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Abstract


Increasing greenhouse gas emissions, rising and exhaustibility oil prices has accumulated the importance of looking for alternative energy
sources. In this work, our objective is to study in a first step the link and interactions between oil market and the renewable energy stock
market in terms of volatility, then in a second step to determine the best hedging strategy in the oil market by the renewable energy indices.
Our methodology consists to estimate the volatility of the variation of oil prices on the renewable energy indices as well as the coefficient of
correlation based on a multivariate GARCH model. Several versions of this model are used to calculate the variances as well as the conditional
correlations to calculate the hedging ratio and then determinate the best hedging strategy. The empirical results show that the volatility of
alternative energy market can be influenced by the change in oil prices and vice versa. In addition, the hedging ratio as well as the weighting
coefficient varies from pair Oil/Renewable Energy to another, from one period to another and from one MGARCH version to another. Hedge
against the risk of fluctuation of oil is effective with the use of renewable energy markets. The BEKK-GARCH model is more efficient compared to
other versions in reducing Oil-Renewable Energy portfolio risk.


Keywords:  Volatility transmission; Renewable energy indices; Hedging strategy; Optimal portfolio weight; Multivariate GARCH;BEKK
representation

Abbreviations:GCE: Global Clean Energy Index; ERIX: European Renewable Energy Index; NEX: New Energy Global Innovation Index;
HE: Hedge Effectiveness Coefficient; BEKK: Baba-Engle-Kraft-Kroner; CC: Constant Conditional Correlation; QMLE: Quasi-Maximum Likelihood
Estimation








Introduction



Currently, Energy has become part of our daily lives in one
way or another. At a national level, the importance of energy
is further amplified as energy is now a necessity for smooth
functioning of our daily work and personal chores [1]. Then,
without energy most developing and industrial societies would
be unable to maintain their economic growth and subsistence.
Few previous studies have suggested that rising oil prices
negatively affect stock market returns and economic activities.
Thus, it slows down cash flow and reduces stock prices. However,
there are several industries that benefit from this increase; it
mainly refers to clean, alternative, or renewable energy industry
[2]. In fact, over the last decades, the global massive use of fossil
fuels has grown more than twenty times, which has caused two
major problems [3]:


I. The potential depletion of fossil energy sources

II. And increasing in greenhouse gas emissions which
have an undeniable impact on pollution and global warming.


So, the world today is motivated to seek out clean energy
sources. The international Energy Agency (IEA) predicts that
the demand for renewable energy will grow at a compound
average annual growth rate of 7.3% between 2007 and 2030
[4]. Moreover, the use of energy in all its forms (electricity
generation, industry use, transportation and residential use)
is one of the main raisons for economic growth and prosperity.
So conforming to the EIA (Energy Information Administration),
published in the international Energy outlook, 2013, it was
expected that global energy consumption will increase by 56%,
between 2010 and 2040 [1]. Reflecting their leading status in the
increasing satisfaction of the world's energy needs. As countries
grow and prosper, their demand for energy increases as well.


Modeling and predicting volatility is at the heart of modern
finance as correlation and volatility estimations are necessary
for derivate pricing, portfolio optimization, hedge and risk
management. So far, there are few things about the dynamics
of clean energy price volatility and the possible linkages
between these and other major financial markets, such as the
oil market [5]. So in order to know whether an investment in
renewable energy stocks is more or less attractive, investors
should establish how the dynamics of oil prices influence the
performance of renewable companies. In particular, investors
need to assess the potential risks of decline or increase due to
the oil prices. Therefore, understanding how fossil fuel prices
coagulate with clean energy prices is an important issue which
worries investors and policymakers to the same extent [6].


In recent years, the relationship between oil prices and
stock market returns has received enormous attention and has
made the sector of renewable energy one of the most promising
industries [7]. In fact, there are very few studies supporting
on the relationship between oil prices and alternative energy
prices. Previous works have treated this relationship using
different econometric methods. In view of the above, this study
aims to approach the issue of the transmission of oil shocks on
the clean energy market in first step, then to determine the best
hedging strategy on the oil market by each index of renewable
energy. The optimal strategy need the determination of the
optimal hedge ratio or the weighting coefficient, which in turn
determines the correlation coefficient and the volatility function
in both markets in question. To achieve this goal, we will adopt
the approach of estimating volatilities and correlation coefficient
based on a multivariate GARCH model. Several versions of this
model are used to calculate the variance as well as the conditional
correlations and then the hedge ratio.


As a result, we bring out a series of questions that constitute
the problematic of our study:


To what degree a shock from oil market can affect the
renewable energy indices and a shock from renewable energies
can affect the oil market?


a. Is the relationship between oil market and the
renewable energy market unidirectional or bidirectional?


b. What optimal hedging strategy can be adopted?


In order to provide answers to the questions above, our
study is organized as follows: section 2 gives an overview of
past studies. In Section 3, we present multivariate GARCH
models. Section 4 provides data descriptions. The performance
analysis is described in section 5. Then, section 6 and 7 discusses
empirical findings. Finally, conclusions, implications and future
research opportunities are provided in the last section.


Literature review


Even with the importance of oil prices in determining the
alternative energy stock prices and the investment profitability
of renewable energy companies, the existing literature on the
relationship between oil and renewable energy values and
their implications stocks is still relatively scant. In this section,
attention will be paid to the theoretical and empirical literature
on the relationship between oil markets and clean energy
markets in terms of yield and volatility by some authors on the
subject. In the bellow, we summarize the main characteristics of
the existing literature.


Henriques & Sadorsky [8] used an autoregressive vector
model to account for the relationship between oil prices,
alternative energy prices, technology stock prices and interest
rates for the period from January 2001 to May 2007, finding
evidence of Granger's causality from crude oil price to stock
prices of renewable energy companies. They also found that
the behavior of renewable energy stock prices closely mirrored
those of technology stock prices. In line with Henriques &
Sadorsky [8], Managi & Okimoto [2] analyze the relationship
between oil prices, clean energy stock prices and technology
stock prices using Markov-Switching VAR model. They found,
before late 2007, oil prices had no effect on clean energy stock
prices. But thereafter, higher oil prices had a positive impact.
Using a four multivariate GARCH models (BEKK, Diagonal, CCC
and DCC), Sadorsky [5] studied dynamics between oil prices
and clean energy stock prices. He finds that stock prices of
alternative energy companies correlate more closely with
technology stock prices than with oil prices. Finding also that
oil was a useful hedge for clean energy stocks. Kumar et al. [9]
confirm these findings by using Toda & Yamamoto [10] version
of extend VAR framework. They noted that raising oil prices,
interest rates and technology stock prices, unlike carbon prices,
positively influence alternative energy stock prices. Likewise, for
Chinese energy-related stocks, Broadstock et al. [11] reported
that oil price dynamics impacted on energy stocks in China,
mainly after the beginning of the recent global financial crises,
when dependence increased considerably.


Moreover, Sadorsky [12] studies the determinants of
renewable company risk between 2001 and 2007; by using a
variable beta model. He showed that a rise in oil prices has a
positive impact on the beta of renewable energy stocks. There
is two recent studies have investigate the impact of the nuclear
accident in Japan on both nuclear and alternative energy stocks.
Betzer et al. [13] studied the only and unexpected feedback of
the German Federal Government to the Fukushima nuclear
disaster. The results of the study show that German renewable
energy stocks gained nearly 18% on a beta-adjusted basis over
the first trading days after the unpleasant incident, while the
German nuclear and conventional energy sector lost about 3.5%
over the same period. In the same way, Frestl et al. [14] examined
the impact of the nuclear accident on the alternative energy
stocks in France, Germany and Japan, finding positive abnormal
returns for clean energy stock returns and significantly negative
abnormal performance for nuclear energy companies. In
contrast, U.S. nuclear and renewable energy companies do not
seem to be noticeably affected by the event.


Analyzing the time-varying beta behavior of cleantechnology
stock market indices, Ortas & Moneva [15] noted 
that these indices achieved higher returns and risks than
conventional stock indices. Other studies have analyzed the
factors that determine the supply of renewable energy values.
Bohl et al. [7] studied the behavior of German renewable energy
stocks, noting that they had a significant systematic risk and
speculative attacks that bubbles generated before the global
financial crisis and European sovereign debt. Furthermore, Wen
et al. [16] employed Baba-Engle-Kraft-Kroner (BEKK) model
in order to analyze the return and volatility spillover effects
between Chinese renewable energy stocks prices and fossil fuel
stocks. They reported evidence of significant mean and volatility
spillovers between renewable energy stocks, while renewable
energy stocks were riskier than fossil fuel stocks. 


More recently, Reboredo [6] has pointed signs of different
time average and symmetric tail dependence between oil prices
and a set of global and sectoral renewable energy indices.
Gradually, as the renewable energy sector develops and the
current listed companies which go public grow, it is important
to have an understanding of the dynamics of these businesses
through the volatility. In this paper, four multivariate GARCH
models (BEKK, diagonal, constant conditional correlation, and
dynamic conditional correlation), are used to model dynamic
correlations and the volatility spillovers between oil prices
and the stock prices of clean energy companies, are compared
and contrasted. It is noted that the VARMA-GARCH constant
conditional correlation model fits the data best and this model
is then used to construct hedge ratios and optimum portfolio
weights.


The empirical model


The multivariate GARCH model is a mechanism that uses past
variances in the explications of future variance. More specifically,
it is a method to model the social dependence of volatility.
Different versions of MGARCH have been proposed. They differ
in the characterization of the conditional variance matrix of a
stochastic vector process. In this paper, four multivariate GARCH
models (BEKK, diagonal, constant conditional correlation,
and dynamic conditional correlation) are used to model the
volatility dynamics between the stock prices of clean energy
companies, oil prices, technology stock prices and natural gas.
The BEKK, which is used as a benchmark, have been proposed
by Engle & Kroner [17] that can be viewed as a restricted version
of the VECH model. The other models (diagonal, constant
conditional correlation: introduced by Bollerslev [18], and
dynamic conditional correlation: suggested by Engle [19]) are
approximately easier and can be estimated in two steps. In the
first step, univariate GARCH models are used to estimate the
variances. In the second step, correlations are modeled based on
the standardized residuals from step one.


GARCH is the most popular volatility model proposed by
Bollerslev [20]. It allows the conditional variance to be indicated
as a linear function of lagged squared error terms and lagged
conditional variance terms. A multivariate GARCH model is
used to model the time varying variances and covariances.
For the diagonal, constant conditional correlation models the
conditional variance is supposed to be VARMA-GARCH (1,1)
according to Ling & McAleer [21]. The conditional variance for
each return, i=1,...,m, following a univariate GARCH process,
is written as follow: 
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Where, Cii is a constant, and ij and βij are ARCH and GARCH
coefficients respectively. Modeling the conditional variances
based on Ling & McAleer [22] approach let big shocks to one
variable in order to have influence on the variances of the
other variables. This is a suitable specification which allows
for volatility spillovers. DCC is not linear, but may be estimated
simply using a two step method based on the likelihood function.
In the first step, we estimate separately the conditional variance
by a univariate GARCH model for each time series. In the second
step, the correlations are estimated.


The k х k conditional covariance matrix can be written as:
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Where, Rt is the time-varying correlation matrix and Dt is
the diagonal matrix of conditional standard deviations for return
series. The matrix Dt is obtained from estimating a univariate
GARCH model (Eq.1).[image: ]is the number
of returns and 
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Accordingly, we can specify the conditional correlation
matrix as:
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Where the K х K symmetric positive definite matrix Qt is
given by:
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In which ϴ1 and ϴ2 are scalar parameters to capture the
effects of previous shocks and previous dynamic conditional
correlations on the current dynamic conditional correlation, and
ϴ1 and ϴ2 are non negative scalar parameters satisfying ϴ1+ ϴ2<1,
which implies that Qt >0 And Ǭ  is the K х K unconditional
correlation matrix of the standardized residuals µi,t


In the DCC model, the conditional correlation estimator pij,t
is given by:
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Where, qij,t is the element of the ith/sub> line and jth column of the
matrix . Qt For the constant conditional correlation (CCC) case,Rt=R and Rij=pij


The MGARCH models are estimated by Quasi-Maximum
Likelihood estimation (QMLE) using a joint normal density. T
statistics are calculated using a robust estimate of the covariance
matrix.


Data


The data for this study includes the daily closing prices
of crude oil prices for Brent oil, considered a major world
benchmark for oil prices, natural gas and seven clean energy
stock price indices: Three global indices and four sectoral
indices. The global indices were


a. The Wilder Hill Clean Energy Index (ECO), computed
by the American stock Exchange, an equal-dollar-weighted
index engaged in activities related with the use of cleaner
energies and conservation. 


b. The S & P Global Clean Energy Index (S & PGCE),
computed as the weighted index composed of 30 companies
and manufactures of clean energy and clean energy
technologies around the world. And 


c. The European Renewable Energy index (ERIX) which
includes Europe's largest renewable energy companies
generation involved in the production of wind power, solar
energy, biomass and water


The renewable energy sectoral indices were 


a. The NYSE Bloomberg Global Wind Energy Index
(WIND), an investable market index for only companies
active across the wind energy sector, including equipment
manufacture and the financing, development and operation
of wind projects. 


b. The NYSE Bloomberg Global Solar Energy Index
(SOLAR), an investable market index for only companies
active across the solar energy sector, including equipment
manufacture and the financing, development and operation
for solar projects. 


c. The NYSE Bloomberg Global energy Smart Technologies
Index (TECH), is comprised companies operating in the
advanced transportation, digital energy, energy efficiency
and energy storage sectors. 


d. We use also the WilderHill New Energy Global
Innovation Index (NEX) which is a modified dollar-weighted
index of publicly traded companies active in renewable and
low-carbon energy and whose technologies help reduce
emissions relative to traditional fossil fuel use. Most of the
index members quoted are from outside the US. 


It is created by WilderHill New Energy Finance, LLC: DJI, with
a benchmark value of 100 as on 30th December, 2002. In this
paper, we use a daily data in our analysis which lets give clearer
observations than weekly, monthly, yearly or quarterly data.
Juan C Reboredo [6] found that daily data better examine the comovement
and systemic risk between oil prices and stock prices
of clean energy. The data for this study cover the period from
16/12/2005 to 11/04/2016 (with a total of 2698 observations)
includes the daily closing prices of the ECO, the S & PGCE, the
ERIX, the WIND, the SOLAR, the TECH, the NEX, Brent crude
oil and natural gas. Brent crude oil pricing data were obtained
from the US Energy Information Agency, data on the ERIX were
obtained from the Société Générale and data for other renewable
energy indices were sourced from Data stream. Missing data
arising from holidays and special events are supposed to be the
average of the recorded previous price and the next price. Daily
price returns for Brent and each price index were computed as
the first difference of the natural logarithm between actual and
previous price index multiplied by 100:


rt=[1n(Pt)-1n(Pt-1)]x 100


 Where Pt : the closing of an index on day t and Pt-1:the closing
of an index on day t -1
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Figure 1:   Evolution of Brent, Gas and renewable energy index returns over time
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Figure 2:  Price return dynamics of different indices over time

 


In order to illustrate the evolution of Brent, Gas and
renewable energy indexes, we show their charts in Figure 1. We
can clearly observe mean and variance of each stock index tend
to move together. The recession of 2008-2009 had a big impact
on the stock prices of clean energy companies as the ECO index
suffered a huge drop of -123% between September 1, 2008
and March 9, 2009. In addition, time series graphs show how
volatility has changed across time. Figure 2 displays price return
dynamics for Brent, Gas and renewable energy indices, showing
differences in the size and timing of price movements around the
onset of the recent global financial crises.


Table 1 reports descriptive statistics for price returns. For
each series, average returns were close to zero or negative,
suggesting lower performance, and the standard deviation
is larger than the mean value. Skewness was positive for oil
returns and negative for natural gas and renewable energy
stocks, suggesting a greater probability of large decreases in gas
and renewable energy returns than in oil returns. Each series
displays a small amount of skewness and a larger amount of
kurtosis, and the returns are not normally distributed, where by
the Jarque-Bera [22] test strongly rejected the normality at the
level of 5% of the unconditional distribution. The Ljung Box [23]
statistics for serial correlation show that the null hypothesis of
no autocorrelation is rejected, confirming serial autocorrelation
in the energy price returns and squared returns. Also, the
autoregressive conditional heteroskedasticity-Lagrange
multiplier (ARCH-LM) statistic indicates that the series had
ARCH effects. Finally, the results of the augmented Dickey &
Fuller [24] non-stationary test and the Kwiatkowski et al. [25]
stationary test confirm that all return series were stationary.
The Pearson correlation coefficient indicates that all renewable
energy indices were positively correlated with oil price returns. 



Table 1:  Descriptive statistics for daily returns
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Notes: JB is the Jarque-Bera?2 statistic for the test of normality. Q(12) and Q(12)2 are the Ljung-Box statistic checks for the serial correlation of
squared standardized residuals. ARCH-LM is Engle's LM test for heteroskedasticity, computed using 20 lags. ADF and KPSS are the empirical
statistics for the Augmented Dickey and Fuller and the Kwiatkowski stationarity test, respectively. Corr. Brent is the Pearson correlation for each
series with Brent. An asterisk (*) indicates rejection of the null hypothesis at the 5% level.


Empirical results and discussion

This section reports on the empirical results obtained from
estimating multivariate GARCH models.


Parameters roles: As the initial aim of this study is to
measure the links existing between oil market and renewable
energy market in terms of volatility, we will use a multivariate
GARCH model. Especially, we estimate results of time-varying
variance-covariance by the BEKK (1,1) model. The system is
given by:
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To know more for the role of each parameter in each
parameter in the system, we develop the mean and variance
equations of model:


Mean equation
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Variance equation
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 Where h11,t represent the conditional variance for crude
oil market return at time t, h12,t  indicate the conditional
covariance between oil market return and those of renewable
energy markets, and h22,t describes the conditional variance of
renewable energy index returns. In addition, the parameters a12 ,
a21 , b12 and b21  show the transmission of volatility and shocks
overtime between markets. Besides, the shock spillovers (a12 ,
and a21 , ) and volatility spillovers ( b12 and b21  ) off-diagonal
elements of matrices A and B, catch cross-market effects.
Additionally, we can estimate the parameters of the bivariate
GARCH model by the maximum likelihood estimation method
optimized with the Berndt, Hall, Hall and Hausman (BHHH)
algorithm. 


Parameters estimation of the bivariate VAR(1)-
GARCH-BEKK(1,1) model


As in the univariate case, it is assumed that the residuals
are conditionally distributed according to a multivariate normal
distribution with mean 0 and variance-covariance matrix . Ht
In fact, results estimates are given in Table 2. This table shows
the Ljung-Box Q statistics for the standardized residuals and
squared standardized residuals of each index and for each
system in order to check the existence of any linear or non-linear
dependence. The Q values show that the bivariate GARCH model
generally provides a reasonable representation of the return
process. 


As mentioned below, Table 2 show the estimation results
of our bivariate VAR(1)-GARCH-BEKK (1,1) model for the eight
pairs of oil-renewable energy returns. Regarding the extent of
volatility transmission between Brent index and SPGCE, the
coefficients a12 and a21 , are statistically significant. This
result is interpreted as the conditional volatility of oil market is
significantly influenced by unexpected changes coming from the
SPGCE market. While, an oil shock can influence the volatility
of SPGCE market. Then, we can say that the relationship is
bidirectional. Among all indices, results estimations indicate
that the volatility of oil price returns is significantly affected by
its own news and its past volatility, due to the significance of
coefficients a11 and b11.



Table 2:  Estimates of bivariate VAR (1)-GARCH-BEKK (1, 1) model for oil and renewable energy indices
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Note: Q(12) and Q2(12) are the Ljung-Box test statistic checks for the serial correlation of squared standardized residuals. The AIC criterion
measures the relative goodness of fit of the estimated model. (*) indicate the rejection of the null hypothesis of associated statistic tests at the
5% level


Beginning with the oil-NEX pair, the estimation results
indicate that the volatility of the NEX is affected by the
unexpected oil market news and the past conditional variance
of oil market, as indicated by significantly sensitive to crude
oil price. Indeed, the rise in oil prices may intensify the indices
return volatility through changes in the oil. In terms of the ECO,
TECH, WIND and GAS, our findings suggest that these indices
have significant effect on the volatility of oil market. So, these
indices are not affected by volatility in oil market. In this point,
the performance of these indices is independent on oil price
changes. The OIL-SPGCE, OIL-SOLEX and OIL-ERIX models show
a bidirectional shock spillover between SPGCE, SOLEX, ERIX and
oil market. Additionally, we find that the a11 and a22 coefficients
are statistically significant, indicating that an impact on the local
market affects its conditional variance. 


According to the Table 2, we note that b12 and b21 coefficients
are significant for all cases indicating the presence of volatility
clustering phenomenon. Namely, periods of high (low) price
changes are followed by periods of high (low) price fluctuations. 



Optimal portfolio weights and hedge ratios


In order to hedge oil price change risk, portfolio managers
are required to quantify the optimal weights and hedge ratio.
Alternatively, an optimal portfolio weight of crude oil and 
renewable energy indices that minimizes risk without lowering
expected returns can be calculated out using the following
equation, Kroner & Ng [26]. 
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Provide that,
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Where, w12,t is the portfolio weight for the first index relative
to the second index at time t, h11,t denotes the conditional
variance of the first index, h22,t  denotes the conditional variance
of the second index and h12,t denotes the conditional covariance
between the first and the second index. The optimal portfolio
holdings for the medium-firm index would therefore be (1-w12,t)


We also estimate the risk minimizing hedge ratios for these
indexes by using the ratio proposed by Kroner & Sultan [27] who
shows that to minimize the risk of a portfolio a long position in
one asset can be hedged with a short position in a second asset.
This ratio is given by:
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We present in Table 3 the average values of realized optimal
weights w12,t and β12,t; hedge ratios As shown in Table 3, the
coefficients of optimal weights vary from one index to another
and from MGARCH version to another. For example, the optimal
weight for SPGCE-Oil portfolio is 43.63%, 43.58%, 43.79%,
43.68% and 43.99% when using BEKK, CCC, DVEC, DCC-N and
DCC-T versions of multivariate GARCH model respectively. The
optimal weight for SOLEX-Oil portfolio is 64.64% for the BEKK
version which indicate that the proportion of this portfolio in
our optimal portfolio is 64.64% on average. The coefficients of
average ratio are generally low, which suggest a very efficient
hedge in equity indexes considered. If we consider for example,
the effectiveness of the ECO-Oil hedge portfolio, which has a
hedge ratio of 0.12820 across the DCC-GARCH model, which
means that the hedging strategy of a long position on the oil
market should be covered by a short position of (12.82%) in the
ECO index. 



Table 3:  Optimal portfolio weights, hedge ratio and conditional correlation for pairs of oil and renewable energy indices
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Figure 3:   Evolution of the optimal weights and hedge ratios of the optimal portfolio for the SPGCE-Oil portfolio from the DCC-N-GARCH
model.

 


Concerning the conditional correlation coefficients P, we
note that for the different indices, these coefficients are positive
and over 50% for the versions: BEKK-CCC-DVEC, MGARCH
model. This indicates that there is a little flexibility for portfolio
diversification between different series. On the other hand,
for the DCC-T versions, the averages of P, are less than 50%.
In summary, our findings provide an important guideline on
building optimal risk portfolios between oil and renewable
energy market, and some benefits from the optimal diversifiable
portfolio to minimize the oil price risk without any impairment
of expected returns. Figure 3 shows the evolution of the optimal
weights and hedge ratios of the optimal portfolio for the SPGCE -
Oil portfolio from the DCC-N-GARCH model.


Performance of different versions and hedging
effectiveness


Our goal in this section is to study the performance of each
version of MGARCH model to give a better hedging strategy
against risks. We try to compare these different versions to
show in a first step the benefits of using the MGARCH model in 
reducing risks and in a second step to choose the best version of
MGARCH model. The effectiveness of hedging across constructed
portfolios can be evaluated by examining the realized hedging
errors, which determined by Ku et al. [28] and Chang et al. [29]
as follows: 
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Where, the variances of the unhedged portfolio (Varunhedged )
are the variances of the return on the portfolio of stocks with
100% oil and 0% renewable energy, whereas the variances
of the hedge portfolio (Varunhedged ) are obtained from the
optimal portfolio. A higher HE index indicates a higher hedging
effectiveness, which indicates that the associated investment
method can be deemed a better hedging strategy. Table 4 shows
the average values of mean return, average standard deviation,
risk adjusted return, and hedging effectiveness (HE) ratios of
each portfolio using four different versions of MGARCH model:
BEKK, CCC, DVEC and DCC (Normal and student).


A risk adjusted return of each portfolio is determined as
follow:
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A first selection criterion is to choose the method that has
the standard deviation at minimum risk. From Table 4, we can
see that the four versions of MGARCH model record a standard
deviation average which are very close to each other. This shows
the effectiveness of the portfolio diversification by introducing
the Brent index in the risk minimization



Table 4:  Optimal portfolio weights, hedge ratio and conditional correlation for pairs of oil and renewable energy indices
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Results show that the portfolio OIL/WIND has the highest
hedge effectiveness coefficient (HE) with 20%. However, the
lowest coefficient is recorded in the portfolio OIL/GAS for a value
of 2.8%. Moreover, the lowest and highest HE ratios are given by
the BEKK-GARCH. So, we conclude that an investor who wants
to invest in the renewable energy market, the best model that
provide the best hedging effectiveness and minimizes greatly the
risk of its portfolio during the whole period is the OIL/WIND.
Therefore, our results prove that the BEKK-GARCH model is the
best version adopted in all cases to minimize the risk of oil-stock
portfolio (Table 5).



Table 5:  Optimal portfolio weights, hedge ratio and conditional correlation for pairs of oil and renewable energy indices
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Conclusion


This paper investigated correlations and the volatility
spillovers between Brent oil and stock prices of clean energy
companies and analyzed the optimal weights and hedge ratio
for building optimal portfolio to minimize the risk. Empirical
results show that the volatility of the alternative energy market
can be influenced by the unexpected changes in oil market and
vice versa. In addition, the optimal weights and hedge ratio in
the hedged portfolios varies from pair Oil/Renewable Energy to
another, from period to another and from version MGARCH to
another


Although, the DCC model is more advantageous than other
MGARCH versions, the results of our study show that the BEKK
model is more effective than the others models to minimize the
risk of Oil-Renewable Energy portfolio. The most important
result found is that hedge against the risk of oil price fluctuations
is effective with the use of renewable energy markets (as W?0)
but the optimal weight W report values which vary between 10%
and 80% depending on conditions. Future researches can extend
this methodology to multivariate contexts to use more advanced
versions of MGARCH model, such as ADCC (Asymmetric DCC),
taking account the asymmetry information. Moreover, future
studies may be interested in using copula theory to improve the
quality of dependency modeling. 
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