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Abstract


Stochastic frontier analysis (SFA) is often employed to study the production functions. The structure of errors is the main difference between
the standard regression analysis and the stochastic frontier models; in the SFA, an independent random term with positive value is added to
the usual white noise error. Conventionally, the parameters involved in the SFA are estimated and then, the convenience of using this model is
tested. The authors propose to study, previously, the residuals in order to check the capacity of assuming a stochastic frontier model and then, if
applicable, to estimate the parameters. With this goal, several non-parametric hypothesis testing are explored. Monte Carlo simulations suggest
that, under the usual conventions, simple inference based on skewness provided competitive results and proved to be robust in the presence of
outliers. Standard methods based on the maximum-likelihood obtained really poor results; they only were reasonable when both the sample size
and the inefficiency term were large
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Introduction



The main objective of the production frontier or Stochastic
Frontier Analysis (SFA) is the study of the production function.
In spite of the study of the empirical estimation of production
functions have begun long before, the contemporary formulation
of the problem was proposed by Aigner, et al. [1] and Meeusen, et
al. [1]. Formally, the following general model is considered


[image: ]


 Where, [image: ] is the vector of regressors,
g (.) is the deterministic production function and ε is the
deviation from the frontier production. In the SFA model e is
considered to be ε =  ò- u, where ò is the the usual white
noise and u is a non-negative quantity which represents the
{technical inefficiency}. Conventionally, both quantities are
assumed to be independently drawn. Although different semiparametric
[3,4] and non-parametric models have been proposed
for the production function [5], the translog formulation is still
the most frequent,


[image: ]


It is linear in parameters and the variables ( Xi,1≤i≤k )
are the logarithm transformations of the originals. This
specification has been shown mis-specify cost and production
functions in many cases [6]; of course, a mis-specified response
function is almost sure to affect estimated residuals. Since, the
original normal-half normal and normal-exponential models
were introduced by Aigner, et al. [1], different parametric 


models have been considered for the pair {ò,u}: Stevenson
[7] introduced a normal-truncated normal and Greene [8]
the normal-gamma models, other possibilities like Laplaceexponential,
Cauchy-half Cauchy or normal-uniform have also
been studied, reports related with these models can be easily
found from direct internet research. The selected model can
have relevance in the obtained results [9]; the original proposed
models: normal-exponential and normal-half normal, are still
the most used in practice. Of course, non-parametric methods
have also been considered; see, for instance, Simar et al. [10] and
references therein.


Maximum-likelihood (ML) based methods are typically
used in order to estimate the parameters involved in both the
production function and the error components [11]. However,
in Monte Carlo simulation studies, it has been observed that
the method of moments (MOM) can lead to minor mean square
errors that ML for several particular case (2008) [12,13]. The
usual procedure estimates - when it is possible- the specific
frontier parameters and then computes the p-values. When the
parameters cannot be computed, it is assumed that the stochastic
frontier model (SFM) is not adequate. In spite of the huge number
of published works dealing with frontier models and related
problems, hypothesis testing has been less considered in the
specialized literature: via Monte Carlo simulations, Coelli [11]
concluded that both the likelihood-ratio and Wald based tests
obtained incorrect size while method based on the third moment
of the ordinary square error regression obtained an adequate
size; recently, Simar & Wilson [14] proposed to use bootstrap
method in order to develop inferences for the parameters
involved in the SFM; their method provides useful information
about inefficiency and model parameters irrespective of whether
residuals have the skewness in the desired direction; Kuosmanen
& Fosgerau [15] proposed to evaluate the SFM validity from the
skewness of the regression residuals. 


Once the regression parameters of equation (1) have been
estimated, the main difference between the stochastic frontier
and the usual linear regression models is the residuals structure.
Notice that, the given an adequate dataset, the observed residuals
are not drawn from ε but from [image: ]
Hence, the (expected) observed effect of the so-called technical
inefficient term is a slight asymmetry on the residuals. In this
work, and with a similar approach to Kuosmanen & Fosgerau
[15], the authors propose to use residuals skewness in order to
test where this asymmetry can be detected. With this goal two
difference measures are considered: on other hand, one based
on [image: ] and, on the other hand, one based on the
third central moment, [image: ] Additionally, the
relationship between [image: ] and the inefficiency term
is used in order to propose a slight modification on the MOM
procedure which, via Monte Carlo simulations, is proved to be
more robust than the rest of the studied methods in the presence
of outliers.


Rest of the paper is organized as follows: section 2 is devoted
to point out some brief remarks about the available software.
Theoretical aspects of the proposed measures are exposed in
section 3. Performance of four different tests are studied via
Monte Carlo simulations in section 4; three different scenarios
were considered: normal-half normal, contaminated normalhalf
normal and the well-known WHO data structure with
normal-half normal residuals. In section 5 the WHO data are
directly analyzed and, finally, in section 6, the obtained results
are discussed.


Software


As in the rest of scientific fields, statistical advances are
closely related with the computational developing. In addition,
the popularization of a particular statistical procedure strongly
depends on the characteristic of the available software. Currently,
there exist several programs and routines for stochastic frontier
and efficiency analysis, the most general being LIMDEP/NLOGIT
and Stata. In addition, the freeware program, FRONTIER 4.1,
developed by Tim Coelli (it can be easily found on the web) can
also be used for a small range of stochastic frontier models.
Unfortunately, FRONTIER is quite old; however, a version of
FRONTIER 4.1 in the free environment of R has been developed
by Arne Henningsen. In addition, Belotti et al. have written some
new routines for Stata. Christopher Parmeter has written some
additional code in R. LIMDEP has included an extensive package
for frontier modeling since the mid 1980s. New features and
models are added to LIMDEP on an ongoing basis. Recently,
Wilson [16] developed the R package FEAR for computing nonparametric
efficiency estimates, making inference, and testing
hypotheses in frontier models.


Inference based on asymmetry


Hypothesis testing: There are different ways to parameterize the
stochastical frontiers models, among the most commonly used
terms are [image: ]
(in the normal-half normal model; where ufollows a
[image: ] is replaced by 2u . Notice that, due to
the fact that λ relates the variance of the perturbance from
the inefficiency term (u ) with the variance of the white noise
perturbance (ò),
 not with the total production measured; its
value is not directly associated with the production inefficiency
but with the global system inefficiency; i.e., the value of λ is
affected by the capacity of the production function to predict
the optimal production. Hence, in order to determinate the
pertinence of applying an SFA, previously we must check if the
available data provided enough statistical power to perform the
testing,


[image: ]


In practice, model (1) is transformed to obtain a new
model in which, as usual, a zero-mean perturbance is involved,





Where, [image: ] . Both least square error (LSE) and
ML methods perform adequately on this model. In fact, both
procedures provide similar and good estimations for the
parameters α0, βi-E[u] and [image: ].
Hence, in practice, since the above parameters have been 
estimated, the obtained residual,(ε =){e1,∙∙∙ ,e  N } (Nstands
for the available sample size), can be considered as a random
sample drawn from [image: ] . Assuming that, under the null (λ= 0), [image: ] is symmetrically distributed, a positive
λ- value should produce a decreased on the probability that
[image: ] takes negative values. Note that this probability can be directly estimated from [image: ] and 0 otherwise). Therefore, applying the traditional sign test,
we first propose to check the contrast in (2) from


[image: ]


Despite the dependence among elements of [image: ] because
ε=Qxy where y is the vector of N observations from
Y and QX is the orthogonal subspace projection matrix over
the N observations of [image: ], under the null, [image: ]could be
approximated by a β(N,1/ 2) (binomial distribution with
parameters N and 1/2 and then, for a fixed nominal level α	,


[image: ]


Where, [image: ]is an approxiated
critical region for the contrast (4) at level α. 


When, as usual, it is assumed that ò follows a
symmetric distribution [image: ]it is also derived that [image: ]


[image: ]


Besides, for residuals normally distributed, the Central Limit
Theorem (CLT) and the Slutski's Lemma guarantee the following
result.


Theorem 1: Let {e1,∙∙∙,eN} be a random sample from
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Where,[image: ] is a estimator for  satisfying [image: ] in probability. Hence, the set


[image: ]


Where,[image: ]is an (asymptotic) critical
region for the contrast (6) at level  . It is worth to note that
the asymptotic normality for the estimator [image: ] can be proved
under weaker conditions; however, parametric models must be
assumed in order to approximate its variance.


Confidence intervals


Once it has been decided that, for the studied dataset, a
stochastic frontier is the appealing appropriate model (this
decision can be taken even when the null (2) is not rejected;
in fact, in order to estimate the involved parameter, we only
need that  [image: ]  the question of the “wrong”
skewness deserves some discussion which was included in final
section), the next step is to estimate the involved parameters
and computing the respective confidence intervals. Usually,
some parametric model is assumed at this point. In this section,
we use the  [image: ] properties to make inferences on λ for the
normal-half normal model and, from Monte Carlo simulations, it
is studied the behavior of the obtained expressions.


Under the normal-half normal model, it is well-known that,
for each x∈ℝ, the distribution function of the composite
disturbance ò - u is,


[image: ]



Where,σ2=σ2ó+σ2u(ó~N(0,σó) and u~N+(0,σu)),λ=σu/σó, ϕ and Ö stand for the density and the distribution functions of a
standard normal law, respectively. Then, we have that


[image: ]


i.e., P0 only depends on the λ values. In addition,[image: ]follows again approximately a 	β(N,g(λ)) distribution, if
IN,/2 and SN,/2 are the lower and the upper bound of a
confidence interval (at level1-) for G(λ ), then g-1(IN,/2) and g-1(SN,/2) are the upper and the lower bound of a confidence interval (at level ) for λ . Of course, bootstrap methods can
also be used in order to improve the variance estimation.
Unfortunately, the function G-1 cannot be directly computed
and, with this goal, numerical methods must be used. Figure 1
depicts the numeric computation for the function G. Note that
it is not defined for P{ε¯≤0}≥1/2



[image: ]

Figure 1: Numeric computation for G(λ )λ,∈ (0,40) .

 


As it is well-known, the value of λ can also be derived
from the M3 parameter. Particularly, it holds the following
relationships:


[image: ]


Therefore, for [image: ] can be directly estimated by using
a plug-in method.


Monte carlo simulations


The practical behavior of the methodology exposed
above is studied via Monte Carlo simulations. Three different
scenarios have been considered. The first one is a simple
normal-half normal situation; a sample with size N ,X, is
drawn from a standard normal distribution and then, it is
computed Y=1+X+ò-u where ò follows a standard
normal distribution and u~N+(0,λ)with λ2 = 0 (null),
0.5,1, 2, 4 . The second scenario, contaminated normal-half
normal, is similar to the previous one but, approximately, the
2.5%of the data are contaminated by a perturbation following
the mixture 1/2.N(-3,0.1)+1/2.N(3,0.1). Note that, in
this scenario, the distribution of the white noise, ò is not
exactly a N(0,1) but, approximately, the mixture 0.0125
N(-3,0.1)+0.975.N(0,1)+0.0125.N(3,0.1)Finally, in the third
scenario, we consider a model with one dependent variable and
three regressors the covariance matrix and the linear regression
model structure as well as the total variance of the residuals
are based on the WHO data adding a normal-half normal
perturbation (complete information of this dataset is provided
as Appendix).


Hypothesis testing


In this subsection, we investigate the capacity of the previous
tests for detecting the presence of skewness under the three
scenarios described above. Results based on 5,000 Monte Carlo
iterations for the tests based on regions (5) (P0 ) and (8) (Sk )
, by using the standard Wald-based method, W(the R package
frontier was used with this goal) and by a simple analysis of
the residuals normality using the traditional Shapiro-Wilks test
(S -W ) are provided in the following tables and figures. Table
1 shows the rejection proportions for the normal-half normal
model when λ = 0 (null) at nominal levels  = 0.05 and
a = 0.10. Nominal levels were respected by P0,Sk and (S -W )
methods but, the standard W test obtained catastrophic results;
at level  = 0.05 between 12.8% and 21.5% of samples
were rejected. 



Table 1:  Observed rejection proportions in 5,000Monte Carlo simulations for the normal-half normal model with  λ= 0 (null hypothesis).
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Figure 2:  Observed rejection proportions for 5,000 Monte Carlo
iterations from the scenario 1 (normal-half normal) for tests
based on: negative residual probability P0 , skewness  Sk ,
Shapiro-Wilks S -W and the standard Wald test ( ) w .

 


Figure 2 shows the observed rejection proportions for the
four considered tests for  λ2=1/2,1, 2 and 4 . Logically, the
Wald test is always the best one; it obtained a good power even
for λ = 0 . It is followed by Sk and S -W . The new introduced
test, P0 , obtained the worst results. Note that even for λ =1
and N=1,000 the observed power does not achieve 80%. Table
2 shows the observed rejection proportions for 5,000 Monte
Carlo iterations under the scenario 2 (contaminated normal-half
normal). All considered test overestimated the nominal level.
Logically, Shapiro-Wilks test increases the rejection proportion
with the sample size; note that, in this case, the null hypothesis is
not true because the residuals are normal distributed. However,
test based on P0 shows itself more robust than the others; at
level  = 0.05, it rejected a maximum of 8.3% (N=100) and
around the 6% when sample size increases. The rejection
proportion for the tests based on  Sk and W increased with the
sample size to achieve the 20.3% and 60.5% for N=5,000 and
 = 0.05, respectively.



Table 2:  Observed rejection proportions in 5,000Monte Carlo
simulations for the contaminated normal-half normal model with λ = 0 (null hypothesis).
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Table 3:  Observed rejection proportions in 5,000Monte Carlo simulations for the WHO based data with normal-half normal residuals for λ = 0
(null hypothesis).

[image: ]
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Figure 3:   Observed rejection proportions for 5,000 Monte Carlo
iterations from the scenario 2 (contaminated normal-half normal)
for tests based on: negative residual probability P0 , skewness
Sk , Shapiro-Wilks S -W and the standard Wald test (w)  .

 



[image: ]

Figure 4:  OObserved rejection proportions for 5,000 Monte Carlo
iterations from the scenario 3 (structure of the data extracted
from the WHO dataset) for tests based on: negative residual
probability P0 , skewness  Sk , Shapiro-Wilks S -W and the
standard Wald test (w )  .

 


Figure 3 is similar to Figure 2 for the contaminated normalhalf
normal scenario. Because, at this scenario, it does not hold
the residuals normality even for ë=0 , the Shapiro-Wilks test has
not been included in this plot. The Wald test was, again, the most
powerful one; remember that the rejection proportion under the
null was also really high. Tests based on Sk and P0 had similar
behaviour although Sk was always better than P0 . Finally, Table
3 shows the observed rejection proportions, under the null, for
the third considered scenario. Tests based on P0 , Sk and S-W
respected the two considered nominal levels. However, the Wald
test increased the rejection proportion with the sample size,
even it overcame the 50% for N=5,000and a=0.05. Figure 4
shows the observed power for the four studied tests in the third
described scenario. The results were not essentially different to
the ones observed in Figure 2. However, it is worth to remark
that, in this scenario which is more complex than the previous
ones, for λ2 =1/2,1, 2 , the Wald test worked worse than Sk
and, for the largest λ , even worse than the Shapiro-Wilks and
P0 tests. In addition, P0 shows itself more competitive since it is
not affected for the new scenario.


Confidence intervals

In order to study the quality of the estimation provided by
the skewness based methods and the usual maximum-likelihood
based one, we explored the coverage percentage of symmetric
95% confidence intervals built by using the usual naive
bootstrap method (200 replications) for the procedures based
on the probability (P0 ) and (Sk ) the moments . In addition, the
R package frontier is used to compute the confidence interval for
the maximum-likelihood method. Table 4 shows the observed
results in 5,000 Monte Carlo iterations from the scenario 1.
Obviously, estimations have only been computed when it was
possible (final sample used is provided as % valid). With the
coverage percentage, the length of the 95% confidence interval is
reported by mean sd standard deviation ± (standard deviation.) Results show that
only the P0 estimator achieved the expected coverage percentage
in all situations. Sk an Wd estimators obtained really poor results
for small sample and mild λ - values. The W estimator directly
cannot be used for λ2 lower than 1 and if  λ2 =1 sample size
must be really large. Table 5 is similar to Table 4 when samples
are drawn from scenario 2. The three considered tests obtained
bad results in this setting. Sk and Westimators achieved really
poor coverage. These results were only similar to the expected
ones for λ=2. In addition, the coverage percentage decreased
with the sample size for the three investigated estimators. In
spite of the length of the respective confidence intervals were
the largest, only P0 obtained reasonable results for most of the
considered situations. Table 6 shows the observed results for the
scenario 3. These results were not different to the ones obtained
in Table 4. Usual estimator based on the maximum-likelihood
ratio only worked for λ2 ≥ 2 and N ≥1,000.




Table 4:  Coverage percentage for the 95% confidence interval and length of these confidence intervals expressed as mean ± sd  (standard
deviation) for the estimators based on P0 ,  Sk (confidence intervals computed via 200bootstrap resamples) and W estimators (computed with
the R package frontier) for the scenario 1 (normal-half normal)

[image: ]





Table 5:  Coverage percentage for the 95% confidence interval and length of these confidence intervals expressed as mean ± sd  (standard
deviation) for the estimators based on P0 , Sk (confidence intervals computed via 200bootstrap resamples) and W estimators (computed with
the R package frontier) for the scenario 2 (contaminated normal-half normal).
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Table 6:  Coverage percentage for the 95% confidence interval and length of these confidence intervals expressed as mean ±sd  (standard
deviation) for the estimators based on P0 ,Sk (confidence intervals computed via 200bootstrap resamples) and W estimators (computed with
the R package frontier) for the scenario 3 (normal-half normal based on the WHO data structure).
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Real data analysis: the WHO data

In order to illustrate the practical behavior of the
investigated estimators, the well-known data from the World
Health Organization (WHO) is studied [17]. Particularly, we
consider data referred to the year 1997 with a total of 227 world
regions (= N and we try to model the Disability Adjusted Life
Expectancy (DALE) from the regressors: per pro-capita health
expenditure (HEXP) and educational attaintment (HC). Last
variable is considered in quadratic form and therefore the
regressor HC2 (square of the educational attaintment) is also
included in the model. Since the logarithm transformation is
usually applied, the standard least square error method provides
the equation,
log log(DALE)=3.24+0.07.log(HEXP)+0.25.log(HC)-0.03.log(HC2)+ε. Where [image: ][ò]=0.017 and R2=0.71.P0=P{ε≤0}=0.493, hence
based on the probability estimator, and assuming the normalhalf
normal model[image: ] = 0.874 ; the p-value associated with the
null H0 :P0=1/2 was 0.629. On the other hand, [image: ]= -0.003;
the p-value associated with the null H0:M3=0 was 0.929. The
value of [image: ] is too close to zero and does not allow to estimate
λ> 0 . The maximum-likelihood based procedure provided a λ
estimator of 5.76 with a p-value=0.001. The parameters were
also slightly different and the obtained equation was,
log(DALE)=3.47+0.06.log(HEXP)+0.37.log(HC)-0.15.log(HC2)+ò-u
Figure 5 depicts the densities for the model based on
the maximum-likelihood with residuals normal-half normal
distributed 
([image: ] = 5.76) , on [image: ] , for normal residuals
(λ = 0) and kernel density estimation for the observed residuals.
Although it seems that the residuals are not drawn from a
normal law Shapiro-Wilks test rejects this hypothesis with a
p-value=0.001, the kernel density estimation (KDE) is far from
the normal model but also far from the normal-half normal
estimated from the maximum-likelihood method.



[image: ]

Figure 5:  O Kernel density estimation for the observed residuals
and theoretical densities for the different considered estimations.

 


Discussion

Stochastic frontier models are conventionally used in
order to study production and cost functions. The specialized
literature focuses are, mainly, the estimation of the parameters
of these functions by regression techniques. Parametric normalhalf
normal residuals joint with the maximum-likelihood
method is, probably, the most frequently employed procedure.
In the voluminous literature on this topic, statistical testing
of the properties of the disturbance term has attracted little
attention. In this work, the authors deal with the stochastic
frontier model identification from a statistical approach. Via
Monte Carlo simulations, we study the performance of the Wald
test computed from the R package frontier. The results were
catastrophic; Wald test respects neither the nominal levels nor
the coverage percentages in most of the considered situations.
Moreover, in the outliers' presence, the obtained results were
extremely poor. These results support previous works which
achieved similar conclusions [11,14]. 


Similarly, to Kuosmanen & Fosgerau [15], we proposed to
study the residuals expected skewness in order to make inference
about the data capacity to establish a stochastic frontier model.
In spite that Simar and Wilson [16] and Feng et al. [18] worked
on the so-called “wrong” skewness and it seems clear that, even
when the stochastic frontier model is correctly specified, data can
present “wrong” skewness. We assume that, in these cases, data
have not provided enough evidence to estimate the potential SFA.
The new proposed estimator, based on the expression P{ = 0}
is really easy to compute, fully non-parametric and very robust,
which implies being a bit conservative when there is not outlier
in the sample. The analysis of the considered real dataset was
really enlightening; while [image: ] estimator provided a really close
to zero estimation, [image: ] obtained a λ estimation close to 1 (it was
poor taking into account the available sample size and the power
observed in the Monte Carlo study). The Wald method provides
a λ - value larger than 5. The observation of the residuals
distribution suggests a lack of normality in their distribution,
but the adjustment to the normal-half normal model proposed
by the maximum-likelihood method was even worse. It seems
that the maximum-likelihood method assigns all deviation from
normality to the so-called inefficiency; however, as it is wellknown,
a regression model can have different problems which
produce a lack of normality in the residuals distribution.

In short, stochastic frontier models frequently try to detect a
slight deviation in the normality of the residuals; this deviation
is assigned to the inefficiency term. However, detecting these
deviations is really difficult without huge samples. In addition,
the origin of these deviations cannot be the inefficiency term;
in particular, there exists different causes which provoke this
effect. A deep study of the residuals distribution, particularly of
their symmetry can drive to obtain a good knowledge about the
real nature of the model. Of course, the application of (relatively)
modern techniques to analyzed the symmetry of the perturbance
distributions or methods based on quantiles among many others
can be useful [19,20].
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