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Abstract


This article probes and illustrates the consequences of raising co-payment and/or reducing reimbursement benefits on healthcare 
operations. For this purpose, a new bivariate count model with its properties is introduced. The model is named “disequilibrium bivariate 
Poisson distribution”. An analytic methodology and healthcare management implications are devised to perform data analysis by the healthcare 
managers. The Australian Health Survey of year 1977-1978 data are considered in the illustration. Thoughts for further research direction are 
suggested. 
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Motivation



Healthcare is a significant part of every country's economy. In 2011, the healthcare industry consumed about 9.3 percent of the US gross
 domestic product (GDP), 10 percent of the Canada's GDP, and 11 percent of the France's as well as in Germany's GDP. Based on a random sample of 337 sex offenders, who 
received treatment in the Ontario region, Canada, during the years 1993 to 1998, Mailloux et al. [1] reported an increase of risk to die due to over-prescription. Ding et al. [2] stated that 
China's health reforms in 2009 resulted in significant changes in the prescribing patterns. He [3] warned that over-prescription increased the threats of malpractice/litigation lawsuits. Sacarny et al. [4] announced that over-prescribing threatened Medicare benefits. Based on a study examining 230,800 prescriptions 
written during the period 2007 and 2009 in 784 community hospitals over 28 cities across China, Parveen et al. [5] mentioned that over-prescribing caused incorrect, ineffective and insecure 
treatment, exacerbation or continuation of illness, and increased the  healthcare  cost.  Li  et  al.  [6]  proved  the  existence  of  a substantial overprescribing against the recommendation by the 
World Health Organization. The German's healthcare reform of the year 1997 resulted in a significant reduction of the number of visits by the patients [7,8]. They wondered whether the extra 
reimbursement possibility from the insurance coverage induce the physicians to write more prescriptions? In December 2011, the Centers for Medicare and Medicaid Services announced that 
about 30% of the healthcare spending is waste. According to an administrator, the first cause for the waste was identified to be over-prescription/overtreatment of the patients. To minimize 
the  waste,  would  raising  the  copayment  and/or  reducing the  reimbursement  benefits  help?  The  tendencies  for  over-prescription and frequent visit to physician is the central theme 
of this article. 


Paradoxically,discussions concentrate  on  minimizing  healthcare  cost  rather  than  building  up  healthy  population 
and/or quality healthcare. An ancient recommendation is that an ounce of prevention is worth tons of treatments. This article hypothetically probes the impacts of raising co-payment and/or 
reducing reimbursement benefits in the healthcare operations. Logically, would rising of the copayment restrict the patient's visits to physician less often than needed. Let 
0≤ξ≤1  be  the  impact level of raising copayment on patient's visitation rate, λ > 0 to the physician. Would reducing reimbursement benefits 
slow down physician's prescription rate. Let 0 ≤ φ ≤1 be  the  impact level of reducing the reimbursement benefits on the physician's prescription rate, 
θ  > 0.These two restrictions likely to cause disequilibrium in the chance meachanism governing the healthcare operations. This article is a pioneering attempt 
to formally defineand critically examine the impact of both the  raising  copayment  onpatient's  visit  and  the  reduction of  reimbursement  benefits  with  respect  to  the  physician's 
prescription.  For  this  purpose,  an  appropriate  new  model is  introduced  with  its  properties.  The  model  is  named  a disequilibrium bivariate Poisson distribution (DBPD). A data 
analytic methodology is devised, based on DBPD. Healthcare managers of a hospital/clinic operation and/or health insurance organization  could  emulate  the  illustration  of  the  methodology  
in their pursuits.


The article is organized as follows to understand the reality for formulating strategic policies to adapt for better healthcare management.  In  Section  2,  we  derive  the  disequilibrium 
bivariate Poisson distribution and its statistical properties. We formulate  a  hypothesis  testing  procedure  to  check  whether the impact levels. In Section3, the concepts and all derived 
algebraic expressions are illustrated and interpreted, using the Australian Health Study data for 1977-1978. Finally, in Section 4, a few conclusive comments and suggestions for future research 
direction  to  attain  an  efficient  healthcare  management  are stated.
 


Derivation  of  “Disequilibrium Bivariate Poisson  Distribution” and its properties


First, let us recognize that the healthcare practices and management   do   have   chance   oriented   mechanism   to   deal   with. The patient's visitation and physicians prescription rates 
are examples and they play a vital role to improve healthcare operations. To be specific, let  λ > 0 and θ  > 0 denote the patient's 
visitation rate and the physician's prescription rate respectively. If the copayment is raised,how would it impact the visitation rate? Let it's impact level be 
0≤ξ≤1 Likewise, if a reduction of reimbursement benefits is implemented, what might be it's impact level on the prescription rate? Let its impact be 
0 ≤ φ ≤1. The healthcare's chance mechanism is a mix of three scenarios.


First,  the  scenario  1  is  one  in  which  the  number,Y  of   precriptions exceeds the number, X of visits. Both
X and  Y are random variables. Assume that the odds for the wavering patient (due to raised copayment) to make a visit is 
[image: ] because the prescription rate deflates it (Figure 1). When ξ→ 0 the  odds of making a visit is zero, and the scenario is void. The joint 
probability mass for visits and prescriptions is proportional to with an observable space,  The notation , if Secondly, the scenario 2 is one in which the number, of patient's visits exceeds the number, of the precriptions. The odds for the hesitating 
physician  (due  to  reduction  in  reimbursement  benefits)  to write  a  prescription  is  because  the  patient's  visitation  rate deflates it (Figure 2). When  the odds of writing a prescription 
by a physician is zero, and the scenario-2 is void. The joint probability mass for x visits and y prescriptions is proportional to 
[image: ] in  observable space, x=0,1,2,....y-1;y=1,2,..,∞.The notation [image: ]
if y=0.




[image: ]

Figure 1:  Odds to visit(z=odds, [image: ], y= ξ).

 


 

Secondly, the scenario 2 is one in which the number,  X of patient's visits exceeds the number, Y  of the precriptions. 
The  odds  for  the  hesitating  physician  (due  to  reduction  in reimbursement benefits) to write a prescription [image: ]is because 
the patient's visitation rate deflates it (Figure 2). When φ→ 0,the odds of writing a prescription by a physician is zero, and the 
scenario-2 is void. The joint probability mass for x visits and y prescriptions is proportional to [image: ]in observable 
space,x=0,1,2,....y-1;y=1,2,..,∞. The notation [image: ] if x=0




[image: ]

Figure 2:  Odds to prescribe(z=odds, [image: ], y= φ).

 



Thirdly, the scenario 3 is one in which the number, X of  patient's visits match the number, Y of physician's precriptions. 
Raising copayment and reducing reimbursement benefits have no impact. Thejoint odds of patient's visiting and physician's writing prescription 
λθ is because of the absences of patient's wavering and the physician's hesitaion (Figure 3). The joint probability mass for x visits 
y and prescriptions is proportional to [image: ] for observable space,x=0,1,2,....y-1;y=1,2,..,∞.





[image: ]

Figure 3: Joint odds for visit and prescription

 


Because  the  three  scenarios  are  mutually  exclusive  and exhaustive, the joint probability mass function for the entire 
healthcare chance mechansim is 


[image: ]


Where, the normalizer is

[image: ]




The  bivariate  distribution  in  (1)  and  (2)  is  named  a “disequilibrium  bivariate  Poisson  distribution  (DBPD)”. The DBPD is a new addition to the book of several bivariate 
distributions,  and  it  is  helpful  to  analyze  and  interpret healthcare data as done in this article. The random variables and are dependent. See Shanmugam & Chattamvelli [9] for various ways of checking the independence among random variables. 
Shanmugam [10] presented a history of Poisson model in the healthcare data analysis. Shanmugam [11] provided a list of bivariate Poisson models. Shanmugam [12] demonstrated on 
how to extract data informatics to address the fear to report rapes. Shanmugam [13] constructed methodologies on how the queuing concepts helped to effectively manage the hospitals 
when the patients are impatient. Shanmugam [14] probed the non-adherence  to  prescribed  medicines  by  patients  with  a bivariate model and its information nucleus. Shanmugam [15] 
derived a “bivariate model” for infrastructures among women with operative, natural, and no menopauses. Shanmugam [16] derived a bivariate model to identify “honesty” versus “cheating” 
in economic surveys to illustrate the existence of xenophobia.


One wonders about the disequilibrium level, π between the impact levels ξ of raising copayment and φ of  reducing  
reimbursement benefits. Note φ= πξ where π<1,π=1,π>1,dependingrespectively on an existence of tilt to more patient's 
wavering  to  visit,perfectequilibrium,  or  to  more  physician's hesitation to write prescription. Note that the proportion not visiting a physician and nor 
receiving a prescription is 


[image: ]


When the impact level of raising copayment vanishes (that is, ξ→0), note π00 increases to  


[image: ]


Likewise, when the impact level of reducing reimbursement 
benefits vanishes (that is,φ→0), π00 increases to 


[image: ] 


Only when both impact levels vanish (that is,ξ→0,φ→0), π00 attains  its  maximum  [image: ].It emphasizes that both 
(raising  copayment  and  reducing  reimburse  benefits)  are important  factors  to  influence  the  proportion  visiting  or receiving prescriptions, which are 
[image: ].On the contrary, under  complete  impact  levels  (that  is, ξ→1 and φ→1), π00 decreases 
to [image: ] 


Remember  that  some  patients  might  seek  refill  without even visiting the physician. One wonders what proportion of the 
patients do not visit the physician (including those do get and do not get prescriptions) and it is 


[image: ]


The proportion of patients making just one visit to the physician (under raised copayment) is 


[image: ]


The jump rate (that is, [image: ]) of the visitation by patients is [image: ] 
, using (3) and (4), which is free φ of  the impact level due to reducing reimbursement benefits to the physician (Figure 4). In a situation with extremely large 
prescription rate (that is, θ→∞), the jump rate converges to inflated visits [image: ].




[image: ]

Figure 4:   Jump  rate  for  the  number  of  visits  by  a  patient  (ξ=0.1,0.3,0.5,0.7,and1.0). 

 


Likewise,  the  proportion  of  physicians  do  not  write  a prescription for patients visiting and not visiting is 


[image: ]


The  proportion  of  physicians  writing  one  prescription (under reduced reimbursement benefits) is 


[image: ]


The jump rate (which is [image: ]) of the prescription by the physician is [image: ] 
, using (5) and (6), which is free of impact level, ξ of raising copayment. In a situation with extremely large visitation rate (that is,λ→∞),
 the jump rate for the prescription by the physician converges to inflated prescriptions [image: ] .


Now, let us look at the marginal stochastic trend (that is, ) of  the patient's visits. Note that 

[image: ]


The marginal probability mass function (7) of the number of visits under the raised copayment is a size biased Poisson distribution.
 The size bias is 


[image: ]


When the sampling process does not represent the intended but a different population, it is recognized as length biased. Shanmugam [17] demonstrated the effectiveness of the sample 
size  in  length  biased  data.  Shanmugam  [18]  constructed  a goodness-of-fit  test  for  length-biased  data  with  discussions on its prevalence, 
sensitivity, and specificity. Shanmugam [19] derived a significance testing procedure for size-biased income data. Shanmugam & Singh [20] derived an urgency biased beta 
distribution (which is a length-biased version) with application in drinking water data analysis. The marginal expected number of visits to physician is 


[image: ]


With varaince


[image: ]


When  the  prescription  rate  becomes  infinitely  large (that is, θ→∞), the size bias attains the baseline value one 
and  the  stochastic  pattern  of  the  visits  by  the  patients  is [image: ].In the absence of size-bias (that is,w(x)=0
under a convergence λ→∞), the mean in (8) approaches λ and the variance in (9) is [image: ].It  means
the  mean  number  of  visits in (8) increased by an amount


[image: ]


and the volatility (it is variance) changes by amount [image: ]  because of the size-bias. One also wonders whether patients would make lesser visits. For this 
purpose, we define lesser visits using the mode of the size-biased marginal distribution in (7). In a size-biased healthcare chance mechanism, the mode of its stochastic pattern occurs at the 
greatest least integer of its parameter. The cumulative Poisson probability is cumulative chi-squared probability. That is,


[image: ]


Theorem  1:A patient hesitates to visit physician, if s/he makes lesser than the most probable number


[image: ]


of the Poisson distribution with a probability [image: ], using the relationship between the 
cumulative Poisson distribution and the chi-squared probability, where [] and df denote the greatest least integer and the degrees of freedom respectively.


The intensity rate of the patient's visit to the physician in this size-biased marginal distribution (7) is then [image: ].



Using the link between cumulative Poisson and cumulative chi-squared distribution, the intensity rate is quantified as


[image: ]


In this situation, for a given threshold τ>0 number of visits to a physician, the expected excessive visit to physician (EEVisitx)
 by a patient in (11) is 


[image: ]



In particular with the threshold In particular with the threshold τ=2 number  of  visits  to  a physician in (11), the expected excessive visit to physician
( EEVisitx) by a patient is 


[image: ]


The tail value at risk (13) is a financial term to refer the gain or loss in trading stocks over a period of time. It is a risk 
for  making  more  visits  beyond  the  threshold  in  the  size-biased  chance healthcare mechanism is 


[image: ]


The  conditional  probability  mass  function  (14)  of  the physician's prescription is then 


[image: ]


Where  the  indicator  function  Ic=1 if  the  condition C is  true  and if   the   condition Ic=0
C is  not  true.  Consequently,  the regression equation,[image: ](15) to project the number of prescriptions to be written by a physician for a given number 
X=x of visits made by a patient is 


[image: ]


with the squared sampling error


[image: ]


Likewise, the marginal stochastic Pr=[Y=y] trend (that is, ) of the physician's prescriptions in (17) can be addressed. Note 
that


[image: ]


The  marginal  probability  mass  function  (17)  of  the number  of  prescriptions  under  the  reduced  reimbursement 
benefits is also a size biased Poisson distribution. The size bias  is  [image: ]    The marginal expected number (18) of prescriptions is


[image: ]


with variance


[image: ]


When the visitation rate by the patients becomes infinitely large (that is, λ→∞), the size bias becomes the baseline
 value one  and  the  stochastic  pattern  of  the  prescriptions  by  the physicians is [image: ].In  the  absence  of  
size-bias  (that is, w(y)=0) under a convergence λ→∞ ), the mean in (18)θ approaches and the variance in (19) is Var[Y]=E[y]
.It means the mean number of prescriptions in (18) increased by an amount


[image: ]


 and the volatility changes by an amount [image: ],  because  of  the  size-bias. Would physicians write lesser prescriptions? For this purpose, 
we define lesser prescriptions using the mode of the size-biased marginal distribution in (17). In a size-based healthcare chance mechanism, the mode of the pattern occurs at the greatest least 
integer of its parameter. The cumulative Poisson probability is  linked  to  chi-squared  cumulative  probability  for  easy computations. Hence, 


Theorem 2:A physician hesitates to prescribe, if s/he makes lesser than the most probable number 


[image: ]


of the Poisson distribution with a probability [image: ], using  the  relationship  between 
the  cumulative  Poisson  distribution  and  the  chi-squared probability, where [] and df denote the greatest least integer and the degrees of freedom
 respectively. 


The intensity rate (20) of the physician to prescribe with this size-biased marginal distribution (17) is then [image: ] 
which is quantified as 


[image: ]


In    this    situation,    for    a    given    threshold ψ>0 number    of    
prescriptions a physician, the expected excessive prescription  by the physician (EEprescriptiony) is 


[image: ]


When  the  threshold ψ=2 in (21) denoting the number of prescriptions by a physician, the expected excessive prescription 
(22) by a physician (EEprescriptiony)  is


[image: ]


The tail value at risk (23) is for making more prescriptions beyond   the   threshold   in   the   size-biased   chance   healthcare   
mechanism is 


[image: ]


However, the conditional probability mass function (24) of 
the patient's visitation is then


[image: ]


Where,  the  indicator  functions  Ic=1 if  the  condition  C is  true  and Ic=0   if the condition is not true. Consequently, 
the regression equation, [image: ] in (25) to project the number of patient's visitations for a given number 
Y=y of  the  prescriptions written by a physician is 


[image: ]


With the squared sampling error

[image: ]


Noticing  a  patient  hesitates  to  visit  physician  with  a 
probability [image: ] where 


[image: ]


Would a physician react (that is, ℜphysician) to prescribe? If so, how probable such a reaction is to exist? The chance for the 
physician's reaction (27) is 


[image: ]



Because


[image: ]


connecting the four quadrants and DeMorgan's probability laws  in  the  bivariate  probability  theory  [9].  Is  there 
reciprocity? Would the patient react  (ℜpatient),after noticing the physician hesitates to write prescriptions due to reduction of 
reimbursements? If so, how probable it is? The chance (28) for the patient's reaction is 


[image: ]


Where,


[image: ]


 Let us now define a parameter for the patient's hesitation level to visit the physician, after the imposition of raising the 
copayment, where is as defined before. The parameter is,  


[image: ]


Analogously, the parameter (30) captures the Physician's hesitation  level  to  prescribe  due  to  the  reduction  of 
reimbursements, where κ is as defined in Theorem 2. That is, 


[image: ]


Because [image: ]and [image: ]the  number  of  patient's visits and the 
number of prescriptions written by the physician are stochastically dependent. How much is then their correlation? To find it, note that 


[image: ]


Using (31), their covariance is [image: ] where E(X) and E(Y) 
are obtained in (8) and (18) respectively. Their correlation is therefore 


[image: ]


  The  correlation  (32)  depends  on  the  impact  levels  of increasing copayment (that is, ξ) and reducing reimbursement benefits
 (that is, φ). When both impact levels approach zero, ρxy their  correlation,becomes  zero  indicating  X that Y and  are  
independent Poisson random variables. Now, we need to examine whether a sample estimate  [image: ] of the correlation coefficient is 
significant at a specified confidence level [image: ]. That is, the null hypothesis H0 : ρxy=0
is rejected in favor of  H0 : ρxy≠0  if  the confidence interval [image: ] does  not  contain  
the  hypothesized  value  zero,  where [image: ] and  n are  respectively  the  maximum  likelihood  estimate(mle)
of  the  correlation  coefficient  (32), [image: ]the    standard    normal percentile. The estimated correlation coefficient 
[image: ] is significant, which is equivalent to testing their regression coefficient [image: ]
or [image: ].With  the  mle  of  the  parameters,  note  that  the  projected  regression  (33)  of  the 
number of written prescriptions by the physician [22].


[image: ]


With  an  estimated  sampling  error [image: ]Likewise, the projected regression (34) of the number of visits 
made by the patients to the physician is 


[image: ]



With an estimated sampling error [image: ] .


We now turn to the task of estimating the parameters λ,θ,ξ,φ and of  the  disequilibrium  bivariate  Poisson  
distribution in (1). For this purpose, suppose a bivariate random sample (x1,x1),(x2,x2),...,(xn,xn)
of  size n≥4 is  drawn  from  the population indicated by (1). Let ndiag, nnonD,x,nnonD,y and
n=ndiag+nnonD,x+nnonD,y denote the sample size respectively 
denoting   for   x=y=0,1,2,3,4,5,...., ; 0≤y<x-1 ;  0≤x<y-1 ; and the complete data. Suppose that [image: ],
[image: ],[image: ],and [image: ] denote respectively the diagonal 
averages  x of  y and  ,the  non-diagonal  average  of  x and  y.Let [image: ],[image: ],
[image: ],and [image: ]   denote  respectively  the  diagonal variance X of and y
, non-diagonal variance of  and . Let [image: ]=rxy be the sample correlation. We resort to the maximum likelihood 
estimator  (mle)  of  the  parameters  because  the  mle  has  an invariance property. The invariance property refers that the mle of a function of the parameters is the function of their mle. 
Towards finding them, note that the log-likelihood function from (1) is written as


[image: ]


Where


[image: ]


Note that


[image: ]

[image: ]


The Fisher's information matrix (35),I4×4 is

[image: ]


By solving the score functions: ∂λ ln L=0, ∂θ ln L=0,∂ξ ln L=0, and ∂φ ln L=0,we obtain the mle(36) of the parameters. They are


[image: ]

[image: ]

[image: ]

[image: ]


Furthermore, the mle (37) of the correlation is


[image: ]


We now develop score functions based testing procedure [21] to check the validity of the hypothesis about the impact 
level, 0≤ξ≤1 of raising the copayment and/or the impact level 0 ≤ φ ≤1 of  reducing  the  reimbursement  benefits.  The  score 
test (also known as Lagrangian multiplier test) to check the validity  of  a  null  hypothesis H0:η=0,the  score  statistic  is 
[image: ] where the Fisher's information matrix is partitioned as [image: ] according  to  the  
null hypothesis and the degree(s) of freedom k=rank(I22).There are three cases to consider. 


Case 1: The null hypothesis to be tested is H0: ξ=0 meaning the impact of raising copayment on healthcare is insignificant. 
The score function is 


[image: ]


The sub information matrices are


[image: ]


Because the degree(s) of freedom k=rank(I22)=1,  the  null  hypothesis H0:η=0,is rejected with a p-value∈(0,1) ,  if  the  statistic (38) 


[image: ]


exceeds  the  critical  value [image: ]. In an event the  research hypothesis 
Ha:ξ=ξa  is  true,  the  statistical  power  (39)  of accepting it is obtained and it is 



[image: ]


Case 2:
The null hypothesis to be tested is H0:φ=0 meaning the impact of reducing reimbursement benefits on healthcare is 
insignificant. The score function is  [image: ] .The sub information matrices are


[image: ]


Because the degree(s) of freedom k=rank(I22)=1,  the  null  
hypothesis H0:φ=0,is rejected with a p-value∈(0,1) ,  if  the  statistic (40) 


[image: ]



exceeds  the  critical  value [image: ]. In an event the  research hypothesis 
Ha:φ=φa  is  true,  the  statistical  power  (41)  of accepting it is obtained and it is 


[image: ]


Case  3:  The null hypothesis to be tested is H0:φ=0=ξ  meaning that both the impact of raising copayment and reducing 
reimbursement benefits on healthcare are insignificant. The score vector is


[image: ]


The sub information matrices are


[image: ]


Because the degree(s) of freedom k=rank(I22)=2,  the  null  
hypothesis H0:φ=0=ξ,is rejected with a p-value∈(0,1) ,  if  the  statistic (42) 


[image: ]


Exceeds  the  critical  value [image: ]. In an event the  research hypothesis 
Ha:(ξ=ξa)∪(φ=φa)  is  true,  the  statistical  power  (43)  of accepting it is 
obtained and it is 


[image: ]


In the next section, all the derived expressions are illustrated, 
using the Australian Health Survey data of 1977-1978.


Illustration  with  Australian  Health  Survey  data 
analysis


In this section, the Cameron's [23] data of n=5,194 cases in the Australian Health Survey, in which x=0,1,2,3,4,5
denotes the  #  patient's  visits  to  the  physician y=0,1,2,3,4,5,6,7,8 and  denotes the # prescriptions written by the physicians, during 
1977-1978 are displayed in Table 1. These data are analyzed and interpreted using the analytic expressions in Section 2. Note that the sample size for
 scenario-1 is nnonD,x=1,125, for scenario-2 is nnonD,y=325, and for scenario-3 is ndiag=3,744.The correlation 
in (37) between the number xof visits by the patients to the physician  and  the  number  of  prescriptions  written  by  the 
physicians in this survey data is ρxy≈ 0.115.



Table 1:  X and Y from Australian Health Survey of 5,194 individuals during 1977-1978.


[image: ]




The sample averages for scenario-1 are [image: ]


The  average  number  of  visits  to  physician  in  scenario-2  is  [image: ].The average number of prescriptions in scenario-3 
is  [image: ].Using  (36),  the  parameters  are  estimated. The rate of visits to the physician is  [image: ].The  rate  of  prescriptions is [image: ].The impact level of raising the 
copayment on healthcare system is  [image: ].The impact level of reducing the reimbursement benefits on healthcare system 
is [image: ].The odds for a wavering patient (due to raised copayment) to make a visit is [image: ].



For every 10 patients who do not visit the physician, there ought to be 23 patients making a visit to the physician in spite 
of raising copayments. The odds for a physician(due to reduced reimbursement benefits) to write a prescription is [image: ].
For every 100 physicians who do not write a prescription, there are only 8 physicians writing a prescription because of reducing reimbursement benefits.
 

According to (8), the expected number of total visits is [image: ]per annual, with an estimated variance
[image: ] using (9). According to (10), the marginal intensity rate of the 
patient's visit to the physician is [image: ] for a specified r=2. When the threshold τ=2 number  of  visits  
to a physician, the expected excessive visit to physician by a patient in (12) is EEVisitx ≈ 0.849 with a risk (13) for making more 
visits beyond the threshold in the size-biased chance healthcare system TVARτ ≈ 3.49. According to (15) and (16), the regression 
equation, [image: ]to project the number of prescriptions to be written by a physician for a given number 
X=x of  visits  made by a patient is 


[image: ]


With the squared sampling error


[image: ]


 According to (18) and (19), the marginal expected number of  prescriptions  is E(Y) ≈ 0.346  with  variance  Var[Y] ≈ 0.420  using (19). For a specified , s=2 the intensity rate (20) of the physician to prescribe in this size-biased marginal distribution is  [image: ].According to (22) and (23), when the threshold ψ=2 denoting the number of prescriptions written by 
a physician, the expected excessive prescription by a physician is EEPrescriptiony ≈ 6.129 with the tail value at risk, TVaRψ ≈ 3.12 
for  making  more  prescriptions  beyond  the  threshold  in  the  size-biased chance healthcare mechanism. The regression equation (25) to project the number of patient's visitations for a given number 
Y=y of the prescriptions written by a physician is 


[image: ]


With squared sampling error


[image: ]

In this data, note [image: ] and [image: ].According to (27), the 
chance for the physician's reaction is


[image: ]


Using (28), the chance for the patient's reaction is


[image: ]


The physicians and patients react in par with each other in this data. Suppose r=4and    t=2 are considered respectively
 extremely more visits to the physician and extremely more prescriptions  by  the  physician  on  the  annual  basis.  Then, the  patient's  hesitation 
 to  make  an  additional  visit  to  the physician, after raising the copayment, according to (29) is [image: ] because [image: ] 
. Analogously, the physician's hesitation level to write an additional prescription,  after  reducing  the  reimbursement  benefits, according  to  (30)  
is [image: ] because [image: ]. 


Case 1: When [image: ], the null hypothesis H0:ξ=0 (the impact 
of raising the copayment on the patient's visits is negligible) is rejected with a p-value ≈ 0.0006 as  the  statistic  [image: ].
The  power is the probability of accepting Ha:ξ=ξa and it is 0.978. The power curve is sketched in Figure 5 for 
different values of ξa in the horizontal axis. 




[image: ]

Figure 5:  Statistical power in vertical axis versus in horizontal axis.

 


Case 2:With [image: ] the null hypothesis H0:φ=0 (the impact 
of  reducing  the  reimbursement  benefits  on  the  physician's prescription is negligible) is rejected only with a p-value ≈ 0.352,  as 
 the  statistic  [image: ]. The power is the probability of accepting Ha:φ=φa and 
it is 0.951. The power curve is sketched in Figure 6 for different values of φa in the horizontal axis.





[image: ]

Figure 6:  Statistical power in vertical axis versus φa in horizontal axis.

 



Case 3.The  null  hypothesis  to  be  tested H0:φ=0=ξ is   meaning that both the impact of raising copayment and reducing reimbursement  benefits  on  healthcare  are  insignificant  in the  Australian  Survey  data.  With [image: ] and
[image: ]  ,   the   null hypothesisis rejected H0:φ=0=ξ  is rejected with a  as  
p-value ≈ 0.0007,the  statistic  (42) [image: ].is In   an   event, the  research  hypothesis 
Ha:(ξa=0.78)∪(φa=0.36) is true, the statistical  power  (43)  of  accepting  it  is  obtained  and  it  is 
[image: ].The  power  curve  is  sketched  in Figure 7  for  different  combination  values  of  ξa
in  the  x-axis  φa and in the y-axis. 




[image: ]

Figure 7: The power grids in z-axis in terms of ξa in x-axis and φa in y-axis.

 


 


Comments and Conclusions

   The “disequilibrium bivariate Poisson distribution” model of this article constructs probabilistic interpretation of the data evidence about the impact of hypothetical raising copayment and/or reducing reimbursement benefits in healthcare system. The significance of the estimated correlation coefficient between the number of visits made by patients and the number of prescriptions written by the physicians under this hypothetical scenario is also assessed. The chance for the patient's reaction to visit to the physician is captured, estimated and interpreted. It is worthwhile to extend this breakthrough healthcare managerial approach to discover reasons and circumstances in which the physicians lesser-prescribing tendency and/or the patients lesser visitation tendency might exist.

   The healthcare managers would benefit a lot by collecting pertinent data and scrutinizing evidence data using the methodology in this article for better quality healthcare system. For the discovery to become reality, data on related covariates including the cost details, tax allowances for the prescribing physicians and the visiting patients need to be collected. The healthcare professionals ought to pay extra attention to collect such data. The analysts ought to build a multivariate regression methodology to make projections of when and how many lesser prescriptions and/or lesser visitations are possible. A discovery of reasons for such disequilibrium scenarios (quite different from an ideal situation in which one  prescription  per  single visit of the patient occurs) is a necessity and it ought to be the future goal in this 21st century of intensive efforts to reform the healthcare practice towards cost-effectiveness and efficiencies. This article is a seminal step upward to attain such goal.
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