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Abstract


In  academia,  inducing  a  shape  parameter  to  an  exponential  probability  model  has  been  an  old  practice  and  quite  number  of  approaches  
for doing so were discussed in the literature. In this article, we introduce two shape parameters to the exponential probability model using an 
idea proposed in a recent study and this resulted in a new three-parameter probability distribution entitled New Odd Generalized Exponential-
Exponential  distribution.  The  proposed  probability  model  can  serve  as  a  better  alternative  to  a  sister  probability  distribution  entitled  Odd  
Generalized Exponential-Exponential distribution developed in an earlier research using a certain probability generator. Different properties 
of the proposed probability model comprising moment, moment generating function, quantile function, survival function and hazard function 
were obtained. For illustrative purposes, two datasets were analyzed to compare the performance of our proposed probability distribution with 
the existing odd generalized exponential-exponential distribution; and it was observed that, the proposed model fits the two datasets better.


Keywords: Generalized exponential distribution; Moments; Quantile function; Parameter estimation

Abbrevations: GE: Generalized Exponential; OGE-W: OGE-Weibull; OGE: Odd Generalized Exponential; OGE-Fr: OGE-Fréchet; OGE-N: OGE-
Normal; NOGE-E: New Odd Generalized Exponential-Exponential 







Introduction



Inducing of new shape parameter(s) to an existing probability model  expands  the  model  into  a  larger  family  of  distributions  
and  this  provides  a  significantly  skewed  and  heavy-tails probability  distribution  models.  The  extended  or  generalized  
model can provide better flexibility in modeling lifetime data for better actualization of phenomenon contained in the dataset. 
An approach to the construction of flexible parametric models is  to  insert  appropriate  competing  models  into  a  larger  model  
by  adding  shape  parameter(s)  [1].  This  has  opened  rooms  for  many  researches  in  the  distribution  theory.  The  induction  of  
parameter(s) has been proved useful in exploring tail properties and  also  for  improving  the  goodness-of-fit  of  the  proposed 
generator  family  [2].  The  exponential  distribution  is  one  of  the  most  important  distribution  with  wide  range  of  applications in statistical practice. 
It has been identified as a life testing model  among  many  other  applications.  Attempts  to  increase  the flexibility of the exponential distribution gave rise to many 
generalized  family  of  distribution  [3].  Several  generalizations  of  exponential  distribution  have  been  studied,  among  them  
are  generalized  exponential  distributions  [4],  Exponential-Weibull  distribution,  The  Kumaraswamy  exponential-Weibull distribution and many more
have appeared in literature. The cdf and pdf of the exponential distribution are given by


[image: ]


And


[image: ]


Respectively, where λ<0 and x<0and λ is the scale parameter.


In  2015,  Tahir  et  al.  [5]  have  developed  a  new  class  of  univariate  distributions  called  the  odd  generalized  exponential  
(OGE) family and studied each of the OGE-Fréchet (OGE-Fr) distribution,  the  OGE-Weibull  (OGE-W)  distribution  and  the OGE-Normal  (OGE-N)  distribution
. This  method  is  flexible because the hazard rate shapes could be increasing, decreasing, bathtub and upside-down bathtub. In this article, we defined 
a   new   three   parameter   probability   model,   called   new   odd   generalized  exponential-exponential  (NOGE-E)  distribution using  the  new  
family  of  univariate  distributions  introduced  by  Tahir  et  al.  [5]  as  an  alternative  to  two  parameters  OGEED  developed by Maiti & Pramanik
[6]. The main feature of this model  is  that  two  additional  parameters  are  introduced  in  the  subject distribution which provides greater 
flexibility in the form  of  new  distributions.  A  random  variable  X  is  said  to  have  generalized exponential (GE) distribution with parameters if
the cumulative distribution function (cdf ) is given by
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The odd generalized exponential family suggested by Tahir et al. [5] is defined as follows. If G(x,ψ) is the CDF of any 
distribution  and [image: ] is  the  survival  function,  then  the OGE-X is defined by replacing   in CDF of GE in
equaton 1 by [image: ] to get the cdf of the new family of distribution as follows: 


[image: ]


And   the   probability   density   function   of   the   family   of   distributions is


[image: ]


Where α and β are the generator additional parameters to be added to any baseline probability distribution and, ψ is 
the parameter vector of the baseline distribution.


This article is outlined as follows. In Section 2, we define the cumulative distribution, density, reliability and hazard functions 
of  the  new  odd  generalized  exponential-exponential (NOGE-E) distribution respectively. We introduce the statistical properties 
including the limiting behavior, the quantile function, the median, the moments, the moment generating function, the mode and the 
Renyi entropy of the new distribution are provided in section 3. Section 4 presents the order statistics. Also, maximum likelihood estimation of the 
parameters is determined in Section 5. Finally, some applications of NOGE-E distribution using two lifetime data is presented in Section 6.



Definition 1.1 A  random  variable Xis  said  to  have  a  New  Odd Generalized Exponential- Exponential   distribution, 
if its probability density function (pdf ) has the form
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Figure 1: Plots of the pdf for some values of the parameters.

 


The plots of the density of NOGE-E distribution are displayed in Figure 1 for various values of the parameters. 

The cumulative distribution function (cdf) of the NOGE-E distribution is


[image: ]


The cumulative distribution plot of NOGE-E distribution is displayed in Figure 2 for various values of the parameters.



[image: ]

Figure 2:   Plot of the cdf for some values of the parameters.

 


Let   be a random variable with pdf and cdf given in Equations (1.6) and (1.7) respectively, we write X ~NOGE-E(ψ),
where the vector ψ is defined by ψ=(α,β,γ) .As a result of (1.6) and (1.7), the reliability and hazard functions of the distribution are 
given as


[image: ]


And
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Figure 3: Plot of the cdf for some values of the parameters.

 


The reliability and hazard rate plot of NOGE-E distribution is displayed in Figure 3 & 4 for various values of the parameters.


Properties of the distribution

Useful    expansion    of    the    density    and    distribution    functions:

  The  useful  expansion  of  the  cdf  and  pdf  of  the  NOGE-E(ψ)  distribution  using  a  well-known  generalized 
binomial  and  power  series  expansion  are  presented  below.  It  is  provided  to  motivate  the  analytical  deviation  of  some  basic  
properties  of  the  distribution.  The  generalized  binomial  and  power series expansion are given as 
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Then,for [image: ]  the   pdf   of   the  NOGE-E(ψ) distribution can be expressed as
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The   cdf   of   the  NOGE-E(ψ)  distribution   can   be   expressed as 
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Figure 4: Plot of the Hazard rate function for some values of the parameters.

 


Quantile function and random number generation

Quantiles   are   used   for   estimation   and   simulation   of   distribution   parameters.   By   inverting   equation   (1.7),   the   
quantile function of the NOGE-E(ψ) distribution is


[image: ]


In particular, the median of the distribution is 


[image: ]


To   simulate   a   random   variable   from   the NOGE-E(ψ) distribution. Let q be a uniform random variable on the interval 
(0,1) then it follows that X(q)-NOGE-E(ψ) distribution. 


Quantile based skewness and kurtosis

Skewness measures the degree of long-tail while kurtosis measures  the  degree  of  tail  heaviness.  Based  on  the  quantile  
function X(q),the  Bowley  measure  of  skewness  and  Moor's measure of kurtosis are
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The quantile based skewness and kurtosis are of advantage over the corresponding classical measures, this is because, they 
can be computed even when the classical moment does not exist [7].


Moment

Let X be  a  random  variable  which  follows  NOGE-E(ψ) distribution, then the moment of the distribution is 
as stated in theorem 1 below. 



Theorem  1: If is  a  random  variable  distributed  according  to NOGE-E(ψ) distribution in equation (1.6). 
Then, the rth  moment of the distribution is given by 
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 Proof: by the definition of the moment


[image: ]



Applying equation (2.3) into (2.6), after some little algebraic manipulations, we arrived at the   moments of the NOGE-E 
distribution as 


[image: ]


This complete the proof.

Moment generating function

Let X be  a  random  variable  which  follows  NOGE-E(ψ) distribution,  then  the  moment  generating  function  
Mx(θ) of  the distribution is as stated in theorem 2 below. 


Theorem  2:If is  a  random  variable  distributed  according  to NOGE-E(ψ) distribution in equation (1.6). Then, the 
moment generating function of the distribution is given by


[image: ]

 

Proof: by definition of the moment generating function


[image: ]


applying  series  expansion  on  eθx,equation 16 can be written as 


[image: ]


Since  E(Xm)=E(Xr) with (m=r) ,by making use of equation (2.7)   we   obtain   the   moment   generating
function   of   the  NOGE-E(ψ) distribution as 


[image: ]

This completes the proof.


Mode

By  differentiating  the  pdf  of  the      distribution  with  respect  as 
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and since f(x)<0,the mode is the solution of the equation with respect to x


[image: ]


    Equation (2.11) can  be solved  numerically using Mathematica package

Renyi entropy

The  Renyi  entropy  of  a  random  variable      represent  the  measure of randomness or variation of uncertainty of a system. 
It is defined as 


[image: ]


Theorem 3:The Renyi entropy for the   distribution is given by 
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Proof: Since


[image: ]



Then, by making use of [image: ] it follows that 


Expanding the binomial terms in equation (3.4), lead to the desired proof.

Estimation with inference

In  this  section,  the  method  of  maximum  likelihood  is considered to estimate the distribution unknown parameters. Let x1,...,xn
 be a sample of size from the NOGE-E(ψ) distribution with parameter vector   Then the log-likelihood function for ψ 
is given by;


[image: ]
 

Differentiating  (21)  with  respect  to  each  of  the  parameters  in ψ we obtain


[image: ]
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The  maximum  likelihood  estimators  (MLEs) [image: ] of the ψ=(α,β,γ)' can  be  determined  by  solving  the  three  above  
systems  of  non-linear  equations  numerically  for ψ=(α,β,γ)'.This  is  achieved  using  the  Newton-Raphson  maximization 
method in R package [8]. Real data application



Table 1: Data set I.
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Table 2: Data set II.
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Table 3:Parameter Estimates for Data set I.
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To compare the performance of  the  NOGE-E(ψ) distribution  with  the  existing  odd  generalized  exponential-
exponential distribution based on a set of goodness-of-fit tests, we used two (2) real data sets. The first data set given in Table 1, shows the breaking
 stress of carbon fibres (in Gba) reported by  Cordeiro  and  Lemonte  and  the  second  data  set  is  from  an  accelerated  life  test  of  59 
 conductors.  The  data  have  been  previously  used  by  Nasir  et  al.  [9]  and  Oguntunde  et  al.  [10]  (Table 1-6). 



Table 4:  Performance comparisons.
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Table 5: Performance comparisons


[image: ]





Table 6: Performance comparisons.
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Conclusion

In  this  article,  the  new  odd  generalized  exponential-exponential (NOGE-E) distribution is introduced by applying the  OGE  family  of  distribution
proposed  by  Tahir  et  al.  [5].  Some  of  the  statistical  properties  of  the  distribution  have  been  derived [11,12]]. The maximum likelihood
estimation is used to  estimate  the  parameters  of  the  distribution.  Two  data  sets  have  been  employed  to  compare  its  performance  with  existing  
two  parameter  model  and  the  superiority  of  the  developed  distribution  has  been  established  based  on  the  data  sets  used.  This  confirmed
the  claims  of  higher  flexibility  of  the  new distribution by inducing new shape parameter.




References

1.  Aryal GR, Tsokos CP (2009) On the Transmuted Extreme Value Distribution with Application. Nonlinear Analysis Theory Method and Application 71: 1401-1407.

2.  Saboor A, Kamal M, Ahmad M (215) The Transmuted Exponential- Weibull Distribution with Application. Pak J Statist 31(2): 229-250.

3.  Oguntunde PE, Adejumo AO (2015) Transmuted Inverse-Exponential distribution. International Journal of Advanced Statistics and Probability 3(1): 1-7.

4.  Gupta RD, Kundu D. Generalized Exponential Distribution Austral. N Z
J Statist 41(2): 173-188.

5.  Tahir MH, Cordeiro GM, Alizadeh M, Mansoor M (2015) The Odd Generalized family of Distributions with Applications. Journal of Statistical Distributions and Applications 2:1.

6.  Maiti SS, Pramanik S (2015) Odd Generalized Exponential-Exponential Distribution. International Journal of Mathematics and Statistics Invention 13: 2321-4767.

7.  Bowley AL (1920) Element of Statistics. PS King.

8.  RényiA (1961) On measures of entropy and information. Proc. 4th Berkeley Symp Math Stat Probab, Univ California Press, Berkeley, pp. 547-561.

9.  Nasiri PI, Makhdoom, Yaghoubian B (2011) Estimation parameters of the weighted exponential distribution. Aust J Basic Applied Sci 1: 4.

10.  Oguntunde PE, Owoloko EA, Balogun OS (2016) On A New Weighted Exponential distribution: Theory and Application. Asian Journal of Applied Sciences 9(1): 1-12.

11.  Moors JJ (1988) A quantile alternative for kurtosis. JR Stat Soc Ser D 37: 25-32.

12.  Chiwa Musa Dalah, Singh VV (2017) A Survey and Assessment Report of Hiv/Aids Awareness of in North-Eastern Nigeria. International Journals of Advanced Research in Computer Science  and Software Engineering 7(11): 105-112.






OEBPS/Images/eq3.3.jpg
=) 7(6-1)
dr (33)

_[:fv (x)dr=(apr)’ Te"‘e’”"‘x") (1 =





OEBPS/Images/eq16.jpg
M, (8)=E(eF) :?e’*/(x)dx (16)





OEBPS/Images/eq17.jpg
M,(e}:z:_af;b‘(x"‘) an





OEBPS/Images/eq21.jpg
1) =108 (3, /1) =g [ If (x, /)= ninc + ninf - nina— 13" 5~
il i

I G *1)+(/3*1)27:.1‘{1*2""”"'] @1





OEBPS/Images/eq2.10.jpg
fx)= /(x)[aﬁw'e’“"""‘ [( B 71)[1 L o) T 71] L2 1} (2.10)





OEBPS/Images/eq2.11.jpg
thﬂ[.u,.\[H«;,,T"{ ” e,,e,u.'(«,,x[‘ ﬁfn)[p;“’”‘r— l]ﬂ} o @I





OEBPS/Images/eq3.1.jpg
dy #1310
>() an

S ).

([

My)za





OEBPS/Images/eq3.2.jpg
7-1
L)L eep T

[2—(7—1][7(&1})(7!)“’ rq;l)](s.n

! J (r+J)






OEBPS/Images/eq2.8.jpg
(1) ™ (Bg i) m+ 8
B/ IXp+D) m+ 6" ) )

EIACIED 30 35 205 08
ZoaZuZiaZs s -1 (B-i-1)(j-k)itkIm!






OEBPS/Images/eq2.9.jpg
+1) (B +)T(m+1)6"
(B-i-1)1(j—k)itkim! @9)

M,(0)- T LT





OEBPS/Images/eq1.4.jpg
X>0,a>0,f>0y>0 (14





OEBPS/Images/eq1.5.jpg
pe(w)

a.6.0)=-PEEY) 1
S(xap.)= {i=6(ow )] [

,,‘%I s)





OEBPS/Images/eq1.6.jpg
I (xa.B.2) = apree™!






OEBPS/Images/tab6.jpg
The Model Log-likelihood AIC
OGEED(4,«) -116.3297 236.6595
NOGEED(A,a,p) -109.8608 225.7215






OEBPS/Images/eq1.1.jpg
G(x)=1-¢ (1)





OEBPS/Images/eq1.2.jpg
g(x)=2¢7" 1)





OEBPS/Images/eq1.3.jpg
F@=(1-e=)", x>0,a>0,5>013)






OEBPS/Images/fig2.jpg
o

80

90

(X3

o

20

00

20

15

10

05

00






OEBPS/Images/fig3.jpg
Six)

02 04 08

0

00

0s

10

15

20






OEBPS/Images/fig4.jpg





OEBPS/Images/eq22.jpg
W RN

a






OEBPS/Images/eq23.jpg
ol

oa

+ Z;[n(l —& ] (23)





OEBPS/Images/eq25.jpg
E

a m(/’*l)ZT..m(ZS)






OEBPS/Misc/page-template.xpgt
 

   
    
		 
    
  
     
		 
		 
    

     
		 
    

     
		 
		 
    

     
		 
    

     
		 
		 
    

     
         
             
             
             
             
             
             
        
    

  

   
     
  





OEBPS/Images/inl2.jpg
S{<y)
=4





OEBPS/Images/inl3.jpg
) D\’ and
(172)”:2'_,,["1‘)(71)‘?:2 "g’)((b ’]) toel) 4] A





OEBPS/Images/tab1.jpg
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.4 2,
2:44,73519,:3:22,1.69,:3.28;3:09;

1:87,.3.15,4.90, 1.57,2:67, 2:93; 3:22.:3:39, 2:81,4:20,3:33, 2.55;
3.31, 3.31, 2.85, 1.25, 4.38, 1.84,

0.39, 3.68, 2.48,0.85,1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 2.82, 2.05, 3.65,
3.75,2:43,2.95,2.97, 3.39;

2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53






OEBPS/Images/eq2.2.jpg
o (B-1) .\ -iafe*a) (22)
F(x;a,ﬁ,ﬂ):z‘_n[ﬁt J(—l) B





OEBPS/Images/tab2.jpg
6.545,9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997,
8.591,6.129,11.038,5.381,

6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087,
5.807, 6.725, 8.532, 6.663,

6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 6.948, 9.254,
5.009, 7.489, 7.398, 6.033,

10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 7.224, 7.365, 6.923, 5.640,
5.434,7.937, 6.515, 6.476,

6.071,10.491,5.923






OEBPS/Images/eq2.3.jpg
.3)
S for 0<g <l





OEBPS/Images/logo.jpg
fwe






OEBPS/Images/eq2.3.1.jpg
X(Oﬁ)sh(lfw for 0 < g <1 @3)





OEBPS/Images/logo1.jpg
Biostatistics and Biometrics
Open Access Journal
1SSN: 2573-2633





OEBPS/Images/inl1.jpg
G(xw)=1-G(xv)





OEBPS/Images/tab5.jpg
The model MLE'’s of the parameter(s)

OGEED(4,a) 1=.59447, & =.01035

NOGEED(A, @, f8) | 1=2149, @ =.74284, [=8.2303






OEBPS/Images/eq1.7.jpg
Feapn=(1-e%), 1005040450 A7)





OEBPS/Images/fig1.jpg
10

06

fx)

04

02

00






OEBPS/Images/eq1.8.jpg
S(x):lfF(x):17(17«{‘”"””)’9 e}





OEBPS/Images/tab3.jpg
The model MLE'’s of the parameter(s)

A

OGEED (4, ) A=1.07068, & =0.03482

NOGEED(L,0.B) | 1=.6707, a =.2454, j=2.2940






OEBPS/Images/eq1.9.jpg





OEBPS/Images/tab4.jpg
The model Log-likelihood AIC
OGEED (4, a) -88.08835 180.1767
NOGEED(,a,p) -85.68582 177.3716






OEBPS/Images/eq2.1.jpg
N a0 s, 21

Fesap.)= ﬂAZL,ZZuZZ.,w(B:‘/ o






OEBPS/Images/cover.jpg
New Odd Generalized Exponential - Exponential
Distribution: Its Properties and Application






OEBPS/Images/eq2.7.jpg
CACBRODY pe 1+ o0
O T





OEBPS/Images/inl9.jpg
(MLEs)v





OEBPS/Images/eq2.4.jpg
S X(3/4)-2X (12)+ X (14) (2.4)
XGA-X04)





OEBPS/Images/eq2.5.jpg
X(7/8)-X (5/8)+ X (3/8)+ X (18) (5.5
X(6/8)-X(2/8)





OEBPS/Images/eq2.6.jpg
eS8 o n bt e K

(L) T Dre %
07 (it &






OEBPS/Images/inl5.jpg





OEBPS/Images/inl6.jpg
by =E(X)= [ £ ()





OEBPS/Images/inl7.jpg
afe-1)
B






OEBPS/Images/inl8.jpg





OEBPS/Images/inl4.jpg





