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Abstract


Several classes of generalized higher order parametric sufficient optimality constraints for a discrete minmax fractional programming problem are investigated toward establishing advanced results on higher order fractional programming. These results are established by applying advanced partitioning schemes and various types of generalized second-order (F,β,π,φ,ρ,θ,m)-univexity assumptions. The obtained results are new and generalize most of the results on (F,β,φ,ρ,θ)-univexity in the literature. 
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Introduction



In this paper, we intend to establish several sets of generalized parametric sufficient optimality conditions for the following discrete minmax fractional programming problem:
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where X is an open convex subset of ℝn (n-dimensional Euclidean space), fi, gi, [image: ], are real-valued functions defined on X, and for each [image: ] , gi (x) > 0 for all x satisfying the constraints of (P). Let F denote the feasible set (assumed to be nonempty) for (P) defined by
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The present investigation is aimed at establishing various second-order necessary and sufficient optimality conditions for several types of optimization problems, using the generalized concepts of second-order invexity, pseudoinvexity, and quasiinvexity originally defined by Hanson [1], and a set of second-order necessary optimality conditions by introducing the new classes of generalized second-oder invex functions. We shall apply two partitioning schemes by Mond & Weir [2] and Yang
[3]	, in conjunction with the new classes of generalized second- order invex functions to formulate and discuss numerous sets of generalized second-order sufficient optimality conditions for (P). To the best of our knowledge, all the second-order sufficient optimality results established in this paper are new in the area of discrete minmax fractional programming and encompass most of the investigations in the literature. The generalized optimality conditions established here can be utilized for constructing some generalized second-order parametric duality models for (P) and proving numerous weak, strong, and strict converse duality theorems. For more details on the discrete minmax fractional programming and related literature, we refer the reader [1-9].

The rest of this paper is organized as follows. In the remainder of this section, we generalize a few basic definitions and recall some auxiliary results which will be needed in the sequel. In Section 2, we state and prove various second-order parametric sufficient optimality results for (P) using a variety of generalized (F,β,π,φ,πρ,θ,m)-sounivexity assumptions. Finally, in Section 3 we summarize our main results and also point out some further research opportunities arising from certain modifications of the principal problem investigated in the present paper.

We next define some new classes of generalized second- order univex functions, called (strictly) (F,β,π,φ,π,ρ,θ,m)-sounivex, (strictly) (F,β,π,φ,π,ρ,θ,m)-pseudosounivex, and (pre-strictly) (F,β,π,φ,πρ,θ,m)-quasisounivex functions. These are further extensions of the classes of second-order (strictly) (φ,η,ρ,θ,m)- sonvex, (strictly) (φη,ρ,θ,m)-pseudosonvex, and (prestrictly) (φ,η,ρ,θ,m)-quasisonvex functions which were introduced recently in [4]. The second-order univex functions are also referred to as “sounivex functions” in the litera-ture. For more on the generalized F-convex and other related functions, we 

refer the reader [8,9]. Now we present the new classes of (F,β,π,φ,ρ,θ,m)-sounivex functions at x*. Let f: X ->  ℝ be a twice differentiable function.

Definition
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Definition
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The function f is said to be (strictly) (F,β,π,φ,ρ,θ,m)- pseudosounivex on X if it is (strictly) (F,β,π,φ,ρ,θ,m)- pseudosounivex at each x*∈X.
 
Definition
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We conclude this section by recalling a set of second-order parametric necessary optimality conditions for (P). The form and features of this result will provide clear guidelines for formulating various sets of second-order parametric sufficient optimality conditions for (P).

Theorem
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Second-Order Sufficient Optimality

In this section, we discuss several families of sufficient optimality results under various generalized (F,β,π,φ,πρ,θ,m)- sounivexity hypotheses imposed on certain combinations of the problem functions. This is accomplished by employing a certain partitioning scheme which was originally proposed in [2] for the purpose of constructing generalized dual problems for nonlinear programming problems. For this we need some additional notation.
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In the proofs of our sufficiency theorems, we shall make frequent use of the following auxiliary result which provides an alternative expression for the objective function of (P).

Lemma
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Making use of the sets and functions defined above, we can now formulate our first collection of generalized second-order parametric sufficient optimality results for (P) as follows.

Theorem
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Assume, furthermore, that any one of the following four sets of hypotheses is satisfied:
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Then X* is the optimal solution of (P)





Proof

Let x be an arbitrary feasible solution of (P).

(a): In view of the sub linearity of F(x,x*; ), it is clear that ( 2.1) and (2.2) can be expressed as follows:
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which by virtue of(i)implies that
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Since x∈F was arbitrary, we conclude from this inequality that x* is an optimal solution of (P).

(b) : Proceeding as in the proof of part (a), we see that (ii) leads to the following inequality:
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The rest of the proof is identical to that of part (a). (c) and (d): The proofs are similar to those of parts (a) and (b).

Theorem

[image: ]
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Then x* is an optimal solution of(P)

proof
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which in view of (i) implies that
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Proceeding as in the proof of Theorem 2.1, we see that our assumptions in (ii) lead to
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In view of (iii), this inequality contradicts (2.11). Hence, x* is an optimal solution of (P).

(b)	-(g): The proofs are similar to that of part (a).

In the next theorem, we make use of a slightly different partitioning method which appears to have been used for the first time by Yang [3] for the purpose of formulating a general duality model for a multi objective fractional programming problem, to present another collection of sufficient optimality results for (P) which are somewhat different from those stated in Theorems 2.1 and 2.2. These results are formulated by utilizing a partition of in addition to those of and , and by placing appropriate generalized (F,β,π,φ,πρ,θ,m) -sounivexity requirements on certain combinations of the problem functions.
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Theorem
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Proof(a)


Suppose to the contrary that x* is not an optimal solution of	(p).this implies.
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Concluding Remarks

Based on Dinkelbach’s parametric model [1], we have established numerous sets of higher order parametric sufficient optimality criteria for a discrete minmax fractional programming problem using a variety of generalized (F,β,π,φ,ρ,θ) -sounivexity constraints. These optimality models can be applied for constructing various duality models as well as for developing new algorithms for the numerical solution of minmax fractional programming problems. Furthermore, the obtained results generalize most of the results available in the current literature, and are application-oriented in the sense of interdisciplinary research. More importantly, duality models do have a significant role in the semiinfinite aspects of the mathematical programming, for example, the following semiinfinite minmax fractional programming problem:
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