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Abstract


This letter provides an analytical solution for the covariance matrix related to the (mean) parameters of the standard Markov-switching
model. The importance of avoiding numerical procedures to estimate this matrix is also highlighted. Simulations are also performed in order
to verify, in small samples, the actual advantage of the analytical formula.
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Introduction



The seminal paper of Hamilton [1] provides a very attractive
way to estimate regime-switching parameters of a model where
the latent variable governing the regime switching enters the
model without its lags. In this case, closed form solutions for
these estimates are available. Surprisingly, Hamilton and the
subsequent applied and theoretical literature do not consider a
closed form solution for the related covariance matrix. Thus, the
covariance matrix is generally found by numerical procedures
whose aim is generally to estimate both the point Markovswitching
(M-S) estimates and their covariance matrix in the
maximum likelihood (ML) framework.


However, in this context, the use of numerical procedures
for finding point estimates and the related covariance matrix are
not efficient. In fact, point estimates are found by closed form
solutions. Consequently, having available an analytical calculation
for the covariance matrix casts doubts on the rationale of the
application of numerical procedures. They turn out not only to
be inefficient with respect to their analytical counterparts but
also ineffective as they are based on approximations.


Now, the estimator based on numerical procedures suffers
from a certain degree of approximations, involving sometimes
unstable and cumberosme calculations. In fact, once considering
the Newton-Rapson algorithm as a reference numerical
procedure, it can be shown that, this algorithm works well only
when the log-likelihood function is quadratic [1]. Furthermore,
at points distant from the optimum, the second derivative matrix
may not be negative definite [2]. However, alternative methods
to the Newton-Rapson's partially solve these kinds of problems.
For example, the Davidon-Fletcher-Powell algorithm (QuasiNewton
method) overcomes the latter problem by eliminating
the second derivatives altogether from the calculations,
leaving the researcher with the need to separately estimate
the covariance matrix. In order to overcome these problems,
we propose an analytical estimate of the covariance matrix in
question. We also show that, for small samples, the precision of
our estimator is quite larger [3,4]. The reminder of this letter is
organized as follow; the next section shows how to derive the
analytical solution for the covariance in question; section three
shows some simulations. Then conclusions follow.


The analytical solution


The model of Hamilton [1] can be rewritten in matrix
notation:


[image: ]


Such that,


A1. Y is N ×1vector of observations drawn from the
dependent variable yn(n=1,...,N) .


A2. X is a matrix including in the first column a vector of
ones and K vectors of observations drawn from K exogenous
explanatory variables xn,j(j=1,...,K and n=1,...,N)


A3. [image: ]
' = Where, Q is a (K+1)×(K+1) matrix of finite
random elements.


A5. The latent polytomous variable pn=1,...r, (with n=1,...,N)
defines the regime occurring for the nth-observation. The 
observations of the variables  pn are conveniently organized in
r diagonal (N× N)  matrices, pi , such that the n-th element of the
diagonal is 1 if the n-th observation belongs to regime i and 0
otherwise.


A9. U is a N ×1 vector of disturbances drawn from un~	NID(0,σ2)n=1,...,N ,
 independent of X and of Pi (i = 1, 2, , r) It also
holds that: [image: ]
' =


Under these assumptions, we may now define the M-S
estimators as the estimators based on the EM (ExpectationMaximization)
algorithm, as:
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Where, P̂i
 is a N ×N diagonal matrix embedding in the main
diagonal the estimated smoothed probabilities of regime and for
each observation. In fact, considering the first-order condition
(FOC) related to the parameter βi one has:



[image: ]


Where, LL is the expected log-likelihood maximized at
the M-step. Under the condition that regimes are separated
(P̂i≈ Pi) see Ruud [5], one has (P̂i)2=P̂i, thus the solution of
the above FOC is Eq.(2).


Now, we show how to derive the analytical covariance
matrix formula. In fact, by twice differentiating the expected loglikelihood
LL, with respect to the parameter vector one obtains
the expression:


[image: ]Which stems directly from the following
proposition


Proposition


[image: ]


Proof: Considering the FOC of the Log-likelihood and
deriving that again with respect to one obtains 
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Since, the elements of the off-diagonal of the Information
matrix are zero, in expectation, it turns out that:


[image: ]


Having assumed that regimes are separated 
(P̂i≈ Pi),
implying that (P̂i)2=P̂i Q.E.D.


Simulations: In this section, we provide a Monte Carlo
analysis of the proposition in Eq. (4) to investigate the sensitivity
of the analytical and the numerical covariance matrices in small
and large samples. We consider the simple univariate model of
Eq. (1) with r = 2 regimes: 


[image: ]




Table 1:  Parameter specification
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The explanatory variable X is assumed to follow a simple
white noise process. According to A9, U is a N ×1 vector of
disturbances drawn from un~	NID(0,σ2)n=1,...,N ,  βi
is a 2 ×1 coefficient vector containing an intercept ai and a slope
parameter ϴi for each regime i with i =1, 2 Furthermore the
probability that regime 1 will be followed by regime 1 is given
by [image: ] and the probability that regime 2 will
be followed by regime 2 is given by [image: ]  Table 1
shows the parameter specification of the model in Eq. (7). This
specification takes into account the condition that the regimes
are separated, that is (P̂i≈ Pi) 




Table 2:  Mean values of the estimated variances.
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We run our Monte Carlo analysis with 5000 replications and
use a small sample of N = 50 and a large sample of For N = 500
each simulation we compute the point M-S estimates and their
covariance matrix in the ML framework as well as the point
estimates [image: ]based on the analytical formula in Eq. (4).
To compare the results, we compute the mean values over all
replications of the estimated covariance matrix, based on the
numerical procedure and based on our analytical formula.
For the sake of simplicity we concentrate on the estimated
variances of the four parameters. The results are given in 
Table 2. In both samples the mean values of the analytical variance are
smaller than numerical variances. In small samples (N = 50),
the approximation implied by the numerical procedure is large
as the differences between the analytical and the numerical
variances of the parameter estimates are sizeable. In large
samples (N = 500), the mean values of both variance estimates 
decrease but the differences between the variance estimates are
negligibly small. Based on these results, we conclude that, for
small samples, the precision of our estimator is quite larger.


Conclusion


In this letter we have shown how to find an analytical
formula for the covariance matrix of point estimates of a
standard Markov-switching model. This formula is derived
directly from the closed form solution obtained in Hamilton [1],
for the point estimates. Having in hand a closed form solution
avoids the application of numerical procedures in the M-step
of the EM algorithm; in so doing, it eliminates the potential
problems related to the numerical procedure and fastens the
global convergence of the EM algorithm. Simulations show that,
in small samples, the approximation implied by the numerical
procedure is large as the difference between the analytical and
the numerical covariance matrices is sizeable.
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