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Abstract


Multilevel linear regression models represent a generalization of linear models in which the regression coefficients are themselves given a model whose parameters are also estimated from the data. This paper reviews multilevel random coefficients regression models with a focus on the estimation problem and its assessment. Parameter estimation for the fixed effects and the variance components are highlighted. In addition,comparisons that are made in the literature to choose among the competing methods are highlighted. This is particularly emphasized when some of the assumptions underlying the estimation methods are violated.
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Introduction


Multilevel modeling is an approach that can be used to
handle clustered or grouped data. Social sciences often involve
problems that investigate the relationship between individual
and society. The general concept is that individuals and the
social groups are conceptualized as a hierarchical system, where
the individuals and groups are defined at separate levels of this
hierarchical system. There are many types of multilevel models,
which differ in terms of the number of levels, type of design
(random intercept, random slopes and random coefficients
regression model), scale of the outcome variable (continuous,
categorical), and number of outcomes (univariate, multivariate).
In this article, the two-level random coefficients regression
model is represented, letting the univariate outcome variable to
be continuous. 

The parameters to be estimated in multilevel regression
models are the fixed coefficients that represent the fixed
part of the model. The parameters also include the variance
covariance matrix of the random coefficients and the variances
of the residual errors that represent the random part of the
model. If the components of the random part in the model were
known, the unknown fixed coefficients could be estimated
using generalized least squares (GLS) estimation method [1].
Similarly, if the fixed coefficients were known, then the unknown
variance components of the model could also be estimated using
GLS estimation method. If both are unknown, hence we have to
follow different approaches. 

In order to estimate the unknown parameters several
procedures are discussed in Searle et al. [2]. These methods
include the ANOVA method for balanced data which uses the
expected mean squares approach. However, this method is
difficult to deal with under unbalanced data situations. Under
the latter case, Rao [3] proposed the minimum norm quadratic
estimation (MINQUE) method for estimating the variance
parameters that produces quadratic unbiased estimators with
minimum norm (MINQUE). Maximum likelihood method (full
maximum likelihood (ML) and restricted maximum likelihood
(REML)), iterative generalized least squares (IGLS) and the
expectation maximization (EM) estimation method represent
standard methods that are used under both balanced and
unbalanced data. These methods involve iterative procedures
and thus the resulting estimators are not necessarily expressed
in a closed form.

The commonly used methods to estimate the multilevel
model are ML and REML [4]. The ML estimators of the variance
components do not correct for the degrees of freedom lost due
to the estimation of the fixed effects. As a result, the estimates 
of the variance components are generally too small. REML
estimation corrects for the uncertainty about the fixed effects
in estimating the variance components, which is especially
useful if the number of the second-level units (e.g. groups) is
relatively small [4,5]. There are other methods used to estimate
the unknown parameters of the multilevel model. An iterative
two-stage procedure is the IGLS [6]. IGLS usually starts with an
ordinary least squares (OLS) estimate of the fixed parameters,
which is then used to estimate the random part of the model.
Next, the estimate of the covariance matrix of the model is used
to make an improved estimate of the fixed part, which in turn
is used to improve the estimate of that covariance matrix. The
IGLS method alternates between estimating the fixed and the
variance components of the model until convergence is reached.
As far as the maximum likelihood approach is concerned, the
normality of the error distributions at each level is introduced.
Goldstein [7] proved that under normality of all the error terms
the parameter estimates resulting from IGLS procedure are
maximum likelihood estimates.

Another method of estimation is based on the EM algorithm
that developed in Dempster et al. and is applied in Raudenbush
& Bryk to models covering multilevel random coefficients
regression models. The EM algorithm addresses the problem
of maximizing the likelihood by conceiving it as a problem in
missing data where, similar to the IGLS method, its procedure is
based on an iterative procedure. The aforementioned parametric
estimation methods provide approximately the same results
for the parameter estimates and their standard errors under
standard assumptions and large sample size Goldstein [7],
Raudenbush & Bryk and Gumedze & Dunne. One of the essential
assumptions of the tests of significance used in multilevel
programs is normality of the error distributions involved. Mass
& Hox [4] highlight the fact that the aforementioned estimation
methods are asymptotically efficient. The authors suggest a
number of groups of 50 groups to achieve accurate estimates of
the standard errors of the fixed part estimates. This suggestion
is based on an earlier conclusion by simulations provided by
Van der Leeden and Busing and Van der Leeden et al. in addition
they suggest that when assumptions of normality and large
samples are not met, the standard errors have a small downward
bias. On the other hand, in dealing with outliers Longford and
Lewis offered practical procedures for dealing with outliers in
multilevel data then he assesses the effect of them on the model
estimators using different parametric and robust parametric
estimation methods.

Importantly, different measures of assessment are presented
that can be used to investigate the accuracy of the parameter
estimates, variances and their standard errors in multilevel
regression models and compare different estimation methods.
Those include the percentage relative bias, the coverage
probability and the asymptotic relative efficiency. Accordingly,
the rest of this article is organized as follows. Section 2 describes
the two-level model. Some basic parametric and robust 
parametric estimation methods are reviewed in Section 3. The
measures of assessment are highlighted in Section 4 and the
conclusions are set in Section 5.

Model and notations 

Assume we have data from m groups, with a different number
of responses nj (where j=1,2,…,m) in each group. Let the data
be obtained in the form of a vector of the outcome variableYj,
a set of explanatory variables in Wj,
and another set of grouplevel
explanatory variables in Zj.
To model these data, separate
regression models for each level are accommodated. First, the
individual-level model
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Where, Yj is a vector of length  nj representing the response
variable of group  j,Wj is a design matrix of size  nj×q  and  εj
is a vector of length  nj representing the residuals on the same level where, εj~N(0,σ2eInj).The group-level model is given by 
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Where, Zj is q×p design matrix, ß is an p×1 vector of fixed effects, 
the random vector δ1 is of order q×1 such that δ1~N(1,Ω1)and 
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is the corresponding symmetric covariance matrix. From [1]
and [2] the combined model for group j is given by 
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Where, . Xj=[WjZj],. By combining the data for all groups, we
have
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Where, Y=(YT1,.....,YTm)T,X=(XT1,.....,XTm)T,W is the individuallevel
block diagonal matrix with Wj in the corresponding block, ε=(εT1,.....,εTm)T and ε~N(0,σ2eI),δ~N(1,Ω) and Ω= diag(Ωg) with Ωg being the group-level covariance matrix. This implies that E(Y) =Xß and
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In the next section, some estimation methods that are
frequently used in practice and are also embedded in many
software packages are highlighted. Focus is given to the
estimation of both the model fixed effects and the variance
components.

Estimation methods

Restricted maximum likelihood estimation: The first step
of the analysis is to obtain estimates of the unknown fixed 
effects in ß, as well as the estimates of the unknown variance 
components contained in Ω and σ2e,
 which are defined in the
previous section. The common estimation methods for the
multilevel regression model are ML and REML methods. ML
estimators of the variance parameters are biased downwards,
especially in small samples, since they do not take into account
the degrees of freedom lost in the estimation of the fixed effects.
The REML estimation method under model is presented as in the
sequel. Unlike ML, REML maximizes the likelihood of the linearly
independent error contrasts of linear combinations of the data
Y, that are orthogonal to the explanatory design matrix. The 
linear combinations are chosen as  ATY instead of Y such that

[image: ]

Where, A is an idempotent matrix of rank n-p, and then E(ATY)=0 if and only if ATXß=0. Since  Y~N(Xß∑) and ATXß=0, then  ATY~N(0,AT∑A).

Assuming cov(δjh,δjl)=0,h≠l, j=1,…,m, h,l,=1,…,q, the corresponding likelihood function to [6] can be expressed as
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Let,  P=A(AT∑-1A)-1 AT then after some algebra, the loglikelihood function is given by:

[image: ]

Differentiating the log-likelihood function [8] with respect to σ2e and σ2r(r=1,…,q)  yields

[image: ]
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Set equal to zero and solve it we have a REML estimator for
the residual variance as

[image: ]

Where, [image: ] that must be computed
iteratively. By recalculate the new solutions of log-likelihood
to obtain the new estimates of variance components and
reformulate the new matrix [image: ]The process continues until
convergence. REML estimation includes no procedure for
estimating fixed effects. However, it would seem to use maximum 

likelihood estimation of ß where [image: ] with [image: ] being the REML estimate of Σ (Searle et al. (1992), p. 254). One
important assumption underlying REML estimation method is
normality of the error distributions. When the residual errors
are not normally distributed, the parameter estimates produced
by the REML method are still asymptotically unbiased. However,
the asymptotic standard errors are incorrect. Significance tests
and confidence intervals can thus not be trusted (Goldstein,
2010). This problem does not completely vanish when the
sample size gets larger.

REML sandwich estimator

One method to obtain better tests and confidence intervals is
to correct the asymptotic standard errors of the fixed coefficients
using the sandwich estimator which makes them less dependent
on the distributional assumptions [8,9]. The method yields
asymptotically consistent covariance matrix estimates without
making distributional assumptions even if the assumed model is
incorrectly specified with this respect. The sandwich estimator
is often called the robust covariance matrix estimator. In the
ML approach, the usual estimator of sampling variances and
covariance is the inverse of the information matrix. Using matrix
notation, the asymptotic covariance matrix of the estimated
coefficients under REML can be written as follows
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Where, Β is the information matrix [10]. Then the sandwich
estimator is given as 

[image: ]

 where the covariance matrix VR is the robust covariance
matrix of the regression coefficients, and R is the correction
matrix that is based on the observed raw residuals. If the 

residuals follow a normal distribution, VA and VR are both
consistent estimators of the covariances of the regression
coefficients, but the model based asymptotic covariance matrix

VA is more efficient because it leads to the smallest standard
errors. However, when the residuals do not follow a normal
distribution, the model-based asymptotic covariance matrix is 

incorrect, while the sandwich estimator of VR is still a consistent
estimator of the covariances of the regression coefficients. This
makes the inference based on the robust standard errors less
dependent on the assumption of normality.

Iterative generalized least square estimation

The IGLS method estimates regression coefficients, variances
and their random effects. Under the assumption of residuals
have multivariate normal, the method constructs an additional
linear model whose unknown parameters are the between group covariances σjk that represent the covariance between the  jth and the kth element of α (i.e. the correlations between
first-level parameter estimates), j,k=1,..,q and the withingroup
σ2e variance.

Iterative generalized least square

This method begins with estimating the components of Ω and σ2e in a linear modeling framework. We begin by expanding,
re-expressing the combined covariance matrix Σ as a linear
combination of the between-groups covariances  σjk and the residual variances σ2e This allows a subsequent formulation of
a general linear model with the unknown parameters σjk and σ2e being estimated. Let H be defined as a matrix that selects
the element of the variance components such that Hj,k is a q×q 
indicator matrix which is 0 in every element except the (j,k)th cell. Then, Σ can be written as 
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For a pictorial representation of see an interesting example
in Lindquist et al. [11]. The next step in IGLS is to formulate
the linear model that estimates the variance components. This
is achieved based on by vectorizing the lower triangular and
diagonal elements of the matrix corresponding to each unknown
variance component. This can be done using the vech operator,
which when applied to a matrix stacks its columns after removing
all supra-diagonal elements. Using this notation, the summands 

in can be written vech(W(Im⊗Hj,k)WT) and vech(I)
These become the regressors in the new design matrix  X* (where * will be used
to indicate the linear model for variance components, following
the notation of Goldstein [6]). The response variable  Y* in this
new model is based on the residual covariance matrix U where,

[image: ]
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X* and Y*  are used to estimate the variance components in  β*={σjk,σ2e} by using the following equation of
the extra linear model

[image: ]

The IGLS procedure alternates between estimating β and
β* until convergence. The specific steps are as follows

A. Start with OLS estimates of the covariance, setting [image: ]

B. Estimate fixed effects. Use the current estimate of [image: ] to
calculate [image: ] by the GLS solution: 

[image: ]

C. Estimate variance components. Use the residuals to form 

Y* and update [image: ]
 estimates for the within and between-groups
variance components, again using the GLS procedure. Following
Goldstein [6], the covariance of the variance components can be

shown to be [image: ] This result holds if and only if the data
are multivariate normal or if the sample variance matrix is Wish
art distributed. Thus, the GLS solution is given by

[image: ]

If negative estimates are obtained for the variance
components σjk, j=k and σ2e they are truncated to 0.
However, the covariance terms (σjk,j≠k) are allowed to be
negative. Reform [image: ] from [image: ]

4. Repeat steps 2–3 until convergence.

Sandwich IGLS

As in the ML case, we can obtain IGLS sandwich estimators
that correct the asymptotic standard errors of the fixed
parameters. Consider first the fixed part of the model and the
usual IGLS estimate of the fixed parameters based upon the
random parameter estimates using. The covariance matrix of
these estimates is:

[image: ]

Where, Cov(Y)=Σ and is unknown. If we replace the central
covariance term Cov(Y) by the assumed model estimated value, [image: ] we obtain the usual formula

[image: ]

The sandwich estimator is formed by replacing the estimate
of central covariance term, Cov (Y) in [21] by a robust estimator
based on U in, and then the sandwich estimator for the
parameter standard errors is constructed as

[image: ]

Further details of the Huber-White correction for the
multilevel model are given by Goldstein and Raudenbush & Bryk.

Expectation maximization

The EM algorithm addresses the problem of maximization
likelihood as a problem of missing data.

EM algorithm: Each EM step requires sums of squares and
product of the conditional means of the random effects (given the
data and current parameter estimates) as well as the conditional
variances of these random effects. Consider the combined model
in [10]. Then, the alogritm begins with the M-step followed by
the E-step as shown in the sequel.

M step: The EM algorithm conceives Yj as the observed data
with δj as the missing data. Thus, the complete data set is
(Yj,δj) To estimate β, this is achieved by deducting Wjδj from both sides of [12], yielding 

[image: ]

and justifying the OLS estimate as the complete-data ML
estimate of β for all groups. Thus, considering

[image: ]

The complete-data ML estimates of Ω and σ2e are similarly
straightforward, where

[image: ]

[image: ]

And,

[image: ]

E step: The CDSS are not observed, but they can be estimated by
their conditional expression, given the data Yj and the parameter
estimates from the previous iteration. Dempster et al. showed
that substituting the expressed CDSS for the M-step formulas
would produce new parameter estimates having higher
likelihood than the current estimates. Consider multivariate
normal distribution data in the form

[image: ]

Then,

[image: ]

Now, having identified the CDSS needed for M step, the EM
algorithm is readily specified as;

I. Estimate the CDSS data:

[image: ]

Where,

[image: ]

II . Substitute the estimated CDSS in to the M-step formulas
to obtain new estimates of the parameters.

III. Feed the new parameter estimate into step 1.

IV. Continue until changes in the log-likelihood become
sufficiently small or the largest change in the value of the
parameters is sufficiently small.

Measures of assessment

Beside the review of some estimation methods, one may be
interested in knowing which method may be more useful when
the standard multilevel model assumptions are not met in the
available data. In this section, we provide some notes about
three commonly used measures by which one could assess the
estimated parameters and compare their performance. This
shall guide the practitioners to use the better method whenever
their data reveal the need for special inferential procedures.

Percentage relative bias

 The accuracy of the parameter estimates can be calculated
using the mean relative bias. Let [image: ] represent the estimate of
the population parameter θ, then the percentage relative bias
is given by

[image: ]

The parameter θ,and its estimator [image: ] can be any regression
coefficient that we considered in and the choices among the ML
estimator or the estimators in and for fixed effects as well as for
the variance components under the corresponding estimation
method. A better estimator could be checked by testing whether
its relative bias differs from one. With α=0.001, the p-values
of the estimated parameters are Bonferroni-corrected [12].
The Bonferroni correction issued to adjust hypothesis being
tested and the confidence intervals by testing each individual 

hypothesis at a significance level of α/ [image: ] , where α is the desired 

overall alpha level and [image: ] is the number of hypotheses. Mass & Hox [13] provided a simulation study to assess the accuracy of
the parameter estimates using the percentage relative bias when
the normality assumption of the error distribution is violated.
The study showed that, the percentage relative bias is the same
for the REML and robust REML, since it focuses on investigate
the parameter estimates and not their standard errors. The
study resulted in only one significant difference when the grouplevel
residuals were generated from chi-square distribution as
the worst condition where the number of groups was 30, group
size equal 5 and interclass correlation coefficient equal 0.1. In
a different context, Korendijk et al. [14] highlighted the effect
of ignoring the group-level hetroscedasticity on the estimation
of regression coefficients, the variances components, and their
standard errors. The authors provided a simulation study using
the percentage relative bias and coverage probability (see the
next paragraph).The results showed that the individual-level
regression coefficients, variances, and their standard errors are
unbiased. However, the standard errors of group-level variances
are underestimated. 

Confidence intervals

To assess the accuracy of the standard errors, another
useful measure is the coverage probabilities of estimation.
For each parameter set a 95% confidence interval using the
asymptotic standard normal distribution of the estimator.
First, we obtain the actual coverage probability, which is
counted as the proportion of the overall iterations in which the
confidence interval covers the true values of true parameters.
We are concerned with how far the actual coverage probability
falls below the nominal level. Using the null hypothesis; H0 :Actual Coverage probability = 1-α the deviation is analyzed with a simple z-score, which is calculated based on
normal approximation to the binomial distribution as follows

[image: ]

Where, c is the count that θ is covered by the confidence
interval, 1000 is the number of replicates in each condition

and (1-α ) is the intended coverage probability. The downward 
with this method appear when it used for estimated variances
of random effects since it doesn't take their asymptotic
distributions into account. For this reason, we can depend
on asymptotic relative efficiency to assess the accuracy of the
variance components in multilevel models. In a comparison
between the REML as a parametric method and the robust REML
as an alternative robust parametric methods, Mass and Hox
[13] introduced a simulation study using coverage probability
for both fixed and random parameters in the model to evaluate
the accuracy of the parameter estimates and their standard
errors when the assumptions of normality and large samples
are not met. A variety of factors were considered including the
number of groups, group size, interclass correlation coefficient
and the group-level residuals generated from three non-normal
(uniform, Laplace and chi-square)distributions. The study
shows that under the violation of normality assumption at the
group-level residuals, there is no effect of such factors on the
parameter estimates. On the other hand, for the random part
in the model the standard errors of variances at the group-level
are highly inaccurate and thus the robust REML do better than
REML especially in large number of groups. 

In dealing with the problem of determining the effect of
different sample sizes at the group-level on the accuracy of
the estimates in multilevel regression models, Mass & Hox
[15] provided a simulation study based on the aforementioned
coverage probability measure to determine the effect of number
of number of groups, group sizes and interclass correlation
coefficients on the parameter estimates and their standard
errors. The results show that having small number of groups
leads to biased estimates of the group-level standard errors of
the regression coefficients. However, for the remaining factors
the estimates of the parameters (regression coefficients and
variance components) and their standard errors are unbiased
and yet accurate.

Asymptotic relative efficiency

To assess the performance of the variance components, the
asymptotic relative efficiency (ARE) is defined as one of the
principal comparison measures. The ARE of two procedures is
the ratio of their efficiencies measures where efficiencies are
often defined using the asymptotic mean squared error as one
of the measures of desirability. In order to study the sample
properties of two estimators under a simulation study, the ARE
can be calculated according to the following steps: 

o For each case study we generate, say 1000, simulated data
sets.

o Let θ be the target population parameter and [image: ] denote the value of the estimator for the first method in the ith
simulation, and h =1, 2.


 o Denote the MSE for the first estimation method, that,

[image: ]

Where, the MSEh is a measure of the efficiency of the  hth
estimator and values closer to zero are more preferred.

o Repeat the previous steps for each method of estimation
and compare between each method using the ARE criterion

[image: ]

Based on Mckean et al. [16] investigate the robust approach
(weighted rank based analyses of linear models) introduced by
Hettmansperger & Mckean [17]. The study compared the ARE
of the weighted Wilcoxon and OLS estimators in terms of their
asymptotic variances and concluded that under normal errors,
the Wilcoxon estimator is 95% as efficient as the OLS method.
Thus, there is only a 5% loss in efficiency if the Wilcoxon
estimator is used and the error distribution is actually normal.
However, the ARE is usually greater than 1 if the true distribution
has tails heavier than those under a normal distribution (e.g.
contaminated normal distribution or the data corrupted by
outliers).

Under linear mixed models, which represent the general
case of multilevel regression models, Kloke et al. [18] extended
the robust approach introduced by Hettmansperger and Mckean
[16] to linear mixed models with covariates using general
score functions. The authors compared between the OLS and
weighted Wilcoxon using the ARE as an assessment measure
and concluded that the robust analysis is more effective than
OLS in the presence of outliers or underlying error distributions
with heavy tails. Besides, Mckean & Kloke [19] proposed a
family of optimal score functions under contaminated normal
distributions of the error terms in both linear and nonlinear
models [20-25]. In this study they compared Wilcoxon, OLS,
and ML in terms of their asymptotic variances by using the ARE
to conclude about the efficiency and validity of Wilcoxon over
skewed-normal and contaminated normal distributions [26-29]. 

Conclusion

In this article, some estimation methods for multilevel
models are reviewed. In addition, some measures that assess
the behavior, reliability, and efficiency of those estimators are
highlighted [30-32]. One important remark is that the efficiencies
of the variance components estimators that are produced under
each estimation method may not be easily compared using the
well-known coverage probability measure. The ARE becomes a
useful candidate in this case. A future research point of assessing
the behavior of the fixed effects and the variance components
under multilevel models with more than two levels are
complicated covariance structures is needed to choose among
the competing estimation methods and their robust versions.
The same recommendation shall apply to linear mixed models.
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