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Abstract


Mixed models are now heavily employed in business analysis, studies of public health, and in clinical research. However, widely used 
MLE based methods, the ML and the REML, for making inferences about the Best Linear Unbiased Predictor (BLUP) suffers from a number of 
drawbacks such as the non-convergence and lack of accuracy with small number of factor levels in a group structure. The BLUP in mixed models 
is a function of the variance components, which are typically estimated by MLE based method. Unfortunately, when the among group variance is 
small compared to the error variance, MLE either fails to provide any BLUPs or provides equal BLUPs for each level of a factor. Ironically this is 
exactly the situation where BLUP is considered most important. Therefore, the primary purpose of this paper is to overcome such drawbacks by 
developing a simple method for the widely used Mixed Models in a regression setting with a number of group structures among other covariates. 
A simulated performance comparison is provided to show how the proposed method completely overcome the drawback while providing 
superior estimates in terms of MSEs. 


Keywords: Variance components; Best linear unbiased predictor; Generalized inference; REML

Abbreviations: BLUP: Best Linear Unbiased Predictor; LSE: Least Squares Estimator; REML: Restricted Maximum Likelihood; ML: Maximum 
Likelihood; HB: Hierarchical Bayes; EB: Empirical Bayes; GE: Generalized Estimator; MC: Monte Carlo Simulation; MSE: Mean Squared Error; 
MCMC: Markov-Chain Monte-Carlo






Introduction



Lately   mixed   models   are   heavily   used   in   a   variety   of   
applications,  particularly  in  clinical  research  and  in  business  
analytics.  For  example,  in  multi-regional  clinical  trials  with 
multiple doses, researchers usually compare the dose-response 
relationship  for  an  efficacy  or  safety  endpoint  among  the 
participating sites. Even if the parameter of dose-response is 
truly positive across all sites, we may still get negative estimates 
by chance in some regions due to small sample sizes. Such glitches 
occur due to small sample size, small number of factor levels, 
and large noise in data (making variance ratios small), precisely 
the situation Henderson [1] introduced the notion of the BLUP 
when he encountered such issues in animal breeding research. 
Another  class  of  applications  is  analysis  of  promotional  tactics,  
advanced analysts now use the BLUP (Best Linear Unbiased 
Predictor) more than the LSE (Least Squares Estimator).


In fact, the BLUP has become the most widely used statistical 
technique among business and market analysts in Corporate 
America using advanced statistical techniques. This is because 
the BLUP provides more reliable estimates (rather predictors) 
compared to the LSE, when one needs to quantify the impact 
of  a  promotional  tactic  by  a  number  of  customer  segments  
or markets (e.g. DMAs), as it takes advantage of data from all 
markets as opposed to individual market's data that the LSE 
tends  to  depend  upon.  When  one  gets  unrealistic  estimates  in  above applications one can alleviate the issues with the same 
data when the problem is formulated in a mixed model setting 
by  treating  group  effects  as  random  effects  distributed  around  
the  overall  effect.  For  further  discussion  of  underlying  notions  
and the benefits of the BLUP in mixed models, the reader is 
referred to Searle et al. [2] & Robinson [3].


The main advantage of the BLUP over the LSE of classical 
regression is the greater accuracy of the former when inferences 
are made on a number of levels of a factor (e.g. markets, patient 
groups, and treatments) when the sample size is small or when 
the data are noisy. Due to this reason, mixed-effects models are 
now widely used in business and marketing analytics. In clinical 
research, they are heavily used in analyses of repeated measures 
[4-6].



Issues with existing estimation methods


The BLUP is essentially a weighted average of the mean effects 
of individual levels of a factor of interest and the overall effect of 
the factor, a shrinkage estimate. The weights of such shrinkage 
estimates is a function of variance components, which needs 
to  be  estimated.  When  the  variance  components  are  estimated  
by a certain method the result is referred to as estimated BLUP 
or empirical BLUP, and denoted as EBLUP. Widely used EBLUPs 
are the ML (maximum Likelihood) and the REML (restricted maximum likelihood) available form most statistical software 
packages.


The ML and the REML, suffer from a serious drawback, namely, 
for a fraction of possible values of the sample space, some of the 
variance component estimates obtained by such methods could 
become zero (or negative unless truncated), a highly undesirable 
feature. When running into this glitch, software tools such as SAS 
(e.g., the SAS procedure “proc mixed”) or R (e.g., the R package 
“lme”),  either  complaint  about  non-convergence  or  produce 
variance components that are practically equal to zero. Rather 
than addressing the reality, some authors try to argue that such 
non-convergence occur due to zero variance components! In 
our simulation we will demonstrate that this happens when the 
among  group  variance  is  small  relative  to  the  error  variance.  
When  a  variance  competent  representing  the  among  group  
variance of a certain factor, EBLUPs of all levels of that factor 
become equal, a highly undesirable property. Even if they yield 
positive variance components and there is no convergence issue, 
the MLE based methods tend to be less accurate, say in terms of 
the MSE performance when the among group variance is small 
compared to the error variance, as shown by Yu et al in ANOVA 
type models.




Resolving the issues


So,  the  primary  purpose  of  this  article  is  to  develop  an  
estimation method that does not suffer form the problem of zero 
variance components that MLE based methods often run into. 
For the balanced ANOVA case, Yu et al. [7] proposed a method 
that does not suffer from that drawback. In this paper we will 
extend  their  method  for  any  number  of  groups  structures  in  a  
regression setting. While the Bayesian approach also can assure 
positive  variance  estimates,  the  proposed  approach  does  not  
require one to specify prior distributions or deal with hyper-
parameters.





By taking the Bayesian approach, One may also avoid such 
issues by taking the empirical Bayes (EB) and Hierarchical Bayes 
(HB) approaches, as studied by Ghosh & Rao [8]. The reader is 
referred respectively to Harville [9], and Datta and Ghosh [10] 
for details about EB and HB, as they cover much of the prior work 
taking the Bayesian approach to the problem. Ghosh and Rao [8] 
and Rao [11] studied these EBLUPs along with a number of other 
EBLUPs in the area of small area estimation and reported that EB 
and HB tend to perform better than other EBLUPs available in 
the literature, and so in our performance comparison in Section 
4 we will compare the EBLUP proposed in this article against EB 
and HB as well. As Ghosh & Rao [8] correctly pointed out, small 
area models are special cases of the general linear mixed model 
involving fixed and random effects, and so in this study we will 
take the latter approach, which is now widely employed.



The BLUP in Regression Setting


 Consider a regression in a mixed model setting with a number 
of group structures. In this article we confine our attention to the variance structure that is the most widely used by practitioners 
and the default setting in all widely used statistical software 
packages. To be more precise, consider the mixed model with J 
sets of random effects


[image: ]




Where,X is an N×k matrix formed by a set of covariates corresponding  to  k  fixed effects âzi are N×kj   matrices  
formed by covariates corresponding to random effects uj of jth factor with ki levels, [image: ] and [image: ]  and [image: ]   are assumed to be distributed independently. 
In formulating the model, the vector of fixed effects β   should  include the overall mean effect of each of the factors, which we  denote  as  [image: ] The  problem  of  primary 
importance  in  most  practical  applications,  described  in  the  introduction, is the estimation of the BLUPs, [image: ]   Of  course,  the  model  
can be written in familiar compact form as 
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Where, [image: ]  and  [image: ] Henderson [1] provided the formula to the BLUP of random 
effects and the BLUE to the fixed effects when the variances are known. Robinson [3] showed that various derivations available in the literature all lead to Henderson's formulas
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Where, [image: ] n  our  problem,  which 
is  also  the  default  in  statistical  software  packages, [image: ] where  [image: ] The equations in (3) can be solved explicitly for [image: ] and [image: ]   It 
is evident from (2) [image: ] that should be the GLSE
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Indeed, Henderson et al. [12] showed that the solution of (3) for  
is the GLSE. Then, we can easily obtain the explicit solution for 
the random effects as


[image: ]


Estimating the BLUPs


In practice, however the variance components are unknown, 
and needs to be estimated. They are easily estimated by the REML 
or the ML methods. The issue however, is that the variance ratios 
required in applying above formula become 0 for a fraction of 
possible values of the sample space, as practitioners frequently 
encounter, when the error variance is large compared to the 
factor variance, exactly the situation for which BLUPs are useful 
in the first place. Now consider the problem of avoiding the 
above drawback of MLE based methods so that BLUPs of levels 
of any factor will not degenerate at overall factor effect for any 
set  of  data.  For  the      case,  Weerahandi  [13]  used  distributional  
results derived by Wald (1974) in point estimation of the factor 
variance  and  Gamage  et  al.  [14]  used  the  results  in  developing  
prediction intervals for the BLUP. Now, in order to derive an 
appropriate distributional result in point estimation of variance 
components for any a number of factors by taking Yu et al. [7] 
approach, let us derive the distribution of  , the LSE (the Least 
squares Estimator, as opposed to the Henderson's predictor  ) of  
, regardless of the value of by taking Wald (1974) type argument.



Distributional results

To  develop  necessary  distributional  results  to  tackle  a 
particular variance component of interest, in a setting which is 
somewhat more general than required here, consider the mixed 
effects model 



[image: ]

Where all terms are as defined as before, except that we 
allow the covariance matrix of the random effects vector uw to be distributed as [image: ]  As in Seely and El-
Bassiounni (1983), we allow ∧     to  be  a  completely  arbitrary  
covariance matrix, except that it has a positive definite sub-
matrix, whereas the random effects of particular interest is distributed as [image: ]  independently of uw.  To 
take the approach similar to that used by Wald (1947) to derive 
necessary  distributional  results,  let  us  momentarily  treat    and    
as fixed effects, an assumption that we will drop later. Here we 
need distributional results in a form somewhat different form 
that developed by Seely and El-Bassiounni (1983).


To carry out the alternative derivation, first of all, it should be 
pointed out that the LSE formula used by computer algorithms 
of statistical software is not the familiar one given in texts books, 
but rather the one based on QRthe  decomposition, which is 
fool-proof in that the matrix of comparatives does not necessarily 
have to have full rank. In our application the matrix of covariates is [image: ]  and the LSE formula used by computer 
algorithms is not [image: ] 'but rather a formula based on the QR  decomposition. The   decomposition starts with the partition [image: ] with orthogonal matrices Qs 
and  upper  triangular  matrices Rs and 0 is a Px×P   matrix  of  to start with, where p  is  the  number  of  columns  of   [image: ] When  [image: ] is not of full rank, algorithm drops columns of R1 corresponding to zero vectors 
Q1 and  is re-adjusted. Then, in terms of final Q   and R terms, the formula underlying the LSE algorithm is [image: ] matrix and [image: ] The residual of the 
regression is given by [image: ]


For notational convenience, and to use text book formulas,[image: ] a full-rank sub-matrix [image: ]     something  a  user  
can  get  after  observing  a  computer  output  even  if  he/she  runs  
the  regression  blindly.  Let  be  the  vector  of  random  effects  
corresponding to final LSEs. 

[image: ]


I. Lemma 1 

The distribution of the LSE of uj, when run in an ordinary linear regression setting is given by 

[image: ]


and is distributed independently of [image: ]    and   the   
residual sum of squares 

[image: ]


Where,  [image: ]j is the ajx×1 sub-vector of [image: ] corresponding  to  
the  non-na  LSE  estimates,   [image: ] and [image: ]



II. Proof

Consider  the  ordinary  regression  of  y  on  [image: ]   if  
us were fixed effects. Then, using Wald's argument with milder 
regularity conditions, Seely and El-Bassiounni (1983) showed 
that the unconditional as well as the conditional distribution of 
the error sum of squares given  is given by

[image: ]

Moreover, from the theory of regression it also follows that 
the unconditional as well as the conditional distribution of   [image: ] given is given by


[image: ]

which is also distributed independently of  v,where  [image: ] is the sub-matrix of [image: ] corresponding to the 
v
 part of the 
LSE regression. Consequently, 

[image: ]


In particular, 


[image: ]


Thus proving the lemma, We can employee Lemma 1 to tackle  pj
using the chi-squared random variate

[image: ]

 Along with (7), We can employee Lemma 1 to tackle pj using the chi-squared random variate 

[image: ]

Along with (7), It should be emphasized that [image: ] is 
computed only with aj  LSEs that the QR algorithm yielded. In this computer age there is no real need of special methods to compute matrix inverses such as the above, but obviously we can increase the accuracy by diagonalizing the [image: ] matrix  by  
means of an orthogonal matrix, say  P, so that the sum of squares term [image: ]  can be further reduced to


[image: ]


Where,Di is a diagonal matrix formed by Eigen values λi of [image: ] and [image: ] It follows from (7) and (10) that

[image: ]


Where, a=Aj. As in Yu et al. (2014) we can avoid negative variance components by defining Generalized Estimators such as 

[image: ]

[image: ]

And solving, 

[image: ]


where  upper  case  quantities  denotes  random  quantities and lower case quantities stand for there values at observed samples, and C is a condition to assure that solution of (11) for  Pjis positive for all possible sample points. They also showed  that  the  condition  is  met  when [image: ] [image: ] where [image: ]  Hence, as in Yu et al. (2014), we can obtain a generalized estimator (GE) that does not suffer from the above mentioned drawback as follows: 


oGenerate   large   number   of   random   numbers   from   [image: ]


oDiscard the random numbers that do not meet the condition   [image: ]

oFind   the   conditional   expectation    [image: ] based on the W Samples meeting the condition.
 
oEstimate pj as

[image: ]
 
oBy using a root finding algorithm to solve the equation  [image: ]

oEstimate the BLUP by applying (5) equation wit  [image: ] in place of ρj
 
It should be emphasized that the merit of a statistical procedure 
should be judged by it performance compared with available 
competitors, and not by the nature of the notions, methods used, 
or the popularity of the author who introduced such notions. 
Therefore, in Section 4 we will demonstrate the superiority of 
the EBLUPs proposed via a simulation study.


The BLUP in unbalanced one-way ANOVA

The purpose of this section is to provide explicit formulas 
for the EBLUPs in unbalanced ANOVA, which is a particular case 
of special interest. To do so, consider the simplest unbalanced 
random-effects model, 

[image: ]

Where,μ  is a fixed effect; τj   is  a  random  effect  distributed  
as  [image: ] K  is the number levels of a 
factor,  and  ni    is the number of observations from subjects in group i. Let  [image: ] then [image: ] 

Define a set of weights as   [image: ] where [image: ]  is the ratio of the two variance components. To give 
specific formula for the BLUP and the EBLUP in the ANOVA case, 
define 

[image: ]

Where, a=k-1.   In the ANOVA problem the desired BLUP for 
group 1 has the simple form 

[image: ]

Since the variance ratio is typically unknown, consider the problem of finding an EBLUP while assuring the positivity of the weight [image: ]  In the ANOVA problem, since we have a 
simple formula for the weight playing the shrinkage role in the 
BLUP, we can treat  θ as the parameter of interest. Taking the approach in the previous section, we can use the distributional result,

[image: ]

To obtain the appropriate generalized estimator. Since we 
need to estimate ρ in such a way that the estimator of θ  will close to being an unbiased, we can obtain the counterpart of Yu et al. [7] using the generalized estimator 

[image: ]

[image: ]

As in Yu et al. [7], the appropriate estimator of the parameter θ can be derived by taking the unconditional expectation of the Q. 
Since the observed value of Q is 0, the corresponding generalized estimator (GE) for  θ   is obtained by equating its expected value 
to 0, and then solving the equation for β     as  Weerahandi  [13]  
suggested. The estimators of θ and p   are  obtained  in  this  
manner are 

[image: ]

Where, C is a condition suggested by the known properties of the 
parameters and [image: ]  is the inverse function of [image: ] Noting that 
when  [image: ] reduces to the simple unweighted among group 
sum of squares, as Yu et al. [7], we can assure the positivity of the P  parameter and non-negative weights appearing in the BLUP 
formula by taking the condition of C to be [image: ] Where [image: ]   The 
superiority of the resulting estimator will be demonstrated in 
Section 4 via a simulation study.

Illustration and simulation results

Dental  Caries  example  in  one-way  layout:    We  illustrate  our  
proposed method using an example in dental research, with 
publicly available data. Before we undertake a simulation study 
in the next section the purpose here is to show the difference 
in estimates in a qualitative manner. The example is based on 
the data from Stokes et al. [15] involving 3 treatments. The full 
data  set  from  69  female  children  from  3  centers  may  be  found  
in Stokes et al. [15] SAS manual (http://ftp.sas.com/samples/
A55320). The purpose is to show the difference in competing 
estimates that indicates a drawback of MLE based methods. This 
real data example involves three treatments, including stannous fluoride [image: ]  acid phosphate fluoride [image: ] and distilled water [image: ]   The  numbers  of  decayed, 
missing, or filled teeth (i.e., DMFT) are examined before vs. after 
respective treatments. The post DMFT assessments are analyzed 
as the response variable and the treatment comprising fixed 
effects, and centers comprising random effects. Notice that, 
despite the fair amount of variation in the sample means, the ML 
has shrunk the estimates too much to yield EBLUPs, which are 
practically equal. 

This is a repercussion of the underlying asymptotic method 
yielding the among center variance to be almost zero, It should 
be  mentioned  that  in  some  applications  the  variance  estimator  
given by the ML becomes exactly zero for a fraction of possible 
sample points. In regional trial this amounts to concluding that 
efficacy of a treatment by region are all equal despite genetic 
differences and patient population in different regions, when 
it is in fact an artifact of an assumption underlying the ML, 
namely  the  assumption  that  the  number  of  levels  of  the  factor  
under study is large. The REML estimates are slightly better than those by the ML estimation method, but in this example where 
there is only 2 degrees of freedom to perform inferences on the 
factor variance, it has also relied upon the three data points too 
much. The shrinkage given by the GE is rather small, thus not 
depending on the unreliable factor variance estimate. Yet one 
may argue, which one is better or more reliable. Therefore, next 
we perform more extensive simulations, which can shed further 
light on true performance of competing methods, and to show 
that GE is superior in all scenarios we studied.

Simulation studies

The purpose of this section is to conduct a Monte Carlo 
simulation (MC) study to establish that not only the proposed 
estimator GE overcome the zero variance estimation problem of 
MLE based methods, but also it is superior in terms of the MSE 
performance. The study is carried out by generating simulated 
data  from  exact  assumed  distribution,  and  then  computing  the  Mean Squared Error (MSE) for group 1 (as an example) in the 
repeated sampling (MC=1000 iterations). We assume two sets of 
unbalanced mixed models. The first study involves an one-way layout with unequal sample sizes {5,10,10,15}  The second study 
involves a regression model with number of groups ranging from 
3 to 10, which covers typical applications.

One-way layout setting

The MSEs of competing methods are calculated when the 
error variance vary around the factor variance. The value of the 
parameter,  μ does not drive the MSE performance, but in our 
study it was set at 10. Table 1 below shows the values of the two 
sets of variances considered along with the MSE of the BLUP of 
first group estimated by each method. It is evident from Table 2 
that the MSE performance of GE is substantially better than that 
of the ML and the REML. The ML has the worst MSE performance, 
and the GE is the best in all cases.





Table 1: EBLUPs of Competing Methods.
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Table 2: Superior MSE Performance of GE in Unbalanced ANOVA.


[image: ]




The regression setting

In our simulation study of the regression case, we considered 
3; 5, and 10 groups. Since we can hardly learn anything new from 
regression  models  involving  number  of  factors,  a  regression  
model with one group structure is considered. Since the issue 
with asymptotic methods underlying the MLE based methods 
is the number of groups rather than the sample size from each 
group n  it is set at 10. Since the ratio between the factor 
variance  and  the  error  variance  mainly  drive  the  issue  of  0  
variance with MLE based methods, [image: ] was fixed at 20 and [image: ]   at 
typical values in applications where the BLUP is preferred over 
the LSE. Here we used the MSE of competing methods to evaluate 
the performance of each methods as the factor variance vary in 
a practical range of BLUP applications. The value of the intercept 
of the regression does not impact the MSE performance, but in 
our study it was set at 100, and a continuous covariate is include 
and set at random normal numbers generated with mean 0 and 
variance 0.05. 

Occurrences of zero variance estimation are also studied. 
Table 3 below shows the percent zero variances yielded by each 
method, and Table 4 shows the values of the MSE by each method It is evident from Table 3 that, when among group variance is 
small  compared  to  the  error  variance,  MLE  based  methods 
have serious issues due to yielding zero variance components 
thus leading to equal EBLUPs for all factor levels, where as 
the GE method has completely overcome the drawback. Again, 
Table 4 shows that the MSE performance of GE based EBLUP 
is better than that of ML and REML. As before the ML tend to 
have the worst MSE performance, whereas GE is the best in all 
cases. Especially when the likelihood function get maximized at 
negative values of the variance component, ML and REML simply 
truncates the estimated variance to zero. Moreover, unlike in 
ANOVA, MSE performance of EBUPs can vary depending on the 
covariates of the regression model. Therefore, also reported in 
Table 4 is the MSE performance of estimated values of a weight, 
defined as

[image: ]


Where, [image: ]  is the factor variance and z1  is the vector of covariates corresponding to the group 1. The weigh ω   is closely related to 
the extent of shrinkage given by competing methods, compared 
the actual shrinkage of the EBLUP. 



Table 3:  Percent non-convergence or zero variance estimates of methods.

[image: ]






Table 4:  MSE performance of EBLUPs and Weights in the Regression case

[image: ]




Performance comparison in small area estimation

The purpose of this section is to study the performance of EBLUPs 
discussed by Ghosh and Rao [8] and Rao [11] in the application 
of small area estimation. In their study, the empirical Bayes (EB) 
estimator suggested by Harville [9] and Hierarchical Bayes (HB) 
estimator of the BLUP suggested by Datta & Ghosh [10] were 
found to outperform other competitors in the area of small area 
estimation, and so here we only study the performance of the 
EB and the HB compared with the GE and the REML, which were 
found to perform better than the ML in our study above. We used 
the  same  data  set  that  Ghosh  &  Rao  [8]  reported  and  used  the  
same diffuse prior of Datta & Ghosh [10]. The findings of the 
study are reported in Table 5. Denoted by ni  is the sample size of area i, and [image: ] s the observed response mean of area i. The 
performance of each EBLUP is judged by its capability to predict 
mean  response  based  on  the  values  of  the  covariates  reported  
in Ghosh & Rao [8]. Table 5 shows relative absolute errors, the 
absolute  deviations  of  the  predicted  values  from  the  response  
means, and the performance of each is judged by its average for 
all areas. It is evident from the table that the GE derived in this 
article  has  outperformed  all  competing  estimators.  As  Ghosh  &  
Rao [8] also reported, the EB and the HB has a slight advantage 
over the REML. 



Table 5:   Percent Relative Errors, [image: ]

[image: ]



Concluding Remarks

At a time when, mixed models have become highly popular in 
a variety of applications ranging from market analysis to clinical 
research, we have considered a problem of immense importance, 
namely the problem of obtaining more accurate EBLUPs than 
those provided by likelihood based methods. For a wide array of 
applications consisting of small samples or few groups, as well 
as large samples with high variability, we have provided a class 
of estimators that are substantially superior to the ML and the 
REML in terms of the convergence without zero variances and 
the MSE performance. In this article we have derived superior 
estimators for the cases of unbalanced one-way layout and 
regression   mixed   models   involving   any   number   of   random   
effects  with  compound  symmetric  covariance  structures.  It 
is  useful  to  extend  such  results  to  more  complicated  mixed  
models and other widely used covariance structures, and so 
further  research  in  this  direction  is  encouraged.  For  balanced  
ANOVA models, Weerahandi & Ananda [16] obtained further 
improvements  than  the  type  of  estimators  considered  in  this  
article and Bayesian estimators with non-informative priors. 
Extending their results to unbalanced cases is a non-trivial task, 
and also requires further research [17-19]. 

One may avoid drawbacks of the ML and the REML by taking 
the Bayesian approach. But in taking the Bayesian approach, 
one has to specify prior distributions and hyper-parameters. 
Moreover,  in  Bayesian  estimation  using  such  algorithms  as 
MCMC (Markov-Chain Monte-Carlo) could be time-consuming 
and could yield estimates which are highly sensitive to the choice 
of the family of priors and the choice of hyper-parameters, 
especially when there are a large number of model parameters. 
The approach proposed in this article does not suffer from such 
drawbacks. Moreover, the EBLUP proposed in this article, namely 
the GE, was also found to be better than Bayesian estimators 
EB and HB requiring no proper priors. Further research is also 
necessary to obtain more powerful tests of hypotheses of BLUPs 
than those available in the literature. By taking the generalized 
approach,  Gamage  et  al.  [14]  obtained  prediction  intervals  for  
BLUPs, which are superior to the MLE based methods in terms 
of intended coverage. The coverage of such prediction intervals 
may still be improved upon by taking advantage of the knowledge 
of the parameter space of the variance ratios, as proposed in this 
article.
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