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Abstract


A strategy is proposed to examine the importance of the clustering effect of the frailty model by means of the concordance probability. To this end, the methodology proposed in earlier work is extended to general frailty models and a new definition of the concordance probability is developed. The resulting measures allow to separate the discriminatory ability of the covariate effects and the clustering effect on a within- and between-cluster level. Using a Bayesian and a likelihood approach, point estimates and 95% credible/ confidence intervals are computed for the
measures. Estimation properties and sensitivity against misspecification are checked in an extensive simulation study. As such, the likelihood estimation procedure showed difficulties in estimating unbiasedly the predictive ability of the clustering effect, while the Bayesian estimation procedure resulted in good estimation properties for all three measures. Other features are developed to complement the earlier methodology, such as an internal validation strategy as well as a procedure to calculate internally validated interval estimates in the presence of clustered data. The ensemble of the developments is illustrated on a dental data set. 
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Introduction



The frailty model is a popular model to analyze clustered
survival data. For this model, the importance of clustering
typically is assessed by means of the variance of the frailty
distribution only: when the variance is large, clustering is
important and visa versa. In this article we would like to
investigate the importance of clustering in more detail. To this
end, we propose to assess how clustering affects the quality
of the model predictions. Despite the importance of the frailty
model, few predictive measures have been suggested for
the frailty model. To our knowledge, only the concordance
probability has been extended to PH frailty models, resulting in
3 separate versions of the concordance probability [1]. These
3 concordance measures allow to evaluate the discriminatory
ability on a within-cluster and between-cluster level separately
and to measure the predictive gain of the clustering effect on top
of the covariate effects. The methodology in [1] shows, however,
two major shortcomings which will be tackled in this article.


The first shortcoming in [1] is that the concordance
probability is estimated using Harrell's C estimation technique.
The disadvantage of this estimation technique is that, in the
presence of censoring, it suffers from a bias that depends on
the censoring distribution. Moreover, this estimation technique
is only designed for a time-unrestricted definition of the
concordance probability that assumes survival models with noncrossing
survival curves. In this article, we make use of a Inverse
Probability Censoring Weighted (IPCW) estimator of [2] designed
for the time-restricted definition concordance probability of
[3]. This IPCW estimator is proven to be consistent, given that
the censoring model is correctly specified. The time-restricted
definition of the concordance probability has the advantage
that it can be applied to any survival model. Moreover, we also
introduce a new time restricted definition of the concordance
probability, bearing a slightly different interpretation than the
one introduced by [3]. Note that this shortcoming has also been
addressed by [4], but their IPCW estimator assumes the PH
frailty model as the survival model and a censoring distribution
that does not depend on covariates. The second shortcoming in
[1] is that their methodology is insufficiently tailored to its use
in practice. As such, we provide an internal validation procedure
to correct the estimated concordance probabilities for over
optimism when the data set is used for both model fitting and
model evaluation. For this, we adapt the internal validation
procedure proposed for the Brier score for univariate survival
data [5]. We also show how one can calculate an interval estimate
for the overoptimistic and the internally validated concordance
probability of interest.


In Section 2.1, the time-unrestricted, the time-restricted
definition of [3] and the new time-restricted definition of
the concordance probability are introduced for univariate
survival data. In Section 2.2, it is shown how these definitions
can be adapted for frailty model in general, including interval
estimates. The estimation of internally validated point estimates
is dealt with in Section 2.3. The estimation properties of the
two time-restricted definitions of the concordance probability
using a Bayesian and a likelihood approach are investigated
in Section 3.1 by means of a large-scale simulation study. The
effect of misspecifying the frailty distribution and the censoring
model on the estimation of the concordance measures is shown
in Section 3.2. All developments are applied to a dental data set
in Section 3.3, followed by a discussion in Section 4. 


Methods

Different concordance probabilities

In the next section, one time-unrestricted and two timerestricted
definitions of the concordance probability are shown
for univariate survival data, after which for each respective
definition its common estimation technique is discussed. 


Definitions

[6] proposed the unrestricted concordance probability c
which is the earliest definition of the concordance probability. It
equals the probability that a randomly selected subject i, which
fails later than another randomly selected subject j, has a higher
predicted survival time than subject j or, 
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With , Ti,Tˆ(Xi) and Xi the true failure time, the timeindependent predicted failure time (e.g. median survival time)
and the covariate vector of the failure time model of subject
i. Since the subjects of a survival study are followed up over
a limited time period, the estimation of the concordance
probability should be regarded as particular to the study. The
above definition, however, gives the impression that it applies to
the whole time range, since no time restriction is imposed on the
pairs of subjects that are evaluated in the above definition. As a
result, the use of (1) in a study with a limited follow-up implies
that the same survival process holds beyond the last follow-up
time, which is an unverifiable assumption. Moreover, since (1)
evaluates the ranking of the time-independent predicted failure
times [image: ] of a pair (i j),the survival probability at
time point [image: ]  can only be used as a predictor when its
ranking is not time dependent, which does not hold for all failure
time models. A restricted version of the concordance probability
Ct was therefore introduced by [3], i.e.:
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With Tˆ(τ⎢Xi)representing the time-dependent predicted
failure time (e.g. survival probability at a certain time pointτ).
 

 how well subjects, who fail before time point τ, can be
distinguished from subjects that fail later than the considered
subject. Different τ values can be chosen to investigate how
earlier failing subjects are differentiated from later failing
subjects over time. In practice however, it might also be of
interest to examine how well subjects are discriminated when
their true failure times are close to each other as compared to
when their true failure times differ greatly. To investigate this,
we propose a new concordance measure: 
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With d the maximum difference in true failure time between
the two randomly selected subjects. As such, (3) measures how
well subjects with a maximum difference d in failure time can
be distinguished from each other, given that the earliest failing
member of the pair fails before time point τ. Plotting Cτ(d)
versus different values of dprovides a more detailed image
of the discriminatory ability of the failure time model. Note
that we propose to use the survival probability at time point
τ ,i.e. S(τ⎢Xi) as Tˆ(τ⎢Xi)for definitions (2) and (3) since it captures the cumulative risk for the event in [0,τ] .


Estimation

For a sample of size n, consider a subject i(i=1...n) with
observed failure time ti=min(Ti,Ci) and Ci its censoring time.
The censoring indicator δi equals 1 if ti = Ti and 0 otherwise. The
unrestricted concordance probability C is typically estimated by
Harrell's estimation technique [6] or: 
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With xi the observed covariates of the failure time model of
subject i. Pairs that agree with the condition in the denominator
(numerator) of the upper formula are called comparable
(concordant) pairs. As proven by [2], (4) is known to suffer from
an overoptimistic bias that depends on the censoring distribution.
In the remainder of this article, we will no longer consider
this estimation technique of the concordance probability. [2]
proposed the Inverse Probability Censoring Weighted (IPCW)
estimation method for the Cτ definition, which corresponds to:
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with [image: ] the estimated censoring
weight of the pair (i,j),ti- the time point just before  ti and
G(t⎢zi) the survival probability of the censoring model and zi
the observed covariates of the censoring model of subject at time
point t. Clearly, [image: ] and that ωˆ(.) s equal to 1 when
all subjects are uncensored.



Just as for Harrell's estimation technique of C, (5) only
considers concordant pairs in the numerator and comparable
pairs in the denominator, but each pair is multiplied with its
estimated corresponding censoring weight ωˆ(.).The censoring
weights are obtained by means of a censoring model, which
is fitted to the data by reversing the meaning of the censoring
indicator: the true censoring time is censored when the event
occurred (δ=1) and uncensored when the event did not occur
(δ= 0) Further, (5) estimates Cτ consistently under conditional
independence of the censoring mechanism and the failure time
model and if the censoring model is correctly specified. Hence,
because the censoring weights only depend on the censoring
model, estimator (5) is robust against misspecification of
the failure time model [2]. The censoring weights therefore
compensate for the use of just comparable pairs in the estimation
of Cτ counterbalancing the overoptimistic bias that would have
been obtained else wise. Note that the covariates of the
failure time model and the censoring model respectively are not
necessarily the same. 



Following [2], we have developed the following consistent
IPCW estimator of Cτ(d):
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With
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The additional weight of the pair (i,j). Clearly,[image: ] and
[image: ] such that [image: ]. Moreover, φˆ(.)≤1 and [image: ]. Moreover,φˆ(.) and ωˆ(.) are both equal to 1 when all subjects are uncensored. In (6), φˆ(.) is needed because ( ) Cˆτ(d)
 requires a quantification of the probability that the difference in failure time of the considered pair is lower than d in the presence of censoring. Further, since φˆ(.) depends on both the failure time model and
the censoring model, (6) is a consistent estimator of Cτ(d) only
when both models are correctly specified. The derivation of (6)
as well as the proof of its consistency are shown in Appendix.


Application to the frailty model

The concordance probability has already been adapted to the
framework of Proportional Hazards (PH) frailty models of the
power variance family for the unrestricted definition (1) of the
concordance probability [1]. In this section, we will extend the
concordance probability to the whole class of frailty models. In
the next two sections, we restrict ourselves to definition (2). For
the developments related to definition (3), we refer to Section A
of the online supplementary material.



Definition

The frailty model is a popular model for clustered survival
data. For each subject of cluster q, a frailty term Wq is 
introduced to account for clustering. These frailty terms are
assumed to be sampled from a frailty distribution, Fw(w)
which mostly is a parametric distribution such as the gamma
distribution [7]. For each frailty model two different types of
survival probabilities can be defined for a given time pointτ ,
i.e. a conditional survival probability SC(τ⎢xi,wq) and a marginal 
survival probability [image: ] [7].
Note that SC(τ⎢xi,wq) takes covariate and cluster information
into account, while SM(τ⎢xi) just accounts for covariate
information. For the PH frailty model for instance, it holds that [image: ]
with ∧0(τ) the cumulative
baseline hazard at time point τ and β a vector of regression
coefficients. For PH frailty models of the power variance family
[image: ] with Clearly [image: ]
depends on the choice of the frailty
distribution, while SC(τ⎢X,W) does not.




Two types of pairs can be identified for clustered data: an
inter-cluster pair, whose members belong to two different
clusters, and an intra-cluster pair, whose members belong to
the same cluster. Therefore, depending on which type of pair
and survival probability is used, 6 different versions of the
concordance probability can be introduced for frailty models
(Table 1). This results in a between marginal and a between
conditional concordance probability CτBM and CτBC,
respectively, in a within marginal and a within conditional concordance
probability CτWM and CτWC
t respectively, and in an overall marginal and an overall conditional concordance probability
CτOM and CτOC, respectively.




Table 1: 
Definition of the 6 different types of the concordance
probability. 'X' marks which elements are used by the considered
measure, while '-' marks which elements are not.
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Interpretation and interrelations

For the two overall concordance probabilities, it can be shown 
that [image: ] with  πB(πW) the probability that a pair is an inter-(intra-)cluster 
pair [1]. As a result, CτOC and CτOM do not add new information to the other 4 versions of the concordance probability. Moreover, 
their  interpretation  depends  strongly  on  the  sampling  scheme  of  the  data  structure  such  that  its  value  is  hard  to  compare  
across  studies  with  different  clustering  designs  [1].  Since  the  properties  of  CτOC(CτOM)
depend  on  the  properties  of  CτBC and CτWC(CτBC and CτWM),
we  will  not  consider  the  overall measures  CτOC and CτOM any further. For PH frailty models of the 
power variance family, it has been shown that CτWC = CτWM = CτW holds [1]. 
In Appendix B, we proof the latter result holds for each frailty model. This means that we can either use the conditional or  the  marginal  survival probabilities  in  the  calculation  of  
CτW.In addition, when the failure time model is correctly specified, it can be shown that  
CτBC ≥  CτBM for all frailty models [1]. 


Summing  up,  only  3  unique  versions  of  the  concordance  probability can be defined for the frailty model and each of these 
definition focuses on a specific aspect of the frailty model.    CτBC measures  the  inter-cluster  predictive  ability  of  the  covariate  
effects and the clustering effect, while CτBM measures the inter-cluster predictive ability of the covariate effects only. Comparing
 CτBC and CτBM indicates how much CτBM would increase if the 
clustering  effect  were  completely  captured  by  the  covariate  effects.CτW measures  the  intra-cluster  predictive  ability  of  the  
cluster varying covariate effects.


Computation of point estimates

Consider a sample of size n, consisting of J(j=1...J) clusters of size nj(i=1...nj). CτBC CτBM and CTW are estimated as: 
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With tji,xji,zjiδji  the observed failure time, the covariate 
vector of the failure time model and the censoring model and the censoring  indicator  for  subject    of  cluster  [image: ]
equals  either [image: ].






Following  the  definition  of CτBM and   (7),   the   marginal   
survival  probability  needs  to  be  calculated  for  each  subject  at  time point τ in the estimation of CτBM.
This survival probability is, however, hard to compute for most frailty models due to the integration step. Also, the marginal survival probability depends 
on  the  choice  of  the  frailty  distribution,  while  the  conditional  survival probability does not. In Appendix B, we prove that the ranking of 
SM(τ⎢X) in the calculation of CτBM is the same as the ranking  of  
 SC(τ⎢X,W),treating  the  considered  pair  (incorrectly)  as  an  intra-cluster  pair.  As  a  result,  the  evaluation  of  
CτBM can  also  be  completed  by  means  of  the  conditional  survival  curves  only. Since 
CTW can be obtained by determining the ranking of the conditional  survival  curves  only,  the  same  ranking  rule  for  the  
predicted failure times can be established for CτBM and CTW for a 
class of frailty models, applying this ranking rule to inter-cluster pairs for CτBMand to intra-cluster pairs for 
CTW.As such, only the ranking of the linear predictors is needed in the estimation CτBM of 
CτBM and  of the PH frailty model, since: 
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Following  the  definition  of CτBM and   (7),   the   marginal   
survival  probability  needs  to  be  calculated  for  each  subject  at  time point τ in the estimation of CτBM.
This survival probability is, however, hard to compute for most frailty models due to the integration step. Also, the marginal survival probability depends 
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 SC(τ⎢X,W) in the calculation of CτBM is the same as the ranking  of  
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CτBM and to intra-cluster pairs for CTW.As such, only the ranking of the linear predictors is needed in the estimation
CτBM of CτBM and  of the PH frailty model, since: 



Computation of interval estimates

A credible/confidence interval is constructed by means of a Bayesian/likelihood procedure, combined with the percentile 
non-parametric  bootstrap  of  [8].  This  bootstrapping  technique  has  been  adapted  to  the  clustered  data  setting,  i.e.  resampling  
by  cluster  and  always  selecting  the  same  number  of  clusters  in  each bootstrap sample [9]. When the failure time model is fitted using  likelihood  or  a  Bayesian  approach,  the  censoring  model  
needs to be fitted using the same approach. Even if credible intervals  can  be  readily  obtained  for  the  Bayesian  procedure  
from  the  posterior  distribution  of  the  respective  concordance  probabilities,  the  bootstrap  technique  is  necessary  to  ensure  
that the resulting 95% credible interval captures the uncertainty of  the  estimation  of  the  model  parameters  for  future  values  of  
the observed covariates [1]. The description of both procedures using  the  BCa method [8], which is a more refined version of 
the  percentile  non-parametric  bootstrap  method,  can  be  found  in  Section  B  of  the  online  supplementary  material.  Since  the  
developments  for  the  three  measures  are  the  same,  we  denote  the  measure  of  interest  as  Cτ.The  Bayesian  procedure  then  
corresponds to:




a.  After  removing  the  burn-in  part  of  the  Markov  chain,  let  the  MCMC  procedure  run  for  an  extra
m iterations.  At  iteration  p with p=1,...,m of  the  MCMC  sampling  
process  determine  the  posterior  estimate  for  each  model  parameter. For the PH frailty model, posterior estimates for 
the  parameters  of  the  baseline  hazard  function  ∧0(t),the  covariate  effects  β and  the  frailty  terms  
w are  obtained  in  this manner [7]. This step needs to be applied to the failure time model and the censoring model separately.

 
b.  For  each  subject    obtain  the  posterior  sample  of  the  censoring weight ωi(.) based on the posterior sample of the 
censoring model parameters.


c.  Compute  Cτ(l) at  each  iteration  l with l=1,...,m based  on  
the  posterior  sample  of  the  failure  time  model  parameters  and  the  posterior  sample  of  the  censoring  weights ω(.). We  
suggest to take the median of the posterior values of  Cτ(l) is 
the point estimate [image: ].



d.  Apply  the  Bayesian  bootstrap  technique  of  [10]  to  sample k=1,...,k new bootstrapping data sets. Calculate the 
point estimate of each kth bootstrap data set [image: ] based on the posterior samples 
[image: ].  


e.Compute  the  95%  credible  interval  (CI)  by  means  of  the percentile method of [8] using the point estimates of the 
k  bootstrap  data  sets  [image: ]. As  such,  the  2.5  and  the  97.5  
percentile of the bootstrap point estimates [image: ] constitute 
the lower and the upper bound of the 95% credible interval [image: ] .of
   


The likelihood procedure is equal to: 


a)  Determine the point estimates of the model parameters, which  are  obtained  for  the  PH  frailty  model  by  maximizing  
the  marginal  likelihood  for  the  parameters  of  the  baseline  hazard  function ∧0(t) and  the  covariate  effects
β after  which  empirical Bayes estimates are calculated for the frailty terms w [7]. This step needs to be applied to the failure time model 
and the censoring model separately.


b) For each subject  obtain the point estimate of censoring weight ωi(.) based  on  the  estimates  of  the  censoring  model  
parameters.

c) Compute the point estimate [image: ] based on the estimates of the failure time model parameters and point estimates of 
the censoring weights ω(.).
 
d) Apply the bootstrap technique of [8] to sample k=1,..,k new  bootstrap  data  sets.  Calculate  the  point  estimates  of  
each kth  bootstrap data set [image: ].

e)   Compute the 95% confidence interval (CI) by means of the percentile method of [8] using the point estimates of the 
k  bootstrap data sets [image: ].As such, the 2.5 and the 97.5 percentile  of  the  bootstrap  point  estimates  
[image: ] constitute  the lower and the upper bound of the 95% confidence interval of  Cτ.




Internal validation

In  practice,  the  same  data  is  often  used  for  developing  the  failure time model and measuring the predictive ability, hereby  generating  possibly  overoptimistic  estimates  of  the  predictive  ability.  One  can  correct  for  this  by  applying  an  adaptation  of  .632 and .632+ bootstrap cross validation procedures of the Brier  score  for  univariate  failure  time  models  to  the  clustered   setting,  proposed  by  [5].  Let  [image: ] be  the  (overoptimistic)  point  
estimate of the measure, the procedure then amounts to: 


Additional  developments  are  presented  here  for  CτBC ,CτBMand 
CTW.Since  the  developments  for  the  three  measures  are  the  same, we denote the measure of interest as  Cτ.



a. Split the sample randomly in training and a validation set.  Make  sure  that  the  training  (validation)  set  contains  
approximatively   63.2%   (36.8%)   of   the   subjects   of   the   original sample.

b. Repeat the same modeling steps in the training sample as  in  the  original  data  set.  Obtain  estimates  for  the  model  parameters.

c.  Calculate  a  point  estimate  of  the  measure [image: ] on  the  
subjects of the validation set only.


d.   Repeat the first three steps of this procedure B  times  with B reasonably large. 



Note  that  step  a)  of  the  upper  procedure  is  different  from  the  step  a)  of  the  classical  procedure  [5,11]  to  avoid  technical  difficulties regarding the estimation of the frailty terms. However, the   properties   of   both   procedures   are   the   same   since   the   training set is supported on 63.2% of the original data points for both procedures. The internally validated estimate corresponds to [image: ] where ψτ = 0.632 for   the  .632 bootstrap  cross  validation  estimate    [image: ] and [image: ] for  the  .632+  bootstrap  cross  validation  estimate  
[image: ][5].  The  relative over fitting rate [image: ]  is:  



[image: ]


Where, [image: ]  corresponds to the no-information error rate 
of the restricted concordance probability for which the survival status  is  independent  from  the  covariates  x. As  such,  for  each  
subject i of  cluster  ,j its  contribution  to  is  computed  by  averaging over all the observed   values of the data set or:


[image: ]



When  [image: ]  is lower than 0 (higher than 1), [image: ] is fixed to 0 (1). The  .632+  bootstrap  cross  validation  estimate  will  differ  more  from  the  .632  bootstrap  cross  validation  estimate  as  Rτ gets closer  to  1.  Further,  [11]  have  found  that  the  .632+  bootstrap  




cross validation estimate performs generally better than the .632 bootstrap cross validation estimate. An estimate of the frailty term of each of the clusters of the data set is needed to estimateCτBC. However, it is possible that some clusters of the original data set are not present in the training set of step a) of the above procedure such that in the validation set of step c) no point estimates can be calculated for these subjects. Therefore, we propose to calculate CτBC  in step c) only for those subjects whose cluster was present in the training set of step a). Note that it is assumed thatCτBC cannot be calculated for only a minority of the clusters of the validation data set such that the 63.2/36.8 proportion (training/validation) is not too strongly disrupted.

A too strong disruption of this proportion invalidates the upper internal validation scheme. A credible/confidence interval for the internally validated point estimate can be constructed by combining the above procedure and the one of Section 2.2.4.  More specifically, we start by sampling K  bootstrap data sets. For each of these bootstrap data sets, the upper procedure is repeated resulting in K validated measures [image: ]and  with k =1,K,k.  These validated measures [image: ]are then used to construct a 95% credible/confidence interval by applying step e) of the procedure of Section 2.2.4.

Results

Simulation study
         
After describing the design of the simulation study, the properties of the Bayesian/likelihood point estimates and the percentile credible/confidence intervals  [image: ] of the parametric failure time model are presented. In Section C of the online supplementary material, a full description of additional investigations is provided. Below we only report the conclusions of the additional investigations. These additional investigations entail the effect of changing the intra-cluster correlation, Changing and increasing the sample size on the Bayesian/likelihood point estimates of  [image: ].Also, the properties of the BCa credible/confidence intervals of the parametric failure time model and the properties of the Bayesian/likelihood point estimates of the semi-parametric failure time model of all measures are shown in Section C of the online supplementary material as well as the fitting procedures of the Bayesian/likelihood parametric and semi-parametric failure time model. This simulation study is repeated for the C(d ) measures detailed in Section D of the online supplementary material. Below we only report the conclusions of the latter simulation study. 

Design of the simulation study

In this section we provide details on the simulation study. A gamma frailty proportional hazard (PH) model with a Weibull baseline hazard (shape ρ= 2, scale λ= 2.236 )was chosen as the failure time distribution. Two subject-specific covariates were considered, each covariate was sampled from a standard univariate normal distribution. The  parameters were taken as (-2.45, 2.4), representing a population with strong covariate effects. All clusters are equal in size with cluster sizes 2, 5, 10 and 20. The variance parameter of the gamma frailty distribution equals 1 representing a population with a relatively large unobserved heterogeneity. This results in 4 different populations and for each of these populations censoring times are generated from a uniform distribution U (0,v) with  chosen to obtain a censoring percentage of 0%, 25%, 50% or 80%. This leads to 16 scenarios for which the performance of  [image: ] (with  equal to 1) is evaluated. For each of the scenarios, 100 (500) data sets of size 1000 were necessary for the estimation of the bias and MSE (coverage probability) to obtain stable results. All population parameters are chosen such that the covariates have an appreciable effect on the failure time distribution.
    
In order to evaluate the properties of  [image: ] the true values  [image: ],T are computed empirically in the absence of censoring by sampling a large data set (N = 20,000) from each of the 4 populations and by calculating the [image: ]and  [image: ]  using the true values of the parameters of the failure time. The fitted failure time model of the parametric model corresponds to a PH model with a Weibull baseline hazards.The fitted failure time model of the semi-parametric model corresponds to a classical Cox PH model with a partial likelihood estimation procedure [12] for the likelihood procedure and to a gamma independent increments model for the baseline hazards and a PH specification for the covariates [13] for the Bayesian procedure. Since no covariates influence the censoring process, the Kaplan-Meier model of [14] is chosen as the censoring model for the likelihood procedure and the gamma-independent increments model of [13] for the Bayesian procedure. The empirical bias is calculated as the averaged difference between the true and the estimated concordance probabilities and the MSE as the mean of the squared differences between the true and estimated concordance probabilities. A positive (negative) empirical bias is defined as any estimate greater (smaller) than the true value of  [image: ] respectively

    
Simulation results for the parametric and semi-parametric model Bayesian procedure: For the parametric model, no substantial empirical bias is seen over the different settings and that for all measures. The empirical MSE of  [image: ] increases mildly as the cluster size increases (decreases), attaining considerably higher levels for a censoring percentage of 80% and a cluster size of 2. For all measures the empirical MSE increases slightly as the censoring percentage increases (Figure 1). For  [image: ] the estimated 95% coverage probability approaches the nominal level for all scenarios. For cluster sizes 2 and 5 (10 and 20), [image: ] attains an estimated coverage probability of about 98% (95%) (Table 2). For  [image: ] [image: ] the size of the credible interval increases as the cluster size increases (decreases) and/or the censoring percentage increases (Table 3). For the semi-parametric model, percentage increases (Table 3). For the semi-parametric model,  
BC  [image: ] shows good estimation properties for the scenarios of a  cluster size of 20 only.   [image: ]are virtually unaffected by the censoring percentage and the cluster size.

       



Table 2: 
  Simulation study: coverage probability of the credible/confidence intervals of CτBC,CτBM and Cτw using the percentile method estimated
by the Bayesian and likelihood method, investigated for varying degrees of censoring ('0%', '25%', '50%' and '80%') and cluster size ('2', '5','10' or '20').
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Table 3: 
 Simulation study: width of the credible/confidence intervals of,CτBMandCτw using the percentile method estimated by the Bayesian and likelihood method, investigated for varying degrees of censoring ('0%', '25%', '50%' and '80%') and cluster size ('2', '5', '10' or '20').
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Figure 1:   Simulation study: empirical bias (upper panels) or empirical MSE (lower panels) in estimating , CτBC , CτBM and , Cτw by the Bayesian method. Each plot represents a set of scenarios sharing the same cluster size ('2','5','10' or '20'). The X-axis refers to the censoring percentage ('0','25','50' and '80') and the Y-axis to the empirical bias (upper panels) or to the empirical MSE (lower panels). 
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Figure 2:   Simulation study: empirical bias (upper panels) or empirical MSE (lower panels) in estimating , CτBC, CτBM and , Cτwby thelikelihood method. 






Likelihood procedure: For the parametric model, CτBC
shows a positive empirical bias which increases as the cluster
size decreases and the censoring percentage increases. For
CτBM
 and CτW
t no substantial empirical bias is seen over the
different settings. The empirical MSE of CτBCand CτW increases as the cluster size decreases, and for all measures the empirical
MSE increases as the censoring percentage increases, attaining
significantly higher levels for a censoring percentage of 80%
(Figure 2). For CτBC and , CτBM the estimated 95% coverage probability approaches the nominal level for all scenarios. For
cluster sizes 2 and 5 (10 and 20),CτW
 attains an estimated coverage probability of about 98% (95%) (Table 2). For CτBC
( , CτBMandCτW), the size of the confidence interval increases as the cluster size increases (decreases) and/or the censoring
percentage increases (Table 3). The semi-parametric likelihood
approach shows a similar behavior as the parametric likelihood
approach. 





Additional simulation results for the parametric model

The estimation of CτBC
 by the Bayesian method shows no significant empirical bias, except when the intra-cluster
correlation is very small, the cluster size very small and the
censoring percentage very high. The latter empirical bias is
provoked by an overestimation of the frailty variance parameter.
For the likelihood method,CτBC(d) shows a positive empirical
bias which increases as τ and the intra-cluster correlation
increases, but which is unaffected by the sample size. The
estimation properties of CτBM(d)
 and CτWby the Bayesian and
likelihood method are not influenced by τ, the intra-cluster
correlation or the sample size. The quality of the credible/
confidence intervals of the percentile and BCa the bootstrap
method are found to be very similar. Note that the estimate of the
acceleration aˆτ of the BCa non-parametric bootstrap method
was found to be very small in every investigated scenarios, such
that we recommend to fix the aˆτ to zero.



Simulation results for the Cτ(d) measures

For the Bayesian method, similar properties for all Cτ(d)
measures are found as for their corresponding Cτ(d) measures.
For the likelihood method however, an additional (negative or
positive) empirical bias is observed for Cτw(d)
 andCτBM(d)
 that increases as the censoring percentage increases. Note that this
additional empirical bias is caused by the φ(.) weights since it
requires the estimation of the conditional survival probability
of the true failure time model. Indeed, the latter estimates are
constructed by means of the empirical Bayes estimates of the
frailty terms which will induce in some scenarios a positive
empirical bias and in other scenarios a negative empirical bias.
The estimation of Cτ(d) measures by means of the likelihood
and Bayesian semi-parametric failure time model is only reliable
for a sufficiently large cluster size (for a cluster of size 20 in our
simulation study) and, for the likelihood method only, when the 
censoring percentage is not high (up until a censoring percentage
of 25% in our simulation study).



Effect of misspecification

In this section, we show the effect of misspecifying the
frailty distribution and the censoring model on the estimation
properties of , CτBC
, CτBMand . CτWthe conclusion of these
investigations is reported below, a full description of the
simulation study and corresponding results can be found in
Section E of the online supplementary material. Moreover,
just the results of the Bayesian method are reported here
since similar results are found for the likelihood method. For
the latter method only an additional positive bias for CτBC
 is observed which increases as the cluster size and/or censoring
percentage and/or degree of misspecification increases. This
simulation study is also repeated for the Cτ(d)
 measures. For a full description of the latter simulation study and its results, we
refer to Section F of the online supplementary material. 



Misspecification of the frailty distribution

CτBM and CτW
 are virtually unaffected by misspecification
of the frailty distribution. , CτBC
 however, is in general strongly affected by misspecification, resulting in a positive (negative)
bias when the empirical distribution of the estimated frailty
terms wˆ is more (less) variable than the distribution of the
true frailty terms w. Similar results were found by [15]. 




Misspecification of the censoring model

A functionally misspecified covariate effect or a misspecified
censoring model will result in a negative bias, especially for high
censoring percentages (50% and 80% in our simulation study).
Covariates that have no impact on the censoring process will
not influence the quality of the estimation when included in the
censoring model. Omitting important variables, however, does
result in a negative bias. In practice, several equally performing
censoring models can be proposed. This is however not a
problem since the censoring model is merely used as a working
model. Note however it is easier to detect misspecifications of the
censoring model as the censoring percentage increases since, in
contrast to the failure time model, a higher censoring percentage
results in an increase of information for the censoring model.
Similar results were found by [16].



Simulation results for the Cτ(d) measures

Due to the misspecification of the frailty distribution, the
estimated frailty terms differ from the true frailty terms, hereby
not only disrupting the bias patterns of CτBC(d)
t but also of CτBM(d)
and CτW(d) since the estimated frailty terms are also used in
the calculation of the φ(.) weights. We therefore recommend
to useCτ(d) the measures only to appreciate a good fitting
model in more detail. The results of the misspecification of the
censoring model are very similar to what was obtained for the
Cτ measures.



Application to the amalgam data set

In this data set, the effect of different treatment modalities
on the longevity of different types of amalgam restorations is
investigated. The primary covariates of the study are 4 cavity
wall treatments ('CSA', 'CWF', 'Copalite' and 'Silver Suspension')
and the alloy of the amalgam (levels: 'NTD', 'Tytin' and 'CNG').
The secundary covariates are the type of the restoration (levels:
'MO/DO' and 'MOD'), the type of tooth (levels: 'premolar' and
'molar'), the position of the tooth in the mouth (levels: 'upper left',
'upper right', 'lower left' and 'lower right'), the operator (levels:
'operator 1', 'operator 2' and 'operator 3'), gender and age. The
data set is composed of three clinical trials and in each clinical
trial the primary variables were combined into 4 treatment
modalities assigning each modality randomly to 4 (or 8 or 12)
teeth in a 2 x 2 (factorial) design within patient [17]. Note that
this study was mainly designed to evaluate significance of the
primary covariates. In this paper we will evaluate the predictive
potential of all the primary covariates. Since the early failures
are suspected to be of a different nature than the late failures and
since there are only a few early failures, we restrict our analysis
to the late failures only, i.e. failures that occur at least 9 years after
enrollment in the study. This results in 174 patients contributing
with 1347 amalgam restorations. The clustered data structure is
unbalanced, with 4, 8 and 12 restorations seen in 36, 89 and 33
patients, respectively. The median follow-up time is 14.48 and
the true failure time is observed for 187 amalgam restorations
only, leading to a censoring percentage of 86.2%.

Based on the results of the simulation studies of Section 3.1,
we have chosen to use the Bayesian gamma frailty generalized
gamma model as the failure time model, which is a very flexible
parametric Bayesian model [18]. Note that the failure time model
consists of the primary covariates only. Different censoring
models for the IPCW weights were tested with the Bayesian
generalized gamma model of both primary and secondary
covariates resulting into the highest concordance probability
estimates. We evaluate the model's discriminatory ability from 9
to 15 years after enrollment in the study, since, as recommended
by [19], censoring is not too heavy at the end of this time
interval. The +.632 bootstrap cross validation estimators are
chosen for the internal validation of the considered concordance
probabilities. The R code of this analysis but applied to fictive
data can be found in the online supplementary material.


Analysis using the full information

The apparent and validated point estimate and 95%
percentile credible interval of the Cτ measures (B = 100, K =
100, τ = 6 ) are shown in Table 4. Since ?? is chosen to be 6,
all comparable pairs of the [9,15] time interval are considered.
Little difference with the values in Table 4 is found for Cτ(d)
measures using τ= 6 and d=6. We see that the covariates
have practically no intra-cluster predictive ability but a strong
inter-cluster predictive ability. Further, even after validation,
the between conditional concordance probability improves 
reasonably strongly on the between marginal concordance
probability implying the presence of a strong clustering effect
upon the covariate effects. Thus, if one succeeds in a future
study to fully capture the clustering effect in covariates and if
the primary variables are also included in this future model,
the between marginal concordance probability can potentially
attain a value of 0.74. Note that the drop in predictive ability due
to the internal validation is more pronounced for the between
conditional concordance probability than for the between
marginal and within concordance probability. All the apparent
and validated 95% percentile credible intervals show a strong
overlap and the upper bound of the validated 95% percentile
credible intervals are all lower than the upper bound of the
apparent 95% percentile credible intervals. Surprisingly, the
lower bound of the validated 95% percentile credible intervals
of the within and the between marginal measures are higher
than the upper bound of the apparent 95% percentile credible
intervals.






Table 4: 
Amalgam data set: Apparent and validated point estimate
('Point') and 95% percentile credible interval ('CI') ofCBC
CτBC and CτW.
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Analyzing t and d - varying patterns

In Figure 3, the apparent and validated time-varying Cτ
and Cτ(d) estimates are shown. In the left panel of Figure 3,
no Cτ estimates are available for a τ value lower than 10.2.
Indeed,Cτ can only be estimated when at least one true failure
time has been observed prior to τ , which is only the case from
10.2 years onwards. Further,CτBC (CτBM and CτW) attain lower (higher) values as τ increases, implying that early failing teeth are easier (more difficult) to discriminate from later failing teeth
than later failing teeth are. As a result, the difference between
the validated curves of CτBC and CτBM
mildly decreases as τ increases such that the clustering effect induces a stronger gain
in predictive ability for the earlier failing teeth as compared to
the later failing teeth. Note that CτW
t even attains values lower than 0.5 for τ values lower than 14, meaning that the ranking
of the predictions are systematically in the wrong direction for
teeth belonging to this τ range. In the right panel of Figure
3, a monotone increasing pattern is depicted for both CτBC(d)
and ( )CτBM(d). The validated patterns of both measures exceed
0.5 only for dvalues higher than 0.7 and remain to be very
similar up until a dvalue of 1. Stable results are obtained for
CτBC(d) andCτBM(d) once d exceeds 3 years. This means that the clustering effect only increases upon the predictive ability of
the covariates for inter-cluster pairs with a difference in failure
time of minimum 1 year and of maximum 3 years. The validated
pattern of CτW(d) approaches a straight line and reveals an
almost complete absence of intra-cluster predictive ability of the
primary covariates for this data set.





[image: ]

Figure 3:  In the left (right) panel, the apparent and validated τ(d) varying patterns of the C(Cτ(d)) estimates are shown. Ticks for the observed true failure times are shown in the left panel.





Discussion

In this article, the methodology proposed in [1] is extended to
general frailty models. Also, a new definition of the concordance
probability is developed as well as an internal validation
procedure and a procedure to calculate interval estimates in the
presence of clustered data. Note that all these developments can
also be applied to univariate survival models, we just focused on
the frailty model in this article. Other very useful measures can
be extended to the frailty model in a similar manner [19-22]. We
chose the concordance probability since it is most widely used
measure for the discriminatory ability of survival data. From the
simulation study, we learned that it is of mayor importance to
model the censoring model correctly. Despite of this possible
shortcoming, the IPCW estimation method is up to now, to
our knowledge, the best method to estimate the concordance
probability in the presence of censoring. An alternative
estimation method could be based on a non-parametric
imputation method based on the covariate distribution, in which
the censored failure times are replaced by true failure times
whose covariate information is close to the one of the censored
observation. This estimation would be, in spirit, similar to what
has been done by [23] for the estimation of survival models.



The between conditional concordance probability estimated
by the likelihood approach suffers from a negative bias, especially
for a small cluster size and a high censoring percentage. By
means of a small simulation study, we could determine that this
overoptimistic bias is caused by the empirical Bayes estimates
of the frailty terms since the overoptimistic bias of the between
conditional concordance probability disappeared once the
frailty terms were replaced by their population values. Note that
similar results were found in [1] and [24]. An external validation
of the between conditional concordance probability can only
be performed when the same clusters are used for the external
data set as for the training data set. Indeed, only under these
conditions estimates of the frailty terms for the clusters of the
external data set are available, indispensable to compute the
between conditional concordance probability of the external
data set. Note that this only emphasizes the importance of an
internal validation procedure for the between conditional
concordance probability. A different solution to this problem
could be the estimation of the frailty term of a new cluster,
but this approach was not considered here. In this article we
extended the concordance probability for frailty models with
a 2-level clustering structure, since this is the most common
clustering structure in survival analysis [7]. In practice however,
more complicated clustering structures may be encountered. In
[24] for example, it is shown how the concordance probability
and the Brier score can be extended for nested 2-level and
3-level multilevel binary regression models.
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