall survival (i.e., 
study initiation to death). This is an initial attempt to work 
with metronomic chemotherapy on this critical issue that still 
needs detailed exploration. This is a topic of current exploration. 
The results presented here to maintain the controlled level of 
CEC, can be extended to the desire level of PFS and OS through 
metronomic chemotherapy.
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