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			Introduction

			Linear mixed effects (LME) models [1] are widely used in longitudinal studies to analyze correlated or clustered data. Generally, the random effects are incorporated to account for heterogeneity among the subjects. In analysis of an LME model, a primary objective is to select potential significant fixed effects and random effects of the outcome variables. Practically, one might be able to use a selection approach (e.g., back-ward elimination or forward selection) and apply a standard criterion, such as the Akaike information criterion (AIC), generalized information criterion (GIC), Bayesian information criterion (BIC), and Bayesian factor, to choose a preferred model by fitting all the possible models repeatedly. However, the number of competing models increases exponentially with the number of predictors. Thus, there are many challenging issues associated with the problem of joint selection of both fixed and random effects such as: intense computation, increased prediction error with increased number of covariates [2], bias associated in estimated variance of the fixed effects and near singular random effect covariance matrix for underfitting and overfitting of the random effects, respectively [3]. In this paper, we review several exemplary approaches by comparing their procedures and performances, investigating their similarities and differences, and explaining their advantages and disadvantages.

			The Method

			Suppose we have n subjects in a study and each subject has ni repeated observations. For i=1; … , n. Let yij denote the response 

variable for subject i at observation j; Xij the corresponding l x 1 predictor; and Zij a predictor vector of dimension q x1. Then, we de ne the LME model as follow:

			[image: ]			1

			Where [image: ] is the fixed effect coefficient vector, [image: ] [image: ] [image: ] is the ith random effect, and the elements of the residual errors [image: ]. Generally, we choose [image: ] as a subvector of [image: ]that include all the candidate predictors. We are interested in selecting a subset of important predictors in the model.

			Chen & Dunson [4] addressed the problem by using the reparameterization approach of a modified Cholesky decomposition of the random effects covariance matrix. The covariance [image: ]can be decomposed as

			[image: ]

			where [image: ]and [image: ]is a non-negative element, proportional to the [image: ]random effect standard deviation, for [image: ] When [image: ] it indicates that the[image: ]random effect is excluded from the model. [image: ]is a lower triangular matrix,

			[image: ]

			with all diagonal elements being 1 and the other free elements characterizing correlations between the random effects. With this random effects covariance matrix decomposition, model (1) takes the form:

			[image: ]  [image: ]                        (2)

			Chen & Dunson [4] showed that by rearranging terms, the covariance matrix of the random effects can be expressed as a function of [image: ]and the free elements of [image: ], [image: ]Hence, the variance parameters [image: ]and r keep desirable conditional conjugacy properties and we can construct a Gibbs sampling algorithm for sampling the posterior distribution using the SSVS approach.

			The priors are specified as follows. Let [image: ]be the vector of coefficients for the selected fixed effects in the current model, [image: ]be the corresponding covariates matrix. An i.i.d. Bernoulli prior is assumed for [image: ] [image: ]is assumed to be a Zellner g-prior [5],

			[image: ]    [image: ]

			Where G(a,b) denotes a Gamma distribution with mean a/b and variance a/b2 , [image: ](or inverse Gamma distribution) and [image: ]

			For [image: ]the elements of [image: ]are specified i.i.d. as 

			                               [image: ]                                 (3)

			where IG(.) is an inverse Gamma distribution, [image: ]denotes a point mass at zero, N+(.) is a truncated positive normal distribution. The lower triangular free elements of [image: ] is put a normal distribution prior. For easy notation, we denote above zero-inflated truncated positive normal prior as [image: ]. g is put a Gamma prior G(1/2; 1/2) and [image: ]a Jeffrey’s prior [image: ]or an inverse Gamma prior.

			Chen & Dunson [4] specified the prior [image: ] Kinney & Dunson [6] used the approach of Gelman [7] and specified the covariance matrix [image: ]. With this specification, the parameters [image: ]and [image: ]are not identifiable. In fact, Kinney & Dunson [6] took the parameter-expansion approach [8,9] that improved computational efficiency and reduces dependence among the parameters. We should note the Chen & Dunson [4] only considered variable selection of random effects. Kinney & Dunson [6] extended it to joint selection of both fixed and random effects for linear and logist models; in addition, the approach of Kinney & Dunson [6] also overcame the computational inefficiency due to slow mixing of the Gibbs sampler.

			Although it is simple and convenient to assume that the random effects are normally distributed. However, there are several limitations with such specifications: the assumption is often not reasonable; thus misspecification of random effects might result in misleading interpretation and even incorrect results. In addition, it is challenging to specify nonparametric distribution for the random effects since there is bias associated with fixed effects estimates when the expected values of random effects are not zero. To resolve the bias of random effects, Yang [10] and Yang (2013) [11] used the approaches of the Probit stick-breaking (PSB) and location-scale symmetrized PSB (sPSB) [12] for linear and logist models with joint variable selection for both fixed and random effects. They define

			[image: ] [image: ]                          (4)

			Where [image: ]with [image: ]and [image: ] generally takes a Gaussian kernel. The heteroscedastic scale PSB mixture and heteroscedastic sPSB location-scale mixtures are defined as follows: 

			                    [image: ]                                        (5)
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			for the random effects in truncated form. Obviously, the nonidentifiability issue is resolved since both PSB and sPSB are centered at vector zero.

			Yang (2012) [10] & Yang (2013) [11] provided nonparametric approaches for linear and logist models for joint variable selection of both fixed and random effects. Their approaches are much more flexible than those of Chen & Dunson [4] and Kinney & Dunson [6]. However, the computation is more intense. Later Yang et. al. [13] used the shrinkage priors for mixed effects models with variable selection. The approach is efficient in shrinking small coefficients to zero while minimally shrinking large coefficients due to the heavy tails. They use several popular shrinkage priors: generalized double pareto prior [14], the horse shoe prior [15], and normal-exponential-gamma prior [16], respectively, as follows for the fixed effects:

			[image: ]   [image: ]   [image: ]   (7)
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			where Ca+(0; c) denotes a standard half-Cauchy distribution on the positive reals with scale parameter c. The performances of the shrinkage approaches are very good while the computations are not that intense.

			Conclusion

			In this article, we reviewed several approaches of linear and logistic models for joint selections of both xed and random effects. The approaches of Chen & Dunson [4] and Kinney & Dunson [6] are simple in implementation and provide reasonably good results. The approaches of Yang (2012) [10] & Yang (2013) [11] are much more flexible and provide much better results though the computations are intense. The approach of Yang et.al. [13] maintains a good balance of benefits of the above-mentioned parametric and nonparametric approaches. In summary, the performance and computation intensity by descending orders are Yang (2012) [10] & Yang (2013) [11], Yang et al. [13], Chen & Dunson [4] and Kinney & Dunson [6].
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			Recently, many approaches have been proposed to address the problem of selecting both fixed and random effects in mixed effects models. In this article, we review several approaches by comparing their procedures and performances, discussing their similarities and differences, and explaining their advantages and disadvantages.

			Keywords: Variable selection; Random effects; Mixed effects model; Bayesian model selection; Parameter expansion; Stochastic search

			Abbreviations: LME: Linear Mixed Effects; MCMC: Markov Chain Monte Carlo; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion; GIC: Generalized Information Criterion; SSVS: Stochastic Search Variable Selection

		

		
			
			

		

		
			
			

		

	OEBPS/image/Image247278.png
g~G(/2,N/2),





OEBPS/image/Image247332.png
50





OEBPS/image/Image247439.png
£,O)





OEBPS/image/Image247120.png
=Diag(4,.....4,).





OEBPS/image/Image247162.png
k™





OEBPS/image/Image247112.png





OEBPS/image/Image247155.png





OEBPS/image/Image247287.png
ool /o





OEBPS/image/Image247471.png
k, ~exp(@} /2),





OEBPS/image/Image247128.png





OEBPS/image/Image247490.png
Brga ~ N(0,5% / gk?),





OEBPS/image/Image247322.png
Ay ~pi O + (1= )N (0.1)





OEBPS/image/Image247092.png





OEBPS/image/Image247454.png
H

PSB &~ 3 n@) AN 4. 3+ N, )}

=1





OEBPS/image/Image247498.png
ca* (0.v,).






OEBPS/image/Image247137.png
K"





OEBPS/image/Image247305.png





OEBPS/image/Image247340.png





OEBPS/image/Image247102.png





OEBPS/image/Image247446.png
H
PSB:4~ 3 ,ONOY,)





OEBPS/image/Image247369.png
~N(0,1).





OEBPS/image/Image247517.png
Biga ~N(O,0°/ gk,),





OEBPS/image/Image247203.png
A= (A, hy)





OEBPS/image/JP_Logo_for_web_310x90-01(1).png
:E% ]ump

usLiskers
_lkey to the





OEBPS/image/Image247263.png
Vi





OEBPS/image/Image247220.png





OEBPS/image/Image247482.png
@, ~ Gamma(v,, 3)),





OEBPS/image/Image247313.png





OEBPS/image/Image247177.png





OEBPS/image/Image247532.png
¢* ~ Gamma(v;, %),





OEBPS/image/Image247147.png





OEBPS/image/Image247054.png
LG’





OEBPS/image/BBOAJ.jpg
e






OEBPS/image/Image247085.png





OEBPS/image/Image247037.png
=X,'B+Z;'cte;






OEBPS/image/Image247405.png
Gy :;l.([/)%:





OEBPS/image/Image247230.png





OEBPS/image/Image247184.png
¥y =X, B+Z, AT&+ €,






OEBPS/image/Image247362.png





OEBPS/image/Image247256.png
d
J,[|Bern(po).





OEBPS/image/Image247388.png
AT





OEBPS/toc.xhtml

		
			
						
					CoverImage
				


						
					BBOAJ.MS.ID.555782
				


			


		
	

OEBPS/image/Image247354.png





OEBPS/image/Image247397.png
V(&)





OEBPS/image/Image247070.png
N(0,Q)





OEBPS/image/Image247424.png
w@)=ch+ f,(U)





OEBPS/image/Image247193.png
N(0.0).






OEBPS/image/BBOAJ.png





OEBPS/image/Image247297.png





OEBPS/image/Image247211.png





OEBPS/image/Image247241.png
B’ ={B:Jpa}





OEBPS/image/Image247347.png
Ay ~ZIN,(,;,0.1)





OEBPS/image/Image247378.png
V(&) - Diag(dl,....d,)





OEBPS/image/Image247062.png





OEBPS/image/Image247077.png
&0 N(0.6")





OEBPS/image/Image247525.png
K ~exp(c*/2),





OEBPS/image/Image247432.png
a~ N(u.1)





OEBPS/image/Image247045.png





OEBPS/image/Image247507.png
v, ~Ca’ (0,,),





OEBPS/image/Image247414.png
5©) =G ON]TA-9G @M
T





OEBPS/image/Image247271.png
Vil
~ N
(o,
, 0%
x7x
7
'
/
F9)





OEBPS/image/Image247461.png
Bisa ~ N(0,5%/ gh,),





OEBPS/image/Image247169.png





OEBPS/image/Image247249.png
x7





