Introduction

During pregnancy 30-50% of women become anaemic and mostly because of iron deficiency anaemia. The capacity of oxygen carrying of red blood cells decreased to fulfill the body requirements in anaemia which is a pathological condition. The hematological disease in developing countries is Iron Deficiency Anaemia (IDA) affecting 30% of world population [1]. People living in Indian subcontinent, middle east and central Asia are more affected by iron deficiency anaemia [2]. 3.5%-10% quoted prevalence of Beta Thalassemia Trait (BTT) in India [3,4].

Iron deficiency anaemia commonly present in Pakistan especially in female and young children, 70-80% and 6% of pregnant population having iron deficiency anaemia and Beta-Thalassemia Trait (BTT) respectively [5]. There is huge English research data with few Indian reports available about presence of concomitant BTT and iron deficiency. Many studies have shown the occurrence of iron deficiency anaemia in patients with beta thalassemia trait [6-8].
There is a large range of IDA in pregnancy from iron deficiency without anemia to apparent anemia [9]. In clinical practice the identification, treatment and possible prevention for iron deficiency anemia with iron supplementation is straightforward while BTT is usually diagnosed only after failure of treatment for IDA during pregnancy or after delivery [10]. Beta Thalassemia is the most common type of hemoglobinopathies transmitted by heredity found in people of Pakistan and so far more than 200 variables have been diagnosed [11]. Beta Thalassemia Trait (BTT) patients are usually asymptomatic and inconspicuous of their carrier state unless diagnosed by testing. The rationale of this study is that due to lack of awareness and hospital facilities pregnant patients of moderate anaemia are not screened properly, either they are only iron deficiency anaemic or β-Thalassemia or combined IDA & β-Thalassemia.

Methodology

The study design is cross-sectional, observational study and was conducted at Isra University, Al-Tibri Medical College & Hospital Karachi Campus in Gynae & Obs (OPD) from 1st June to 31st Aug 2016. Approval of the study was taken from (IERC) Institute Research Ethical Committee of ATMC & H. The sample size calculated from the software G power version 3.0.10. The required sample size found to be 140 cases through one tailed t-test with alpha error 0.05 and power of test (1-β err prob) was used to be 0.7 and 95% confidence interval. Non-probability purposive sampling method was used for the selection of patients. All pregnant women age 18-45 years and at any gestational age having Ha% level 7-10gm/dl were included in the study. Non pregnant patient and pregnant women with hemoglobin 10-11gm/dl were excluded. All pregnant women who were visiting first time for antenatal visits their complete blood count was performed on hematology analyzer auto machine (Nihon Kohden Mek 6410k). On the basis of result of complete blood count if Ha% level falls in between 7-10gm/ dl, the pregnant ladies were enrolled for the study. A written consent was taken and Ha% electrophoresis HPLC Method on ADAMS ARKRAY Analyzer and serum ferritin by Architect 8001 was done to screen out the presence of two diseases. Data was analyzed through the software SPSS-V.20. The entire continuous variable was presented as Mean±SD. The entire categorical variables were shown in frequency and percentages.

Results

During the period of 3 months 140 women with moderate anemia in antenatal clinic recruited for testing serum ferritin to label as iron deficiency anemia and Ha% electrophoresis for Beta thalassemia trait. The age of the women included ranges from 18-45 years Table 1 show the presence of moderate anemia in relation with the age of pregnant female in which most of the patients 75 (53%) belongs to 18-30 years of age group.

In Table 2 from 140 pregnant women with moderate anemia, 70 (50%) were multigravida, 40 (28.5%) were grand multigravida and 30 (21%) were primigravida. In Table 3 from total number of patients 140, 128 (91.4%) patients have only iron deficiency anemia, 4 (2.8%) have only Beta thalassemia and 8 (5.7%) having combined IDA & BTT.

Table 1: patients with moderate anaemia in relation with age.

<table>
<thead>
<tr>
<th>Age</th>
<th>Number of patients with moderate anaemia (140)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-30 years</td>
<td>75 (53%)</td>
</tr>
<tr>
<td>30-40 Years</td>
<td>55 (39%)</td>
</tr>
<tr>
<td>41-45 Years</td>
<td>10 (7.1%)</td>
</tr>
</tbody>
</table>

Table 2: patients with moderate anaemia in relation with parity.

<table>
<thead>
<tr>
<th>Parity</th>
<th>Number of patients (140)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primi</td>
<td>30 (21%)</td>
</tr>
<tr>
<td>Multi</td>
<td>70 (50%)</td>
</tr>
<tr>
<td>Grand Multi</td>
<td>40 (28%)</td>
</tr>
</tbody>
</table>

Table 3: Number of patients having iron deficiency anaemia only, β-Thalassemia trait and combined iron deficiency anaemia & β-Thalassemia.

<table>
<thead>
<tr>
<th>Type of anaemia</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Deficiency Anemia (IDA)</td>
<td>128 (91.4%)</td>
</tr>
<tr>
<td>B- Thalassemia Trait only (BTT)</td>
<td>4 (2.8%)</td>
</tr>
<tr>
<td>Combined IDA + BTT</td>
<td>8 (5.7%)</td>
</tr>
</tbody>
</table>

Discussion

Iron Deficiency Anemia (IDA) and β-Thalassemia (BTT) are the two main types of hypochromic microcytic anemia [12,13]. The most common nutritional disorder worldwide is iron deficiency anemia which contributes approximately one half from all anemic cases. It is due to decreased red blood cell production because of diminished iron stores in the body [14,15]. The thalassemia syndrome is inherited disorder due to globin chain synthesis abnormality [16,17]. The conventional test for IDA is serum ferritin and for thalassemia trait is hemoglobin electrophoresis [18,13].

WHO 2008, Global epidemiology of hematological disorder and derived service indicators stated that β-Thalassemia Trait varies from 1.7 to 9% worldwide and 1-7% are β-thalassemia carrier in Pakistan, the same result shows by Guler E et al. in their study [19,20]. In present study β-thalassemia trait are 2.8% in our setup in Pakistan. Health Survey for England (HSE) data from 2004 proved that Indian women has highest prevalence of anemia 29% while 16% in Black Caribbean women and 6-7% in Chinese [21]. According to agency for health care research of screening of iron deficiency anemia in childhood and pregnancy, the prevalence data specific to iron deficiency anemia in pregnancy are limited [22]. A study conducted in 2005 by SchollTO reported high tendency of iron deficiency anemia as pregnancy advances in low income group 1.8% in the first trimester 8.2% in second trimester and 27.4% in the third trimester [23]. IDA has wide spread in under developed countries [24].
How to cite this article: Bushra Z, Kausar J, Farhana S, Muhammad F F. Frequency of Beta Thalassemia and Iron Deficiency Anemia in Moderate Anaemic Pregnant Patients Visiting to Tertiary Care. Biostat Biometrics Open Acc J. 2017: 2(4): 555593.

Data related to accurate prevalence of hemoglobin disorder in Pakistan is very limited. Ansari SH et al conducted a study in Karachi, reported 62.2% siblings are β-thalassemia carrier in first family members of the patients [26]. In Bangladesh β-thalassemia minor were 21.3% [27] and in India 57 out of 60 inspected cases on peripheral smears were found to have same type of thalassemia trait [28]. The patients of BTT can also develop ID and they need iron therapy but differentiation in both diseases is necessary for their respective management to avoid serious consequences of iron overload on one side and to exclude severe hemoglobinopathy in developing fetus/newborn.

Conclusion
Iron deficieny is the leading factor for anemia found in this study, but thalassemia trait also a significant contributing factor. The recommendation is to give proper treatment for only IDA, only β-thalassemia and co-existent cases.

References