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Abstract

A broad of spectrum of disciplines have adopted social network data to examine relevant contextual issues in a wide array of fields. 
Yet, statistical methods to address biases in statistical inference introduced by the between-subjects relationship within the context of 
node, or subject, interaction in social networks are underdeveloped. Traditional statistical models define relationships among measures 
of within-subject attributes, i.e., measures of attributes from each subject. The between-subject attribute for node (subject) interaction in 
social networks is both conceptually and analytically different from the within-subject attribute. As a result, conventional statistical methods 
such as t-test and linear regression models are fundamentally flawed when applied to model between-subject attributes in social network 
settings. We illustrated fundamental differences of the between- and within-subject attributes and resulting implications for social network 
data analysis of social network densities. We also proposed a new paradigm to model between-subject attributes and illustrate the approach 
with the analysis of social network density.
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Introduction
Social network analysis (SNA) measures and maps 

“connectedness” or “flows” (e.g., information, resources, etc.) 
both within and across individuals, groups and organizations. 
Network analyses can illustrate how the links or ties among 
elements of a system affect the outcomes or emergent properties 
generated when interactions occur between individual and 
organizational entities. Social network data and analysis 
provides a new paradigm for social and behavioral sciences 
by creating a new data dimension of human interaction. With 
data science methods, recent studies have indicated that human 
interaction is a key predictor of most human behaviors and  
social phenomena such as flu pandemics, financial crashes and  
political upsets Pentland et al. [1]. Indeed, human interaction is  
such a strong class of predictors that it fundamentally changes  

 
the way we design behavioral and social intervention research 
studies.

For example, in a study using mobile and online social media, 
Pentland et al. [1] showed that simply changing the schedules of 
coffee breaks from one person at a time to multiple employees 
simultaneously resulted in a productivity increase of $15 million 
a year for a Bank of America call center. Another study about 
helping save energy found that it is more effective to change 
behaviors of others connected to the person of interest than to 
try to change this person in the group who is consuming more 
energy Pentland et al. [1]. The researchers provided small 
cash incentives to individuals who had the most interaction 
with specific high energy use consumers, rewarding them for 
improved behavior of offending consumers. Similar studies 
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replicate this finding that a social influence approach is up to 
four times as efficient as traditional methods Pentland et al. [1].

Although computer and computational scientists have led the 
research and application of social networks, available statistical 
methods are quite limited and in particular typically only provide 
statistics that describe observed patterns of interest. Although 
such descriptive statistics may be sufficient for applications 
in Bigdata such as online social media where the sample size 
is so large that sampling variability becomes negligible, they 
cannot be used for inferences about observed patterns at the 
population level for most research studies with limited sample 
sizes. The latter is the hallmark of modern research studies in 
the biomedical, behavioral and social sciences.

For example, if the sample mean of an outcome such as age 
in a random sample from a population of interest is 50, it is well 
known that this mean is an estimate of the average age of all 
individuals comprising the population, i.e., the population or 
mathematical mean. A conference interval is generally used to 
provide an indication for the accuracy of this estimate (errors 
due to sampling variability) when used to infer the population 
mean. Available methods for social network data largely focus on 
calculating quantities that summarize features of the sampled 
social network. Although some methods and software packages 
have been proposed for inference, none provides correct 
results. These packages fail to address the new conceptual as 
well as analytic challenges induced by the dimension of human 
interaction. 

 Take, for example, the social network density, a popular index 
of connections between subjects in a social network Wasserman 
& Faust [2]. For a sampled social network, this index is readily 
computed. However, if we want to use this sample density as an 
estimate of the mean density underlying the population of the 
social network of interest, no available method provides correct 
standard error or confidence interval estimates. In this paper, we 
discuss major flaws in the current data and analytic paradigm 
when applied to model social network data. We introduce new 
data concepts that capture human interaction in social networks 
and their associated analytic issues. We focus on the social 
network density and discuss flaws in modeling such a popular 
index using conventional statistical methods as appeared in the 
literature. We propose a new approach to address the flaws and 
illustrate the proposed method using simulation data.

Between-subject vs. within-subject attributes
In the current data and analytic paradigm, outcomes, or 

variables, are defined as measures of attributes from each 
individual, such as demographic information, medical illnesses, 
and social and health behaviors. If we denote each subject in the 
population of interest as Si, these outcomes are well defined for 
each Si. For example, if y(Si) denotes suicide attempt (a binary 
indicator) for the ith subject, this variable, often simply denoted 
as yi, is well defined for this subject. Research studies under the 

current paradigm, regardless of observational or randomized 
control studies, all focus on modeling relationships among such 
variables of within-subject attributes. For example, in a study on 
suicide attempt, one may fit a statistical model such as logistic 
regression to see if depression, physical illness, major life events, 
etc., contribute to the occurrence of such a self-harm event. The 
variables and statistical models here all focus on relationships 
among variables from each individual, completely ignoring 
influences from interactions with others.

Outcomes in social networks not only include such within-
subject attributes, but also interactions among different 
individuals. The latter is unique for social network data. Unlike 
individual outcomes in conventional analysis, interaction 
between individuals is a between-subject attribute and is not 
definable based on one individual. To illustrate, consider the 
social network density, a popular index for network connectivity 
defined as the mean connection between two subjects in the 
network. Specifically, if we denote two subjects in the social 
network of interest as Si and Sj, the connection between the two 
individuals is a binary indicator involving both subjects, I(Si ,Sj), 
which is 1 (0) if Si and Sj are connected (otherwise).The social 
network density is the mean of this indicator, q=E[I(Si  ,Sj)], where  
E(.) denotes the mathematical expectation. Unlike the outcome 
in conventional analysis, the outcome here, I(Si ,Sj), must be 
defined based upon two subjects. As we elaborate in detail in 
the next section, the change from the within- to between-subject 
attribute in the social network outcome presents a serious 
challenge for modeling social network data under the current 
paradigm.

Note that in social network analysis, sometimes connection 
may be defined as representing an asymmetric relationship. For 
example, if we distinguish the nature of initiating and accepting 
an invitation for a relationship, then I(Si ,Sj) may not be the 
same as I(Sj ,Si) Cohen & Havlin [3]. For ease of exposition, we 
only consider symmetric relationships such that I(Si ,Sj)=I(Sj  ,Si)  
unless stated otherwise.

Fundamental flaws in current paradigm for modeling 
social network data

As noted in the preceding section, conventional statistical 
analyses focus on relationships among within-subject attributes. 
The qualifier “within-subject” is critical, since it is the foundation 
of the current statistical modeling enterprise. Statistical 
independence is the basis for inference for statistical models 
Tang, et al. [4]. This fundamental assumption is reasonable for 
measures of within-subject attributes. In practice, if we draw a 
random sample from a population of interest, it is reasonable to 
assume that all subjects sampled do not interact with each other 
so that the outcomes of interest are stochastically independent. 
In some studies, certain observations may share something in 
common and the independence assumption may be invalid. To 
analyze such data, we must take the potential dependence into 
consideration and develop methods to address it. 
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For example, longitudinal data create non-independent 
observations Tang et al. [4]. In such studies, each subject is 
repeatedly assessed over time. Since outcomes from the same 
subject are generally less variable when compared with those 
from other individuals, independence is not a reasonable 
assumption when applied to all the outcomes. However, if we 
view the repeated outcomes from the same subject as a data 
cluster, then these clusters are stochastically independent. 
This is precisely the basis for all modern statistical models 
for longitudinal data Tang, et al. [4]. This partitioning strategy 
is also used in dealing with dependent observations from 
other settings, such as groups of individuals living in different 
geographic and economic regions with respect to the values of 
the outcomes of interest Tang, et al. [4].

Unfortunately, the strategy of data partitioning deployed in 
clustered data analysis such as longitudinal data does not work 
for between-subject attributes in social network analysis. To 
illustrate, consider again the outcome for the social network 
density. For notational brevity, denote the connection indicator 
between two subjects simply by Iij=I(Si ,Sj). For a sample of social 
network consisting of n subjects, there are a total of  1/2n(n-
1) such variables. These variables are clearly not independent. 
For example, since I12 and I13 both involve the first subject, they 
are not independent. Further, there is no way to partition the 
1/2n(n-1) indicators into independent clusters as in modeling 
clustered data, because of interlocking relationships among the 
variables. For example, consider any pair of indicators, Iij and Ikl. 
To see their dependence, simply note their relationships with 
a third indicator Ikl .Since Iij and Ijk both involve subject j , they 
are dependent. Likewise, Ijk and Ikl are dependent as well. These 
relationships imply that Iij and Ikl are not dependent.

 The above analysis shows that the current statistical 
modeling paradigm is fundamentally flawed when used to model 
social network data, since stochastic independence is not a valid 
assumption for the between-subject attribute within the social 
network setting. Without addressing this fundamental barrier, 
research capitalizing on key concepts in social networks such 
as social support or information will be seriously hampered. 
Unfortunately, conventional statistical models such as regression 
have been and are continuingly being applied to model social 
network data [5-12]. Such methods have unpredictable 
effects and study findings may potentially misinform research 
communities and the public. In the next section, we propose 
a new paradigm for modeling variables of between-subject 
attributes. We motivate and develop the proposed approach by 
focusing on the network density.

A New Paradigm for Modeling Social Network 
Outcomes 
Independence assumption in traditional paradigm

Social network density is a popular measure for connectedness 
of subjects in a population of interest. In the nomenclature of 

social network graph analysis, members of a social network 
are referred to as nodes. To highlight the distinction between 
the between- and within-subject attribute within the context 
of statistical analysis, we use subjects as members of a social 
network unless stated otherwise. The network density metric 
is commonly employed in hypothesis formulation and testing 
involving social network data structures. For instance, in child 
development, scientists have sought to infer whether the extent 
to which students in a school system know one another is related 
to observed health risk behavior prevalence such as smoking or 
sexual risk-taking Lakon et al. & Ramirez-Ortiz et al. [13,14]. 
In prevention and health sciences, population-level health 
(e.g., prevalence of drug use or infectious disease) is examined 
relative to the degree to which professionals (e.g., social workers 
and other health professionals) in a network know one another 
or collaborate [15-17] 

Consider a sample of social network consisting of n subjects 
from a population of interest. The connection indicator Iij is a 
variable defined for each pair of subjects, with the value 1 (0) 
if the subjects are connected (otherwise).The social network 
density is defined as the average value of the indicator at the 
population level, i.e., q = E(Iij).Given the sampled social network, 
we can estimate by the sample mean, 

                  qL = 2/n(n-1)Sl≤ i<j≤n Iij,           (1) 

Where S1≤i<j≤n Iijdenotes the summation of Iij over 1≤i<j≤n.For 
example, if n=4 , 

   qL = 4*3/2 (I12+I13+I14+I23+I24+I34)    (2) 

The estimate qL has a different expression than the sample 
mean of a variable of within-subject attribute, because of 
potential connections between subjects in the social network. 
For example, if yi is a variable of within-subject attribute such as 
income for each individual in the sample, then the (sample) mean 
income, m=1/n S1≤i≤nyi , where S1≤i≤nyi denotes the summation of 
yi over 1≤i≤n. In this case, the summation is over the   individual 
variables, rather than the n individual variables yi, rather than 
the n(n-1)/2 between-subject attributes.

The assumption of independent observations is particularly 
important when making inference about parameters of interest 
(e.g., hypothesis testing and confidence intervals). For example, 
in the case of within-subject attributes such as the variable yi 
above, this assumption implies that the yi ’s are independent 
of each other.As noted earlier, this is clearly not the case with 
the between-subject attributes Iij. Further, within the context of 
social networks, even independence regarding the yi ’s becomes 
questionable as well. For example, if connection measures 
business relationships, it is quite plausible that connected 
individuals have more similar incomes than unconnected ones.

Thus, when modeling social network data, even variables of 
within-subject attributes may become dependent.

http://dx.doi.org/10.19080/BBOAJ.2016.01.555551


How to cite this article: Chen T, Lu N, White A, He H, Wu P. et.al. Social Network: A New Paradigm for Modeling Human Interaction: Implications for 
Statistical Inferences. Biostat Biometrics Open Acc J. 2017;1(1): 555551. DOI: 10.19080/ADOH.2016.01.55555104

Biostatistics and Biometrics Open Access Journal

Inference for Social Network Density
As discussed in Section 3.1, the density of a population 

social network is the mathematical expectation q=E(Iij) of 
the connection indicator Iij. We estimate q, the proportion of 
connected subjects in the population network, by the sample 
mean qL in (1), which is the proportion of the indicators with 
the value 1 among the n(n-1)/2 indicators in the sampled social 
network. Although methods for inference about proportions 
exist, these conventional statistical methods cannot be applied 
to compute standard errors and construct test statistics, because 
of lack of independence among the n(n-1)/2 variables Iij. Further, 
as noted in Section 3.1, even modern statistical models for 
clustered data do not address this dependent issue, because of 
lack of independent clusters in the data.

The dependence of Iij is the result of defining the connection 
indicator on a pair of subjects. This particular type of dependent 
variables was first investigated by Hoeffding [18]. His pioneering 
work has led to the development of a systematic treatment of such 
dependent variables, known as the theory of U-statistics. Classic 
examples of U-statistics include the Mann-Whitney-Wilcoxon 
(MWW) rank-sum test, the Wilcoxon signed-rank tests [19] and 
methods for analysis of receiver operating characteristic curves 
[19-21]. The key difference between the U and conventional 
statistic is the between- vs. within-subject attributes.

For example, in the MWW rank-sum test for comparing some 
outcome of interest between two groups, the between-subject 
attribute is a binary indicator with the values defined based on 
whether the outcome of an individual from one group is larger 
than that of a subject from the other group. Within the current 
context of social network density, the between subject attribute 
is the binary indicator of connection status. Note that although 
the indicators in both examples are a measure of between-
subject attributes, they are still different. The one for the MWW 
test is constructed from comparing individual outcomes (or 
within-subject attributes), while the one for the social network 
density is not. In this sense, the connection indicator for the 
social network density is an intrinsic between-subject attribute, 
unique to the social network data.

Using the theory of U-statistics, we can evaluate the standard 
error of the sample network density, qL = 2/n(n-1)Sl≤i<j≤n Iij,   
despite the interlocking relationship across the observations Ii 

[21,22].In addition,

following the theory of U-statistics, the sample network 
density also has an asymptotic normal distribution, allowing us 
to make inference about the population network density.

A Simulation Study
We conducted a simulation study to illustrate the U-statistics 

approach and examine the impact of dependence of the between-
subject attribute Iij on inference by comparing the proposed 
approach with conventional and available alternatives.

We considered a sample of social network consisting of 
n=100 subjects. To create the connection indicator, we first 
generated two variables Zi and Zj from a standard normal with 
mean 0 and variance 1 and then defined the connection indicator 
as: Iij = I{Zi+Zj≤0}. In this special case, the true value of the density is 
q=0.5. According to the theory of U-statistics, the sample density 
qL  = 2/n(n-1) Sl≤i<j≤n Iij  is unbiased [21]. Further, we are also able 
to evaluate the standard error of the sample density in this case 
in closed form to obtain SEustat (qL) = 0.059 [21]. 

If we treat the Iij ’s as if they were independent, we can apply 
conventional statistical methods such as the Binomial model to 
evaluate the standard error to obtain SEBinam(qL) = 0.0025 [4]. 
The traditional methods clearly underestimates the variability of 
qL, yielding a bias almost 20 times bigger than the true variance.

In recent years, many methods and software packages 
have been developed to model social network features such as 
the social network density. To see how these methods work in 
this particular example, we applied some of the methods to the 
current context of social network density. One popular approach 
is the exponential random graph model employing Markov 
Chain Monte Carlo Maximum Likelihood estimation [23,24] 
We applied this approach as implemented in STATNET version 
2014.2.0 Goodreau et al. [25] and obtained a standard error 
SEBinam(qL) = 0.003. This standard error is just as biased as the 
one from the Binomial model.

To correct such downward bias, many packages offer 
Bootstrapped standard errors. In conventional statistical 
analysis, the Bootstrap is quite an effective approach to 
estimating standard errors by resampling observations Efron 
and Tibshirani [26], However, this popular approach does not 
apply to the current context, because it is premised upon the 
traditional paradigm of modeling within-subject attributes.

To confirm it, we applied this approach as implemented in 
the UCINET version 6.365 Borgatti, et al. [27] to the simulated 
data and obtained a standard error SEBinam(qL) = 0.041 based on 
a Bootstrap sample of 5,000. The use of a large Bootstrap sample 
such as 5,000 in the current context is to reduce sampling 
variability and minimize its impact on estimated standard 
errors. Although much improved, the Bootstrap standard errors 
still show over 30% downward bias.

Discussion
Social network data offer a unique lens to investigating 

human interaction and its dynamic impact on individual 
outcomes. There is a burgeoning literature on both methods for 
modeling and applications of such methods to social network 
relationships and dynamics. Most of the methods provide 
descriptive statistics, as they only describe observed patterns 
among subject interactions (between-subject attributes) and 
relationships of such interactions to individual outcomes 
(within-subject attributes).A few notable exceptions include 
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the exponential random graph model [23,28] and the network 
influence model [29,30]. As we discussed and illustrated using 
a simulation study, the exponential random graph model 
is fundamentally flawed, since it still applies conventional 
models for within-subject attributes to model between-subject 
attributes arising in social networks. The network influence 
model shares the same fate, since it too fails to correctly address 
the dependence among the between-subject attributes when 
modeling relationships between the between- and within-
subject attributes in the social network context. 

 We proposed a new approach to address the dependence 
issue and illustrated it with the network density, a popular 
metric of social network connections. The new analytic paradigm 
is premised upon the theory of U-statistics, which is uniquely 
positioned to address interlocking relationships among between-
subject attributes such as outcomes of connection between 
subjects within the context of social network density. The 
software for estimating social network density and simulating 
data for the simulation study discussed in this manuscript is 
available upon request.

In this paper, we focused on the social network density. 
In many studies involving social network data, interest lies 
in how individual outcomes (within-subject attributes) are 
influenced by their interactions with others in the network 
(between-subject attributes) and vice versa. For example, in 
studying disease contagion such as flu and depression, one may 
be interested in whether physical contact or friendship with 
a person with the disease increases the chance of contracting 
the disease. In this case, we may model disease infection as a 
function of connection (physical contact or friendship) using a 
regression with a within-subject attribute (disease infection) as 
a dependent and a between-subject attribute as an independent 
variable. This and other more complex models cannot be 
handled by the limited results in the theory of U-statistics. More 
general models extending the U-statistics such as the functional 
response models may be applied Kowalski & Yu et al. [21,22]. 
Research is currently underway to develop new statistical 
models for complex relationships involving interactions between 
the between- and within-subject attributes.
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