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Abstract


Confidence interval for the ratio of two independent binomial proportions is an important measure, especially in medicine. The relative risk is such an example where accurate interval estimation is crucial. In this work we compare 4 different methods for the construction of such intervals. Simulation studies using many combinations of the sample sizes and of the true proportions reveal interesting conclusions as to the suitability of either method.
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Introduction

Relative risk is a measure often met in medical statistics and
medical literature in general. Being a point estimate, interval
estimation must accompany its report. The most famous
confidence intervals, also mentioned in the standard, and not
only, statistics related books are asymptotic. That is, they are
valid for large sample sizes. Relative risk is basically the ratio of
two the estimated proportions of two independent binomially
distributed variables. Throughout the years many researchers
have proposed confidence intervals for this ratio, conducting
simulation studies where they compare different methods [1-
5]. The goal of this paper is to compare some of the proposed
methods for constructing confidence interval for the relative
risk. Based upon simulation studies we suggest a method to be
used which is valid even in the relatively small sample sizes case.
In fact, our studies show that the suggested method requires half
of the sample size required by the standard practice asymptotic
method. In addition, its formula is very similar to the asymptotic
method and in addition it requires no extra adjustment for the
extreme cases of 0 and or 1. The paper is organized as follows.
In the next Section, we present the four methods that will be
subjected to comparison, next evaluation studies follow and
finally the Conclusion closes the paper.

Relative risk and confidence intervals

Assume the following 2× 2  contingency table which
summarizes the relationship between a binary factor
(independent variable, X) and a binary dependent variable (Y). 
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Where,  x1 and  x2 are the frequencies of a factor and n1 and
 n2 denote the two sample sizes, from which  x1 and  x2 were
calculated. The relative risk is defined as
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From a different perspective (1) can be seen as the ratio
of the proportions of two binomially distributed random
variables X1B(n1 ,p1 ) and X2B(n2 ,p2 ) ... Four different methods for the construction of confidence intervals for the ratio of two
independent binomial proportions (relative risk) are presented
below.

Ln-Method (Katz et al. [2])

Consider ln( T ), a random variable, which is approximately
normally distributed with an estimated mean and variance
[image: ] respectively. Then, an approximate twosided
1-α confidence interval for θcan be given by
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Where, Z1-α/2 is the 1-1/2α quantile of the standard normal
distribution. We will describe schematically how we can deal with extreme values x1=0,x1=n1,x2=0 or x2=n2  in Table 1, which is a generalization of that of Katz et al. [2]. 



Table 1:  Ln-Method for handling extreme values of x and y.
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Log-limits

An approximate 100 (1-α) percent confidence interval for θ
based on the natural log transformation is:

[image: ]

Where, p=x1/n1 for i =1, 2 and P(Z>z1-α/2)=1-α/2 .

The slightly biased estimator of [image: ] was suggested in
(Walter, 1975) as follows:
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According to Pettigrew et al., the estimated variance of the
above estimator is:
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Using the above equations, an approximate 100(1-α) percent
confidence interval for θ can be written as follows:
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Consider this method as  LOG0.5 . It should be noted that these
limits always exist, however they result the degenerate interval
(1,1) for x1=n1 and x2=n2.

Bailey’s method

It was proposed in that a confidence interval for θ based on
the normal approximation is: 
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Where,  [image: ]   [image: ] and t =1/3 The value of t 1/3 was chosen as this partially helps the skewness of (5) to be
eliminated. If Z denotes the 100 (1-α) percentile of the standard
normal distribution, Bailey’s 100 (1-α) two-sided interval is: 
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Note that for extreme values of [image: ] , adjustments were 
made; see (Bailey, 1987)

Inverse hyperbolic sine 

An approximate 100 (1-α) percent confidence interval for θ
based on the inverse hyperbolic sine is:
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The interval width of the LOG method (4) is larger than
the interval width of the sinh-1 method (9). Furthermore, the
Inverse hyperbolic sine method manage the situation when x1 or x2  is zero by substituting z21-α/2 for the zero observed very
often. Therefore, if the value of x1 or x2 s zero, the lower limit
of the interval is (x1n2)(n2z21-α/2) and the upper limit of the interval is (z21-α/2n2)(n1x2) [5].

Evaluation studies

In this Section, evaluation studies are implemented in order
to assess the performance of the proposed methods in terms of
coverage of the confidence interval. The estimated coverage can
be calculated exactly, as the values in the binomial distribution
lie between 0 and the number of trials. For all methods, different
sample sizes and true probabilities were tested. The common 
ground was the confidence level, which was set to 0.05. We kept
both sample sizes equal to (20, 50, 70, 100, 200, 500) and let
the values of the true probability of each distribution varying
between 0.5 and 0.95 increasing by 0.05 each Œme. Note, that all
combinations of the two true proportions were tested.



[image: ]

Figure 1:   Exact estimated coverage as a function of the true proportions of the two samples.
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Figure 2:  Exact estimated coverage as a function of the true proportions of the two samples.
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Figure 3:  Exact estimated coverage as a function of the true proportions of the two samples.
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Figure 4:   Proportion of times the estimated coverages are within
0.94 and 0.96 as a function of the sample size.

 

Figures 1-3 present the estimated coverage for a range
of sample sizes. Each heat plot refers to a method and a
given sample size. For each heat plot the coverages for all
combinations of the two true probabilities are calculated. To give
an example, the first heat plot, up on the le‰ corner in 1, refers
to the asymptotic method with only 10 observations from each
sample. There are 10 different proportions for each sample and
hence 100 combinations. Each box in this heat plot shows the
estimated coverage of the asymptotic method for a combination
of the two true proportions. As we move down the Figures, we
can see that more combinations of the true proportions lead to
estimated coverages that lie within 0.94 and 0.96. This is because
the sample size increases. In order to see how the percentage
of the estimated coverages that lie within these two numbers
change as the sample size increases, we performed some
extra calculations presented in Figure 4. For each sample size
and each method (each heat plot) we counted the proportion
of Œtimes the estimated coverages lie within 0.94 and 0.96.
Bailey’s method seems not to work very well in practice. The 
asymptotic method requires at least 100 observations in each
sample to have the desired accuracy, whereas Walter’s method
and the inverse hyperbolic sine work satisfactorily even with
50 observations in each sample size and reach 100% with 60
observations in each sample size. 

Conclusion

We have compared 4 methods for constructing confidence
intervals for the ratio of two independent binomial

distributions. This is the so called relative risk (for two
independent populations) in the medical literature. Based on
our experimental evaluation, the asymptotic method, which is
the standard one in the textbooks, seems to work accurately
with at least 100 observations available from each population.
Bailey’s method is not suggested, regardless of large or small
sizes [4]. On the other hand, Walter’s suggestion and the inverse
hyperbolic sine based confidence interval the low sample size
cases were the most accurate ones. Both of them are easy to
apply, as there is a closed form solution. Among them two, we
suggest the use of the corrected logit transformation (Walter’s
suggestion) as it requires not special treatment for the extreme
cases of 0 or n and m.
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