L2-Boundedness of Integral Operators Involving $\genfrac{[}{]}{0pt}{}{3}{2}$

Shahid Mubeen

Department of Mathematics, University of Sargodha, Pakistan

Submission: May 5, 2017; **Published:** July 11, 2017

Corresponding author: Shahid Mubeen, Department of Mathematics, University of Sargodha, Pakistan, Email: smjhanda@gmail.com

Abstract

In this paper, we formulate the integral operators M_{s}^σ involving hypergeometric functions $\genfrac{[}{]}{0pt}{}{3}{2}$ as kernel. We discuss that these operators are composition of Erdlyi-Kober fractional integral operators. We also discuss the boundedness of these integral operators in L^2.

Keywords: Fractional integral transform; Liouville and Kober fractional integrals; Hypergeometric functions; Integral transform with hypergeometric functions in the kernel

There have made numerous investigations pertaining to integral operators involving various hypergeometric functions $\genfrac{[}{]}{0pt}{}{2}{1}$ and the confluent hypergeometric functions $\genfrac{[}{]}{0pt}{}{1}{1}$ as kernel [1-5]. Many authors also discussed the boundedness of integral operators and used their mapping properties to derive inversion processes [6].

In this paper, we use the integral representation of hypergeometric functions [7]

$$\frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}\int_0^1 t^{b-1}(1-s)^{c-b-1}(1-t)^{-a}dt$$

for formulating the integral operators of the following form

$$M_{s}^\sigma(f(x)) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}\int_0^1 t^{b-1}(1-s)^{c-b-1}(1-t)^{-a}dt$$

where

$$\frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}\int_0^1 t^{b-1}(1-s)^{c-b-1}(1-t)^{-a}dt$$

Here we start with a basic result that use later, see Karapetiants and Samko [8] and Okikiol

Lemma 1

Suppose that ψ is a measurable and homogeneous function of degree σ for all real numbers t i.e. $\psi(hx,ht) = |h|^{-\sigma}\psi(x,t)$.

Let

$$\Psi(f)(x) = \int_R f(t)\psi(x,t)dt,$$

then

$$\psi(f): L^2(R) \rightarrow L^2(R).$$

Also as a consequence, we have the L^2-boundedness of generalized Erdlyi-Kober fractional integrals [10] as transcribed below.
Lemma 2
Let
\[f^{x-b}(y)(t) - \frac{\Gamma(c-b)}{\Gamma(c)} \int_t^x (x-t)^{c-1} f(t)dt, \quad 0 < t < x < \infty. \]
If \(c-b > 0, \sigma > 0 \) then \(f^{x-c}(f) : L^2 \rightarrow L^2 \).

We now prove the boundedness of the following integral operators involving homogeneous functions as kernel. These integral operators are generalization of integral operators those are studied by Love [11] and Habibullah [12].

Lemma 3
Let \(G^{a,b}_b(f)(x) = x^{a+b-1} \int_0^x (1 + x^2 t^2)^{\sigma} f(t)dt, \quad (x) > 0. \)
If \(2\sigma(b-a) < 1 < 2\sigma b, 0 < a < 1, \) \(G^{a,b}_b(f) : L^1 \rightarrow L^1. \)

Proof. Note that
\[G^{a,b}_b(V(f)(x)) = x^{a+b-1} \int_0^x (x^2 t^2 + y^2) \frac{a}{\Gamma(c)} f(y)dy. \]
If \(2\sigma(b-a) < 1 < 2\sigma b, 0 < a < 1, \) there exists a constant \(k1= k1(a,b) \) such that
\[\| G^{a,b}_b(f) \|_1 = \| G^{a,b}_b(V^2(f)) \|_1 \leq k1 \| V^2(f) \|_1 = k1 \| f \|_2 \]
that proves \(G^{a,b}_b(f) : L^2 \rightarrow L^2. \)

By using Fubini’s theorem, we have the following lemma:

Lemma 4
If \(f, g \in L^1(R) \), then
\[\int_0^x g(t)G^{a,b}_b(f)(t)dt = \int_0^x f(t)G^{a,b}_b(g)(t)dt, \]
where
\[G^{a,b}_b(g)(x) = x^{a+b-1} \int_0^x (1 + x^2 t^2)^{\sigma} g(t)dt. \]

Lemma 5
For \(\sigma > 0, \) let
\[u^\sigma_x(t) = (x^2 - t^2)^{\sigma-1}, \quad 0 < t < x < \infty \]
\[= 0, t \geq x. \]

Then
\[u^\sigma_x(t) = \frac{\Gamma(c-b)}{\Gamma(c)} \int_t^x (x^2-t^2)^{\sigma} f(t)dt. \]

Proof. After making some substitutions in the integral representation of \(F^2 \), we get the following integral
\[\int_t^x (x^2-t^2)^{\sigma} f(t)dt = \frac{\Gamma(c-b)}{\Gamma(c)} \int_t^x (x^2-t^2)^{\sigma} f(t)dt. \]
By replacing \(u^\sigma_x(t) \) in place of \(g \) in Lemma 4, we obtain
\[G^{a,b}_b(u^\sigma_x(t)) = t^{\sigma-1} \int_t^x (x^2-t^2)^{\sigma} f(t)dt. \]

The implies that
\[G^{a,b}_b(u^\sigma_x(t)) = \frac{\Gamma(c-b)}{\Gamma(c)} \int_t^x (x^2-t^2)^{\sigma} f(t)dt. \]

Now, we formulate integral operators \(u^\sigma_x(t) \) involving hypergeometric functions of the type \(r^\sigma_x \) and then prove the boundedness of these integral operators in \(L^2 \).

Theorem 1
Let
\[M^{a,b}_\sigma(f)(x) = \frac{\Gamma(c-b)}{\Gamma(c)} \int_0^x f(t)G^{a,b}_b([x^2-t^2])dt \]

If \(2\sigma(b-a) < 1 < 2\sigma b, 0 < a < 1, \) \(c-b > 0, \) then
\[M^{a,b}_\sigma(f) : L^2 \rightarrow L^2. \]

Proof. An application of Lemma 3 and Lemma 4 yields
\[P^{\sigma-1}(G^{a,b}_b(f))(x) = \frac{\Gamma(c-b)}{\Gamma(c)} \int_0^x f(t)G^{a,b}_b([x^2-t^2])dt. \]

By using Lemma 5, we conclude that
\[M^{a,b}_\sigma(f)(x) = \frac{\Gamma(c-b)}{\Gamma(c)} \int_0^x f(t)G^{a,b}_b((u^\sigma_x(t))dt. \]

Consequently, it implies that
\[M^{a,b}_\sigma(f)(x) = M^{a,b}_\sigma(f)(G^{a,b}_b(f)(x)), \]
Since \(f^{x-c-b}_b : L^2 \rightarrow L^2 \) by Lemma 2, it follows from Lemma 3 that if \(2\sigma(b-a) < 1 < 2\sigma b, 0 < a < 1, \) \(c-b > 0, \) then
\[\| M^{a,b}_\sigma(f) \|_2 \leq K \| f \|_2. \]

Hence,
\[M^{a,b}_\sigma(f) : L^2 \rightarrow L^2. \]

References

This work is licensed under Creative Commons Attribution 4.0 Licens

Your next submission with Juniper Publishers will reach you the below assets

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats (Pdf, E-pub, Full Text, Audio)
- Unceasing customer service

Track the below URL for one-step submission

https://juniperpublishers.com/online-submission.php