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Abstract


High-dimensional time-course gene expression data refer to time course data with a large number of covariates. In this status, variable
selection is a popular approach for selecting important variables. In this paper, we review penalized likelihood mixed effects model for variable
selection in high-dimensional time-course data. Then, the approach is used for variable selection in yeast cell-cycle gene expression data
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Introduction


Linear mixed effects models have been used in a variety of
study to analyze data with between-subject dependence [1].
For example, in analyzing longitudinal data, clustered data,
repeated measurements and spatial statistics mixed effects
models are often used. In this structure, the linear predictor
contains a Gaussian zero-mean latent variable in addition to
fixed effects. This latent variable is called random effects and
this kind of models which contain fixed and random effects are
called mixed effects models. These models are usually used for
analyzing correlated outcomes in studies with small number
of explanatory variables. But, the use of this model becomes a
major problem in a high-dimensional dimensional setting or
when the purpose of the study is variable selection. When the
number of fixed and random variables increases, because of
complexity of mixed effects model, the inference about the model
become challenging. Therefore, the selection of fixed or random
effects is a key problem in this status. There are many traditional
approaches for variable selection. For example, AIC, conditional
AIC, BIC, Bayesian variable selection and so on [2-5]. Most of
these approaches are based on computing a chosen criterion
and finding a subset of variables as the best subset based on the
chosen criterion. Among these approaches conditional AIC [6]
and Bayesian variable selection are commonly used for variable
selection in mixed effects model. Another approach which
proposed for variable selection in mixed effect models is the use
of penalized likelihood approach. Although the use of penalized
likelihood for the high-dimensional regression model (when
n << p  ), which is famous to regularized regression method, is
traditionally proposed [7,8]. But, nowadays the use of penalized
likelihood for variable selection in mixed effects models is a
popular approach [9-12]. In this paper, we review the ordinary
penalized likelihood approach for variable selection in mixed
effects model. Then, we use the approach for variable selection
with lasso penalty for variable selection in yeast cell-cycle gene
expression data set. This paper is organized as follows: in the
next section penalized likelihood function for variable selection
in mixed effects model is reviewed. The variable selection is
given for yeast cell-cycle gene expression data in Section 3. The
last Section includes some conclusions.


Penalized likelihood function for mixed effects model


In mixed effects model penalized likelihood function is
usually used for both fixed and random effects. In the following,
after introducing the notation used in this paper, at first
penalized likelihood for fixed effects and then that for random
effects are discussed.


Notation


Let there be N individuals in the study. Let , Yij,i=1,...,N,j=1,...,ni be the response variable for the ith individual
such that ith the individual has ni repeated measurements. Also, let xij and zij be p×1 and q×1 vector of covariates. Also, we define
[image: ] to be the number of all observed responses in the study.
In a matrix notation, we define yi=(yi1,yi2,...,yini,Xi=(xi1...,xini and Zi=(zi1,...,zini). In linear mixed effects model, the model can be
written as follows: 


Yi=Xiβ+Zibi+εi,




Where, β is a pØ1 vector of regression coefficients, bi is
a qØ1 vector of random effects with bi ~ Nq(0,D),εi=(εi1,...,εini and εij ~ N(0,σ2). Also,εi and bi(i=1,2,...,N)  are independent. In
a matrix notation, let y,b,ε and X be matrices which obtained
by stacking vectors of yi,bi,ε and , Xi respectively. Also, let
Z=diag(Z1,...,Zn)  and [image: ] be a block-diagonal
matrix. Then, the linear mixed effects model can be rewritten as


[image: ]


Where,εij ~ N(0,σ2)and b~N(0,) 


Selection of important fixed effects


The likelihood of marginal model (1) can be expressed as 


[image: ]


Where, dependence on sample size n is considered by
adding the index n to L(.,.), also,=(I+σ-2ZZ')-1 . To select
the important covariates, the use of the following penalized loglikelihood
function is used: 


[image: ]


Where, Pλn(.) is a penalty function with regularized parameter
. λn
 In this notation, for showing dependence on sample size
n the index n is used for ?. Maximizing (2) is equivalent to
minimizing 
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As mentioned before,  depends on the unknown
covariance matrix  and σ2 . Based on Theorem 1 of Fan &
Li [12], the important fixed effects have oracle properties.
The oracle property is that the asymptotic distribution of the
estimator is the same as the asymptotic distribution of the
MLE on only the true support. That is, the estimator adapts to
knowing the true support without paying a price (in terms of
the asymptotic distribution). In short, an oracle estimator must
be consistent in parameter estimation and variable selection.
Notice that an estimator that is consistent in variable selection
is not necessarily consistent in parameter estimation [13]. 


Identifying important random effects


As mentioned by Fan & Li [12], the number of random effects
q may be increased with sample size n so its dependency
on n can be written by qn .The estimation and therefore
identifying of random effects are different from fixed effects.
One of the most famous approaches in estimating random effects
is the empirical Bayes approach [14]. But, this approach is not
useful for selecting random effects. In the following, we review
the proposed method of Fan & Li [12] for identifying important
random effects. Consider Óx=I-X(X'X)-1X' and a n×(n-p) matrix
A such that AA' =Óx. Let w= A'y, given the density function
of w is given by 


[image: ]


This conditional probability is independent of the fixed
effects β and A As mentioned before b~N(0, ). Let +be the
Moore-Penrose generalized inverse of  Then, a group variable
selection strategy is needed to identify true random effects. For
this purpose, consider the following regularization problem: 


[image: ]


Where Pλn(.)  is the penalty function with regularization
parameter λn < 0 and [image: ] Also, based on Theorem 2
of Fan & Li [12] the identified random effects is close to oracle
estimator. 


Tuning parameters selection


Different penalty function to achieve the purpose of variable
selection in mixed effects models is proposed [10-17]. Some
of the penalty function for variable selection in mixed effects
models are lasso penalty function: [image: ] ridge penalty
function: [image: ]and elastic net penalty function:[image: ]
 In this paper, we use lasso penalty
function and available lmmlasso in R for variable selection in
time-course gene expression data [18]. One of the important
stages in the used of the penalized likelihood function is the
selection of the tuning parameter. The above-mentioned penalty
function has some tuning parameter ( λ1 and λ2 ). A popular
approach for selecting tuning parameter is based on some
criteria such as AIC and BIC. In this framework, the selected
tuning parameter is that with minimal AIC or BIC. 


Yeast cell-cycle gene expression data 


In this section, we use yeast cell-cycle gene expression data
which collected in yeast cell cycle analysis project by Spellman
et al. [19]. The goal of the project is to identify all genes whose
mRNA levels are regulated by the cell cycle. The experiment
recorded genome-wide mRNA levels for 6178 yeast ORFs at
7-minute intervals for 119 minutes which covers two cellcycle
periods for a total of 18 time points. Transcription factors
(TFs) have an important role in gene expression regulation.
Transcription factors are proteins involved in the process of
converting, or transcribing, DNA into RNA. Transcription factors
include a wide number of proteins, excluding RNA polymerase,
which initiate and regulate the transcription of genes. We have
extracted the cell cycle gene expression data of 542 genes 
from an  -factor based experiment. Each response variable
corresponds to mRNA levels measured at every 7 minutes during
119 minutes (a total of 18 measurements). Also, we consider
the ChIP-chip of the above-mentioned 106 TFs as explanatory
variables. More information about this data set can be found in
[20]. Figure 1 presents spaghetti plot for whole genes (panel
a) and 10 randomly selected genes (panel b). We consider a
penalized mixed model with 106 TFs as fixed effects with a
random intercept and a random slop for time. Table 1 shows
the 26 important covariates which selected using penalized
likelihood mixed model by lasso penalty function. The tuning
parameter is selected as λ1 = 3. Also, none of the random effects 
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Figure 1:  spaghetti plot for response variable for whole genes (panel a) and 10 randomly selected genes (panel b).

 







Table 1:   Selected TFs in yeast cell-cycle gene expression data using penalized mixed effects model with lasso penalty.


[image: ]




Conclusion


In this paper, we review variable selection in mixed effects
model using penalized likelihood approach. In this framework,
we discussed how one can select fixed effects, random effects
and tuning parameter. Also, in this paper, we consider lasso
penalty function, also, we analyze a high-dimensional time
course yeast gene expression data, where from 106 TFs, 26 of
them were selected by the model to be important. 
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