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Abstract


In this paper, we formulate the integral operators Mσ,aσ,b involving hypergeometric functions 3Fσ2 as kernel. We discuss that these operators are composition of Erdlyi-Kober fractional integral operators. We also discuss the boundedness of these integral operators in L2.
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There have made numerous investigations pertaining to integral operators involving various hypergeometric functions 2F1 and the confluent hypergeometric functions 1F1 as kernel [1-5]. Many authors also discussed the boundedness of integral opera- tors and used their mapping properties to derive inversion processes [6].

In this paper, we use the integral representation of hypergeomet- ric functions [7]
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for formulating the integral operators of the following form 
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where 
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Here we start with a basic result that use later, see Karapetiants and Samko [8] and Okikiol 



 
Lemma 1

Suppose that Ψ is a measurable and homogeneous function of degree -1 for all real numbers h i.e. Ψ(hx,ht) = |h|-1Ψ(x,t).

Let
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then
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Also as a consequence, we have the L2-boundedness of generalized Erdlyi-Kober fractional integrals [10] as transcribed below. 

Lemma 2

Let
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We now prove the boundedness of the following integral operators involving homogeneous functions as kernel. These integral operators are generalization of integral operators those are studied by Love [11] and Habibullah [12].

Lemma 3
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Proof. Note that
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By using Fubini's theorem, we have the following lemma:

Lemma 4
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Lemma 5

For σ > 0, Let

uσx(t)=(xσ - tσ)c-b-1 , 0 < t < x < ∞

=0,t ≥ x.

then
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Proof. After making some substitutions in the integral representation of 3F2, we get the following integral
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By replacing uσxin place of g in Lemma 4, we have obtain
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The implies that
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Now, we formulate integral operators Mσ,aσ,a involving hypergeometric functions of the type 3Fσb and then prove the boundedness of these integral operators in L2.

Theorem 1

Let
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Proof. An application of Lemma 3 and Lemma 4 yields
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By using Lemma 5, we conclude that
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Consequently, it implies that
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