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Abstract


Distributions having excessive tails are modeled in various venues via ?-stable sequences deficit in moments of various orders. Essential statistics are examined under independent vs spherically dependent cases. The former exhibits such critical pathologies as inconsistent sample means. The latter support versions of some classical procedures even without moments as conventionally required. In particular, despite heavy tails, Student's tests for means nonetheless remain exact in level and power. etc. AMS Subject Classification: 62E15, 62H15, 62J20.
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Introduction



Classical statistics rest heavily on means, variances, correlations, skewness and kurtosis, requiring moments to fourth order. To the contrary, probability distributions having excessive tails, often void of first or second moments, arise in a variety of circumstances. These encompass radar tracking, image processing, acoustics, risk management, portfolios in finance, biometrics, and other venues. Supporting references include Bonato & Matteo [1], Cheng & Rachev [2], Kim et al. [3], Kuruoglu & Zerubia [4], Qiou et al. [5], Tsionas & Efthymios [6]. Salient monographs are Arce [7], Chernobai & Rachev [8], Ibragimov et al. [9], and Samorodnitsky & Taqqu [10]. In these settings the classical foundations accordingly must be reworked.


Excessive tails typically are modeled through α- stable distributions with index α ε[0,2]. These comprise all limit distributions for standardized partial sums, of which Gaussian central limit theory applies under second moments with   α = 2.
Despite the circumstances cited, usage has been limited for want of explicit expressions, apart from special cases, for α-stable density and cumulative distribution functions. Nonetheless, signal progress is supported through the use of characteristic functions (chfs), as undertaken in this study. Even here a divide emerges between independent, identically distributed (iid ) α stable variables, or dependent α-stable (SαS) sequences. An outline follows. Notation and technical foundations are provided in Section 2. The findings in Section 3 are twofold: First, that limit properties diverge widely between and (iid) spherically dependent (Sα S) sequences; and second, that conventional inferences, though largely lacking in the former, may be validated in large part in the latter. Conclusions are tallied in Section 4.

Preliminaries

Notation: Spaces include  ¡N as Euclidean N-space. Vectors and matrices are set in bold type; the transpose, inverse, trace, and determinant of A are [image: ] the unit vector in   ¡N is 1N =[1,...,1]'; and IN is the (N × N ) identity. Moreover, Diag (A1,..., Ak ) is a block-diagonal array.

Special distributions

 For Y=[Y1,...,YN]'€  ¡N its distribution, mean, and dispersion matrix are denoted by L(Y ),E(Y ) =μ	and V (Y) = Σ	say, with variance  Var(Y )=σ2on ¡1L(Y) = NN(μ ,Σ)is Gaussian on   ¡N with parameters(μ ,Σ)Distributions on  ¡1 include the χ2(u;v,λ)having  degrees of freedom and non centrality parameter λ;and the corresponding Student's t2 (u;v,λ)The (chfs) for Y is the expectation  [image: ] with argument t'[t1,...,tN]; a standard source is Lukacs & Laha [11]. 
Reference is drawn subsequently to probability density (PD) and cumulative distribution (CD) functions.

Foundations

A random process [image: ] is spherically invariant if for each,the joint (chfs) of [Z1,...,ZNhas the form [image: ] for some function ψ (.) not depending on N [12,13]. Averages and limits are basic in statistical analysis; for example, notions of consistency in estimation and of large-sample distributions. These are undertaken here without benefit of moments in keeping with excessive tails. Specifically, the sequence [image: ] supplies the context for taking limits. In addition, the following is central to this study, where [δ,Σ]respectively comprise a location vector and a matrix of scale parameters, the latter taking the value Σ=INin the case of spherical symmetry on  ¡N 

Definition 1:[image: ] designates an elliptical α-stable law on  ¡N centered at δ∈ ¡Nwith scale parameters Σand 
stable index  α ;∈;(0,2)having the(chfs)[image: ]Each marginal distribution of[image: ] has the (chfs) [image: ] 

Remark 1: For α ;∈(0,2) hese have moments of order up to but excluding α,but with moments of all orders atα =2. Included are elliptical Cauchy and Gaussian laws atα={1,2} respectively. In addition, the following is central to subsequent developments.

Lemma 1: Let gN(z;δ,In)be the density for NN(δ,σ2IN)and [image: ]the SaS density for [image: ] Then there chfs
and pdfs are related as follows. 


[image: ]

[image: ]


Proof: Hartman & Wintner [12] gave a necessary and sufficient condition that the process [image: ]be spherically invariant, namely, that for each N and Z=[Z1,...,ZN],the chfs ÆZ (t) is a scale mixture of N-dimensional spherical Gaussian chfs. This applies in context to give conclusion (i). To continue,[image: ] is the standard inversion formula from chfs to densities with �(.)as Lebesgue measure. Accordingly, we invert both sides of the second and third expressions in conclusion (i) to get the density on the left of conclusion (ii). We then recover the right side of conclusion (ii) on reversing the order of integration in the iterated integral found on inverting the third expression of conclusion (i).


The Principal findings

Sequences of iid and Sσ S Variables: Much of classical statistics rests on iid random variables. In the present context it is germane to ask whether spherical S± S  Variables [Z1,...,ZN] might also be independent. To the contrary, for any spherical sequence. 
Maxwell [14] showed this to be the case if and only if Gaussian. 
In view of this, it remains to examine the limit properties of    iid Sσ S Variables in comparison with spherically dependent Sσ S Variables in  ¡Nof critical interest to users. Limit properties of these are shown next to be widely disparate, despite the fact that their marginals coincide. At issue are statistics SN=(Z1+...+ZN),[image: ] taking [image: ] in order to be 
iid.  A principal finding follows. 

I. Theorem 1

Take elements of Z'=[Z1,...,ZN]to be either iid [image: ] with
chfs [image: ] or to be spherical Sσ S on  ¡Nwith chfs [image: ] SN=(Z1+...+ZN) and [image: ] and consider the standardized variables [image: ] 

(i) For iid   sequences the  chfs for [image: ] [image: ] respectively.

(ii) For S σ S sequences the principal chfs are given by [image: ] 

Proof: Elementary properties of [image: ] are: 
a. If independent, then [image: ] 

b. The chf s of SN is [image: ] and 

 c. [image: ] 

Conclusions (i) and (ii) follow directly from these. 
Developments to follow invoke the following principles, first for  iid and then for spherical  SσS sequences. 

Remark 2:  In the chfs [image: ] note that [image: ] factors in as a scale parameter. For consistency in estimating  δ, it is necessary and sufficient that lim [image: ] which, by 
the Levy-Cramer continuity theorem, is the chfs of a distribution degenerate at δ . Consistency of  Consistency of Z N for  then follows using the equivalence of convergence in law to degeneracy, and convergence in probability.

II. Theorem 2



Limit properties of Z N [image: ] under iid [image: ] variables [Z1,...,ZN]are as follow.

i. For [image: ]so that Z N  is inconsistent for δ

ii. For [image: ]so that Z Nis inconsistent for δ 

iii. For [image: ] with µ >0 so that Z Nis inconsistent for δ


iv. For [image: ] diverges to an improper distribution on  ¡1. 

Proof: Conclusions (i)-(iii) follow as in Remark 2. Factoring [image: ] as in Remark 2 for 0<α	<, shows divergence of the scale parameter as[image: ]  giving conclusion (iv).

In parallel with Theorem 2, the following establishes corresponding properties for spherically dependentSσS

Sequences having chfs [image: ]


III. Theorem 3

Limit properties Z N of  and [image: ] under spherical  Sσ S
Sequences are as follow. 

(i) [image: ] So  Z N is consistent forδ  for every 0<α<2 and at α=2, under Gaussian theory. 

(ii) [image: ] is identical to [image: ] the standardized sum having as its limit the same Sσ S Sequences distribution as each component. 

Proof: Conclusion (i) follows from the second chfs of Theorem 1(ii) as in Remark 2, and conclusion (ii) directly per se from the third chfs of Theorem 1(ii). In short, it is seen from Theorem 2 that iid σ-stable variables hold little promise to exhibit even basic properties in data analysis and statistical inference, where even the consistency Z N of δ for  requires knowing that 1<σd 2.On the other hand, the next section motivates circumstances for the occurrence of spherical S±S samples, and sets out to establish useful statistical properties in the analysis of data from these models.


Properties of spherical SσS samples

Consider anew a single sample with parameters (δ,σ2), taking (Z1,...,ZN) from [image: ] in lieu of the conventional iid N1(δ,σ2)data. To these ends let [image: ] and identify [image: ] as the ordinary residuals, with [image: ] as the projection onto the error space, and [image: ] Recall that the two-sided normal-theory test for [image: ] uses the conventional Student's [image: ] The following is central to our findings. 

IV. Theorem 4 

Given that [image: ] we seek the joint distribution of [Z ,e']and that of [image: ]  

(i) The joint distribution of [Z ,e']   is given by [image: ] with [image: ], a distribution  ¡N+1on  of rank N. 

(ii) The marginals are [image: ] centered at δ with scale parameter [image: ] the latter a distribution on   ¡N of rank N-1 centered at 0 with scale parameters  σ2P. 

 (iii) [image: ] has density [image: ] as the scaled central chi-squared density having v = (N-1)  degrees of freedom, and with ψ(s;)as a mixing distribution from Lemma 1.

(iv) The test for [image: ] using [image: ], is 
exact in level and power as its normal - theory version, for all [image: ] with 0<σd 2

Proof: Take [image: ] of order [N×(N+1)]; let u=[Z,e']=HZ. Its 
chfs with argument S'=[ S',...,SN+1] is [image: ] with argument  v=H's replacing t .

Conclusion (i) follows on substituting into [image: ] to give [image: ] with [image: ] since P is idempotent, so that [image: ] as claimed. 

Conclusion (ii) follows directly.

Conclusions (iii) and (iv) attribute to Hartman & Wintner [12] through Lemma 1(ii). Specifically, a change of variables [image: ] behind the integral on the right of Lemma 1(ii) gives the conditional density for [image: ], namely the scaled chi-squared density h(u;v,s) depending on s, so that integrating with respect to dψ(s;α) as in Lemma 1(ii) gives conclusion (iii). In like manner, the change of variables [image: ] behind the integral in Lemma 1(ii) gives the conditional density for [image: ]. But this statistic is scale- invariant and thus independent of the mixing distribution ψ(s;α), so that [image: ] unconditionally, the latter being its conventional 
normal-theory distribution [image: ] 

Corollary 1:  Consider [image: ] The Cauchy  chfs  and density functions at α =1 may be represented as follows. 

(i) L(Z)in [image: ]  has the mixing distribution ψ(s;1)=χ(s;1)2 at v=1 namely, the chi-distribution with density [image: ] having  degrees of freedom.

(ii) Beginning with [image: ] the 
spherical Cauchy density is [image: ]

Proof: The conclusions follow on specializing the mixing distribution for the multi variate t at v =1 degree of freedom, and its known  density at  v =1.


Conclusion

In practice scale mixtures may arise as conditionally  iid Gaussian variables subject to scaling in a random environment. Linear models so structured are treated in Zellner [15] under multivariate Student t in lieu of Gaussian errors. The present study complements that work, eschewing moments through spherical Cauchy errors having v =1 degree of freedom. In summary, we have modeled errors not as iid, but instead as sphericalα-stable errors. The former holds little promise as noted, where even the consistency of ZN for δ requires that 1<σd 2, yet σ typically is unknown. On the other hand, spherical  σ-stable  errors offer a reasonable resolution to open topics in linear inference without moments. Not only is ZN consistent for  δ for all σ∈(0,2], but a mixture representation is given for the density of [image: ]. Moreover, a corresponding representation for Student's T 2 exploits its scale invariance to show that tests using T 2 are exact in level and power, as for Gaussian errors, for all [image: ] with 1<σd 2.
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