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Abstract


The data used in estimation of radiation exposure dose are not known exactly. We discuss different types of errors which are present in
radio-epidemiological models we work with. We illustrate these types or errors in simplified models and share our experience on how the errors
of different types affect the estimates of radiation risk parameters.

Keywords: Berkson error; The classical error; Measurement error; Radiation risk estimation; Attenuation effect

Abbreviations:ERR: Excess Relative Risk; EAR: Excess Absolute Risk; GSD: Geometric Standard Deviation




Opinion

Until recently the most common methods for estimation
of radiation risks that associated with human exposure use
the assumption of no uncertainty in exposure dose, i.e., it is
assumed that we have a determined value for the individual
dose of a subject. But now it is clear that such a statement is
fundamentally wrong, since in practice there are no situations
in which the dose estimated by any method would not have
some uncertainty. The nature of the dose uncertainty can be
very diverse. E.g., the measurement error can be systematic or
random. Systematic under- or overestimation of true values
of the exposure dose is known as bias. As a rule a systematic
error is not considered as a component of the total error due
to the following reason: if a source of such an error is known,
then it would be eliminated. In turn a random error can be either
shared or unshared. Assume that in a mathematical model used
to dose reconstruction for a group of subjects (cohort), some
parameters can be the same for subjects of some subgroup.
Suppose also that these parameters have uncertainty due to a
lack of knowledge of the true value. Then for the subjects of this
subgroup, this lack of knowledge is a source of the shared error.
In contrast, some parameters can vary stochastically among the
subjects of the subgroup, and this is a source of unshared error.
So, if parameters are shared, then errors in the parameters are
shared as well, leading to a systematic error in dose estimates
for the subjects of the subgroup [1].


In addition, the random error can be either classical or
Berkson [2]. Let  Dtr stand for the true value of exposure dose
(usually Dtr is unknown), and  Dmes for its measured value.
We consider both classical and Berkson errors regarding
the logarithms of exposure doses, because measurement
errors in doses are multiplicative in their nature. If we have a
multiplicative lognormal Berkson dose error, then it holds: 
[image: ] is an observed value, 
[image: ]is unknown quantity, and ui is normal error with
zero expectation and known variance, [image: ]Random variables
wi and  ui are assumed independent. In case of Berkson error,
conditional distribution of  xi given wi has a form as follows: 
[image: ]
i.e., for each observation the conditional
distribution of the true value (i.e., of the logarithm of the true
dose) is known, but its exact realization is unknown. The
Berkson error occurs every time when the dose mean value
is applied instead of the dose true value. In particular, if the
individual dose values are unknown, but approximated values
of their expectations are known, then the replacement of true
doses by their approximate expectations leads to measurement
errors of Berkson type.

Now, let the dose be observed with the classical log-normally
distributed multiplicative error. Then[image: ] 
where[image: ] is unknown value of the logarithm of true
dose, [image: ]
is known logarithm of the measured dose,
 xi and  ui are independent normal random variables, with
zero expectation and known variances (in other words,  ui is a
random error). In case of the classical error, 
[image: ]
, i.e., conditional distribution of wi has known variance and 
unknown expectation, the latter is regarded as the logarithm
of true dose. The classical error occurs when the measured
dose value (i.e., some computational and instrumental dose
realization including the error) is used instead of the true dose
value. E.g., instrumental measurements of radioactivity fluctuate
just because of the presence of the classical error.


One of the consequences from the assumption of the absence
of errors in exposure doses is the bias of risk estimates and
distortion of the shape of the curve “dose - effect”. Notice that
such distortions of the risk estimates can be caused not only
by systematic errors in dose estimates which is obvious, but
by random errors as well. Even though there have been many
attempts to include dose errors in the risk analysis lately, the
problem is not fully resolved until now. In many cases estimation
of dose uncertainty can be expressed as a combination of the
classical and Berkson types of error. However, at the moment
there is no final conclusion on the impact of the classical,
Berkson, or mixed error in dose estimates to the final result of
risk analysis, usually being expressed in values of either excess
relative risk (ERR) or excess absolute risk (EAR). 


As a rule radio-epidemiological studies
use the following linear relative risk model:[image: ]
Here is
the excess relative risk per Gray,  ai andγj are regression
coefficients, D is the individual exposure dose (in Gray),  si are
covariates (confounders) that affect the level of background
incidence rate (e.g., age, sex, level of examination) and  zj are
modifying covariates making an effect on the risk of radioinduction
(e.g., the age at the moment of exposure, sex).


Consider the two-parameter linear in dose regression model
with binary response:[image: ] where λi
is the total risk or total incidence rate,λi=λ0+EAR Di 
or as
a version with relative risk: λi=λ0(1+EAR Di)Here Di
 is the
individual exposure dose, λ0 is the background incidence
rate (i.e., the one in the absence of the dose factor),ERR is the
excess relative risk, EAR = λ0.EER is the excess absolute risk.
In this instance, λ0 and EAR are positive model parameters to
be estimated. The observed sample consists of couples 
 Yi Di 
i=1,...,N , where Di are the doses (nonnegative numbers);Y1
in case of morbidity within some time interval, and  Yi =1 in the
absence of morbidity within the interval.


To check the influence of classical and Berkson errors in
exposure doses on the cancer risk estimation, a simulated
stochastic experiment was made. The simulation was performed
based on epidemiological studies of thyroid cancer morbidity in
Ukraine [3,4]. The absorbed doses of internal thyroid exposure
correspond to the published in [5] doses for a real subpopulation
of children and adolescents aged from 0 to 18 years (N=13204
persons in total) resided in settlements of Zhytomyr, Kyiv, and
Chernihiv oblasts of Ukraine, where direct measurements of
thyroid radioactivity were conducted in May-June 1986 [6]. In
simulation of the thyroid cancer incidence rate at fixed timeinterval, the two-parameter logistic linear model of absolute
risk was used. The true model parameters were chosen being
close to the estimates obtained during epidemiological studies
of thyroid cancer in Ukraine [3], namely 
[image: ]and[image: ]
Berkson and the classical errors in exposure
doses were simulated separately. It was assumed that both
Berkson and classical multiplicative errors in dose are
distributed by log-normal law. The error value was set so that
its geometric standard deviation GSD=exp(σi) varied from 1.5 
to 5, for all i N =1,...,N in the case of the classical error, as well as
in the case of Berkson error. In both simulation scenarios, 1,000
data sets were generated for each error value. To estimate the
regression parameters λ0 and EAR the naive estimation method
(i.e., the one that ignores the presence of errors in doses) was
used, Figure 1 &  2.
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Figure 1:  Naive estimates (the median of estimates from
different realizations and 95% deviance interval) of background
incidence rate for different types of measurement error.
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Figure 2:   Naive estimates (the median of estimates from different
realizations and 95% deviance interval) of excess absolute risk
for different types of measurement error.

 



 Figure 1 &  2demonstrate the attenuation effect, i.e.,
underestimation of excess absolute risk and overestimation of
background incidence rate. The effect is more contrast as the
error variance is increasing. In the case of Berkson errors, the
bias of naive estimates is not significant, compared with the case
of the classical errors. Though for large enough Berkson errors, the bias of radiation risk estimates will be significant as well.
And the bias of ERR estimates will be larger than the one of EAR
estimates.


Our experience tells the following:

o Neglecting of the presence of measurement errors in doses leads to underestimation of both ERR and EAR, if the classical errors are not vanishing.

o Under the absence of the classical errors, Berkson errors do not affect the estimates of regression parameters. Only for huge values of GSD of Berkson errors, the estimates of EAR and ERR are imprecise.

o The larger the variance of the classical error, the worse the estimates of EAR and ERR.

   We infer that a close analysis of measurements process is important. Not only the level of measurement errors is important, but also it is crucial which part of the errors constitute the classical ones. The classical errors should be taken into account in construction of the estimates of regression parameters. Berkson errors typically can be neglected if they are not very large. For instance, in radio-epidemiological studies of ecological type, Berkson errors in exposure doses can be quite large, and in this case ignoring Berkson errors will cause significant bias of the EAR and especially ERR estimates.

   Notice that standard statistical and epidemiological packages like EPICURE, SAS, SPSS, etc. cannot estimate the affect of measurement errors on the final result. Therefore, in the presence of such errors, one should use specific estimation methods [2] for evaluation of correct estimates of radiation risks. A choice of estimation method depends on the type of error (shared or unshared, multiplicative or additive, the classical or Berkson or their mixture) and on the shape of its distribution. Our experience suggests that a particular method works well for one type of error, but for error of another type, the method can perform even worse than the naive estimation. Thus, in concrete situations, especially under a mixture of errors of different types, it is necessary to make preliminary simulation studies in order to compare the efficiency of estimation methods.
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