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Abstract


In this research paper, an attempt has been made to obtain alternative formulas for distributions of order k based on runs of at least length
k. First by using binomial scheme and 'balls-into-cells' technique an alternative formula for distribution of binomial distribution of order k as
defined by Goldstein [1]. Inverse Bionomial scheme was then used with 'ball-into-cells technique to obtain alternate distribution of Geometric
distribution of order k and negative binomial distribution of order k. The results were further extended to obtain Polya-Eggenberger distribution
of order k and Inverse Polya-Eggenberger distributions of order k. All results were verified for exactness of probability


Keywords: Binary data analysis; Cross-over trial design; Generalized linear model; Partial likelihood 







Introduction


Distribution of runs and successions in various situations
have been under considerable studies due to their applications
to reliability theory of consecutive systems Grifitth [2];
Papastravridis & Sfkianakis [3], Sfkianakis, Kounias & Hillaris [4],
Papastravridis & Koutras [5] & Cai [6], start-up demonstration
tests [7], molecular biology [1], theory of radar detection, time
sharing systems and quality control [8-12]. There are different
ways of computations and enumeration of number of runs:


1. Feller [13] defined ways of counting the runs of exactly
length k as counting the number from scratch everytime
a run occurs. For example the sequence SSS SFSSS SSS F|
contains 3 success runs of length 3


2. Goldstein [7] proposed the distribution of the number
of success runs of at least length k until the n-th trial. In
this way of counting the number of runs of length 3 (or
more), in the above example contains 2 success runs of
length 3 (or more)


3. Schwager [14] and Ling [15,16] studied the distributions
on the number of overlapping runs of length k . In
the enumeration scheme SSS SFSSS SSS F| contains 6
overlapping success runs of length 3.


4. Aki and Hirano [17] studied the distribution of success
runs of exact length k . In the above example number
of success runs of exact length 3 is 0.


5. Philippou[18] obtained the distribution of the number
of trials until the first occurrence of consecutive k
successes in Bernoulli trials with success probability as
the geometric distribution of order k,(Gk(x;p))


In this paper, we have suggested alternative formulas for
Binomial distribution of order k based on success runs of based
on atleast length k by using Balls-into-cells technique with
direct sampling scheme with replacement. The same result
was extended by using inverse sampling scheme to obtain
alternative formula for Geometric distribution of order k and
negative Bionomial distribution of order k . Finally, using Polya
Eggenberger sampling scheme we have obtained alternative
formulas for Polya-Eggenberger distributions of order k and
Inverse Polya-Eggenberger distributions of order k [19,20].


Lemma: The number ways of distributing r
indistinguishable balls in n cells such that each cell has atmost
(k- 1) balls is given as: 
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Binomial distribution of order k


Let  Xkn the number of success runs of length at least k and
r be the number of success in n Bernoulli trials and n - r be
the number of failures.


Then, 


Theorem 1:
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 Proof: First consider x runs of exact length k successes each.
x successes and n-r failures can be arranged in [image: ]
 ways.
 r - xkremaining successes can be distributed into n-r+1
cells such that no cells have more than k -1successes in
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ways.


Thus, leading to the result. This is an alternative
representation of probability distribution function of 


For the maximum possible value of r, 


Let us assume that there are x successes of exact length
k-(k-1)followed by a failure each.


Then the remaining number of cells formed by n-r
failures and x successes will be n-r+x+1 each assumed to
be having exactly (k-1)  successes.


[image: ]


Some Examples:
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Geometric distribution of order k

Let the first success run of length k occurs at  Nthk trial. Then, 



Theorem 2
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The number of ways of distributing r-k  successes preceding
failures n-r  such that not more than k-1 successes occur
proceeding the n-rfailures then by using (1) and replacing n
by n-r and r by r-k is given by 


[image: ]


Hence, the result. This is thus an alternative formula for
Geometric distribution of order k given by Philippou [18].


Remark 1: For k =1 (3) gives the probability mass function
of Geometric Distribution.


An Example
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Negative Binomial Distribution of order k


Let the xth run of length k occurs at the  Nxk - th trial i.e., 


[image: ]


Theorem 3
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Proof


Let there be r successes and n-r  failures. r-xk
successes are to be distributed into n-r cells preceding the
n r - failures such that no cell receives more than k-1 successes
which is given by (1) replacing r by r-xk and n by as


[image: ]


 Hence, the probability. Further, xk+(n-r)(k-1)≥ r. Hence,[image: ] 


This is thus an alternative formula for Negative Binomial
distribution of order given by Philippou [18].


Some examples

For k=1→a=x and r=x

[image: ]is the probability mass
function of Negative Binomial Distribution 
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Polya-Eggenberger Distribution of order K


Let us assume an urn contains a white and b black balls. A
ball is drawn, its colour is noted and it is returned to the urn with
s additional balls of the same colour. The process is continued
till n balls have been drawn.


Let ;
Xsn;k be the number of white ball runs of at least length
k in n trials. Then,


[image: ]


The proof follows from theorem 1. This is thus an alternative
formula for Polya distribution of order given by Charalambides
[18] Sen et al. [19]. 
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Inverse polya-eggenberger distribution of order k

Let us assume an urn contains a white and b black balls.
Balls are drawn one-by-one with s replacement along with
additional balls of the same colour of ball drawn. The process is
continued till n balls have been drawn [21].

Let Nx,sk be the number of trials required for  xth run of k
white balls to occur (Nx,0k=Nxk) Then,

Then, using theorem 3 we have,


Theorem 5
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Where,[image: ] This is thus an alternative formula for
Inverse Polya distribution of order k given by


Some examples
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