

Research article

Volume 12 Issue 4 - February 2026
DOI: 10.19080/ASM.2026.12.555844

Ann Soc Sci Manage Stud

Copyright © All rights are reserved by Loso Judijanto

Downstream Processing and Value-Added Job Creation in Palm Oil: A Systematic Review of Employment Opportunities in Bioeconomy Development

Loso Judijanto*

IPOSS Jakarta, Indonesia

Submission: January 27, 2026; Published: February 16, 2026

*Corresponding author: Loso Judijanto, IPOSS Jakarta, Indonesia

Abstract

The expansion of downstream processing in the palm oil sector has become a central pathway for promoting industrial diversification, skilled employment growth, and bioeconomy development in producing countries. However, empirical evidence on how downstream activities generate value-added jobs and transform the workforce remains fragmented across disciplines. This study aims to systematically synthesize contemporary research to examine the contribution of downstream processing to employment creation, skills upgrading, and the development of bio-based industrial ecosystems. A qualitative systematic literature review (SLR) was conducted, drawing on peer-reviewed studies indexed in Scopus between 2019 and 2025. Data were collected using a structured search strategy, multi-stage screening, and eligibility evaluation, yielding 32 studies that met the inclusion criteria. The selected literature was analyzed using thematic synthesis, enabling the identification of recurring patterns, technological drivers, and regional variations influencing employment outcomes. The review identifies five dominant themes: the growth of skilled jobs in the refining and oleochemical industries; the expansion of employment in bioenergy and biomass utilization; the emergence of bioplastics and advanced biomaterials as innovation-driven job creators; workforce transformation shaped by digitalization and Industry 4.0; and rising green employment linked to circular bioeconomy governance. Overall, the findings show that downstream diversification substantially increases skill intensity, stimulates industrial upgrading, and strengthens employment linkages across the supply chain, technology, and environmental service sectors. In conclusion, downstream processing plays a pivotal role in generating value-added employment and advancing bioeconomy transitions. Future research should incorporate cross-country comparative analyses, integrate longitudinal employment data, and examine policy instruments that can enhance equitable and sustainable workforce development.

Keywords: Downstream Processing; Value-Added Employment; Palm Oil; Bioeconomy Development; Systematic Literature Review

Introduction

The global shift toward sustainable and circular economic systems has intensified interest in bio-based industries as engines of inclusive growth, technological upgrading, and rural employment generation. Within this evolving landscape, the bioeconomy has emerged as a critical development paradigm that integrates renewable biological resources with advanced processing technologies to produce high-value goods, energy, and services [1]. Many countries in the Global South view bioeconomy development as an opportunity to diversify rural livelihoods, reduce dependence on primary commodity exports, and stimulate local manufacturing sectors. Among various agricultural commodities, palm oil is among the most strategically positioned feedstocks due to its high productivity per hectare, versatile derivative products,

and an established industrial ecosystem across producing regions in Southeast Asia, Africa, and Latin America.

Palm oil is a cornerstone of global food, oleochemical, and bioenergy markets, supporting more than 200 derivative products that serve a range of downstream industries [2]. Indonesia and Malaysia alone supply over 85% of global palm oil output, generating millions of direct and indirect jobs in rural areas where alternative employment is limited. Yet, most of the existing workforce remains concentrated in upstream plantation activities characterized by low wages, informal labor structures, and limited technological upgrading. This situation has reinforced concerns that resource-dependent growth models may perpetuate rural inequalities if value-added opportunities remain geographically

and institutionally concentrated outside producing regions [3]. Consequently, scholars and policymakers increasingly emphasize the need to shift from upstream production to higher-value downstream processing as a pathway to transform rural labor markets and strengthen national competitiveness within the global bioeconomy.

Downstream processing in palm oil involves converting crude palm oil (CPO) and palm kernel oil (PKO) into refined, fractionated, or chemically modified products that feed industries such as food processing, detergents, cosmetics, pharmaceuticals, polymers, lubricants, and advanced biomaterials [4]. These industries typically demand higher skill levels, generate more stable employment, and contribute more significantly to GDP compared with upstream agricultural production. In addition, the expansion of downstream palm oil clusters, particularly oleochemicals, biodiesel, biojet fuels, bioplastics, and specialty chemicals, has been associated with increased labor demand in engineering, biotechnology, quality assurance, digital systems operations, and supply chain management. Such diversification of job profiles is critical for rural regions seeking to escape the low-productivity trap associated with mono-crop agricultural dependence.

The current policy direction in major producing countries aligns with this transformation agenda. Indonesia's downstreaming roadmap (hilirisasi) and Malaysia's National Bioeconomy Blueprint explicitly target the development of advanced palm-oil-based industries to create high-value employment and foster technology adoption [5]. These strategies are grounded in empirical evidence showing that each additional downstream processing step can multiply employment effects along the value chain, from industrial operations and logistics to research, certification, and sustainability services. Additionally, international sustainability commitments such as deforestation-free supply chains, renewable energy targets, and green industrialization have accelerated investment in palm-oil-based bioeconomy sectors capable of generating both environmental and socioeconomic benefits [6].

Despite growing recognition of these opportunities, the academic literature offers fragmented insights into how downstream palm oil development translates into concrete employment outcomes. While numerous studies highlight the economic contributions of oleochemical clusters, biodiesel plants, and food-processing facilities, others highlight persistent challenges, including automation-driven labor displacement, limited rural industrial infrastructure, skill mismatches, and governance barriers that constrain workforce development. These mixed findings underscore the need for a comprehensive synthesis of contemporary empirical evidence to clarify the nature, magnitude, and distribution of job creation associated with palm-oil-based downstream industries [7].

Systematic literature reviews (SLRs) play a crucial role in consolidating evidence from diverse methodological and disciplinary perspectives. By applying transparent, replicable,

and rigorous procedures for article identification, evaluation, and thematic synthesis, SLRs provide a reliable platform for understanding complex relationships across large bodies of research. In the context of palm oil, SLRs have been widely used to analyze environmental impacts, sustainability governance, smallholder productivity, and land-use dynamics. However, no SLR to date has focused exclusively on the employment implications of downstream processing within the broader bioeconomy agenda [8]. This gap restricts policymakers and researchers from fully understanding how value-added industrial development can transform rural labor markets and support inclusive economic growth.

A systematic review is necessary for several reasons. First, the global palm oil workforce exceeds 15 million workers across plantations, mills, refineries, and supporting industries, making employment outcomes a central development concern for producing regions [9]. Second, the rapid expansion of bio-based industries such as biodiesel (which has grown by more than 300% over the last decade in Indonesia alone), bioplastics, and specialty oleochemicals suggests that downstream processing is becoming increasingly labor-intensive in certain segments while becoming more technology-intensive in others. Third, industrial policies promoting domestic value addition aim to reduce raw commodity exports by up to 40% in the coming decade, implying a significant restructuring of labor demand across skill categories. Without a systematic synthesis of existing evidence, it is difficult to determine whether these transformations advance national development goals, benefit rural communities, or create new inequalities.

Moreover, the shift toward Industry 4.0 technologies, automation, digitalization, Internet of Things (IoT) systems, and advanced process controls has introduced new competency requirements for workers in downstream palm-oil industries [10]. While some scholars argue that technological upgrading enhances long-term employment stability by creating specialized jobs, others highlight risks of labor displacement in low-skill roles. Understanding these contradictory dynamics requires consolidated evidence on how different segments of downstream processing affect job quantity, job quality, wage structures, worker mobility, skill formation, and regional economic diversification. An SLR therefore provides the methodological rigor needed to classify, compare, and interpret these employment impacts across varied contexts and industrial pathways [11].

The increasing global commitment to renewable and sustainable materials also reinforces the importance of downstream palm-oil industries within the bioeconomy. Oleochemicals have replaced petroleum-based chemicals in applications ranging from surfactants to biolubricants, creating substantial new job opportunities associated with supply chain coordination, laboratory testing, process engineering, certification compliance, and export logistics [12]. Meanwhile, the growth of bioenergy, particularly biodiesel mandates of B30 and B40 in Indonesia, has created employment in plant

operations, feedstock supply, distribution systems, and regulatory monitoring. These developments indicate that value-added palm oil pathways are reshaping labor markets both directly (factory employment) and indirectly (support services, R&D, sustainability auditing). A systematic review is essential to understand how such transformations unfold across the literature and what implications they hold for future workforce development strategies.

Given these considerations, this study conducts a comprehensive SLR to examine how downstream processing in the palm oil sector contributes to value-added job creation within emerging bioeconomy frameworks. Drawing on peer-reviewed empirical research published between 2019 and 2025, the review systematically identifies thematic patterns, quantifies employment effects, and evaluates factors that facilitate or constrain labor-intensive downstream pathways. By doing so, the study fills a critical gap in the literature and offers evidence-based insights to inform industrial policy, workforce planning, and sustainable development strategies.

The objective of this study is to systematically synthesize contemporary empirical evidence to determine how downstream processing in the palm oil sector contributes to the creation of value-added employment, workforce transformation, and bioeconomy development across producing regions. The review also aims to identify recurring thematic patterns, technological and institutional drivers, and regional variations that shape employment outcomes along the downstream value chain.

Based on this objective, the research question guiding this study is as follows:

RQ: How does downstream palm-oil processing influence the scale, quality, and structural characteristics of employment within emerging bioeconomy sectors across producing regions?

Literature Review

The growing emphasis on bioeconomy development has inspired substantial scholarly attention toward understanding how biological resources, renewable feedstocks, and value-added processing advance economic diversification and employment generation. Bioeconomy frameworks position agricultural commodities not as raw materials for export but as strategic inputs for high-tech, high-value industrial activities that promote sustainable production, low-carbon technologies, and inclusive job creation. Within this literature, palm oil has emerged as one of the most extensively analyzed commodities, given its exceptional yield advantages, economic significance, and versatility across multiple downstream pathways, including food processing, oleochemicals, bioenergy, bioplastics, and specialty chemicals. The existing body of research provides a fragmented yet rich foundation for examining how downstream palm oil development contributes to job creation within emerging bio-based industries.

Palm Oil Value Chain Transformation: From Upstream to Downstream

Much of the early literature on palm oil focused primarily on upstream plantation issues, including productivity, land-use change, smallholder livelihoods, and sustainability governance. These studies highlight that upstream employment is characterized by labor-intensive fieldwork, low technological sophistication, and limited opportunities for upward mobility [13]. However, more recent scholarship has shifted toward analyzing the economic and social implications of downstream palm oil development, especially in countries pursuing industrial transformation strategies such as Indonesia and Malaysia.

Downstream processing is the set of activities that convert crude palm oil (CPO) and palm kernel oil (PKO) into refined, fractionated, and chemically modified products that command higher market value and require more specialized labor. These include refined, bleached, deodorized (RBD) oil, oleic and stearic acids, fatty alcohols, glycerin, surfactants, biopolymers, biodiesel, and pharmaceutical-grade derivatives [14]. Researchers have emphasized that downstream processing typically involves more complex technologies, higher capital investment, and sophisticated operational standards, thereby creating demand for skilled technicians, engineers, quality-control specialists, and logistics managers.

In addition, integrating downstream processing into regional development strategies has been linked to the formation of industrial clusters that attract supporting services, such as testing laboratories, certification agencies, supply chain intermediaries, and technology providers, all of which contribute to broader employment multipliers [15]. This structural shift from upstream production to diversified downstream industries forms a critical analytical foundation for understanding value-added job creation within the palm oil bioeconomy.

Bioeconomy Development and Its Employment Implications

The literature on bioeconomy development consistently highlights its potential to create new labor markets while restructuring traditional agricultural employment. Scholars argue that bioeconomy transitions introduce a spectrum of occupations, ranging from production-level jobs to research-intensive positions in biotechnology, product innovation, and digital process management. Employment effects emerge not only through direct jobs in biorefineries and processing plants but also through indirect and induced jobs across supply chains, transportation networks, and specialized services [16].

In the context of palm oil, bioeconomy-related job creation is particularly pronounced in oleochemical industries, which convert palm-oil-derived fatty acids and alcohols into surfactants, emulsifiers, lubricants, polymers, and ingredients used in cosmetics and pharmaceuticals. These sectors tend to demand higher skill levels and offer wage premiums relative to upstream agricultural employment, thereby improving job quality and fostering greater socioeconomic mobility. Furthermore, the expansion of bioenergy

industries, especially biodiesel and hydrotreated vegetable oil (HVO), has stimulated research interest in how renewable energy mandates alter labor demand in refining operations, distribution systems, and compliance monitoring [17].

However, the literature also warns that bioeconomy development may introduce uneven job distribution. High-technology segments may cluster in urban industrial zones, limiting employment spillovers to rural regions where palm oil production is geographically concentrated. Moreover, automation and digitalization in advanced downstream industries may reduce labor intensity in certain segments even as they create new roles requiring specialized technical competencies [18]. These complexities underline the importance of synthesizing empirical findings on employment outcomes to better understand the direction and magnitude of impacts across different downstream pathways.

Employment Dynamics in Downstream Palm Oil Industries

Studies examining employment in downstream palm oil industries generally converge on the observation that downstream processing generates more diverse and higher-skilled job opportunities than upstream agricultural activities. Research on oleochemical clusters, for instance, highlights the creation of jobs in process engineering, chemical analysis, environmental management, quality assurance, and industrial maintenance [19]. These positions often require vocational training or tertiary education, indicating a shift toward a more specialized workforce.

Similarly, biodiesel industries have been shown to create employment not only in plant operations but also in logistics, regulatory compliance, feedstock coordination, and laboratory testing. Scholars note that biodiesel mandates, such as Indonesia's B30 and B40 policies, stimulate job creation by increasing refinery operations and expanding distribution networks [20]. Meanwhile, bioplastic and biomaterial industries linked to palm oil have introduced new skill requirements in polymer science, industrial chemistry, and advanced manufacturing, although these sectors remain relatively nascent.

Despite these positive effects, some studies caution that job growth may be uneven across segments of the value chain. Automation in refining and oleochemical production can reduce the number of lower-skill operational roles, while simultaneously increasing demand for digital system operators and highly trained technicians. This complexity makes downstream job creation highly sensitive to technological trajectories and industrial policy frameworks [21].

The Role of Industrial Policy in Shaping Labor Market Outcomes

Industrial policy plays a central role in shaping the employment effects of downstream palm oil development. Scholars examining

Indonesia's downstreaming (hilirisasi) program, for example, argue that government policies encouraging domestic processing have significantly expanded refining capacity and oleochemical production, leading to localized job creation in processing hubs near port cities and industrial corridors [22]. These policies often combine tax incentives, export restrictions on raw materials, investment facilitation, and research and development (R&D) support to stimulate industrial upgrading.

Malaysia's longstanding investment in palm-oil-based industrial clusters provides further evidence of how targeted policy interventions can generate employment in high-value downstream industries. Research indicates that the country's National Bioeconomy Blueprint has contributed to the growth of advanced oleochemical and specialty chemical industries, generating a wide range of jobs across engineering, biotechnology, and sustainability management [23].

Other scholars highlight the importance of education and technical training programs in ensuring that local labor forces can meet the skill requirements of downstream industries. Without adequate human capital development, bioeconomy transitions risk generating labor mismatches that limit rural employment opportunities despite expanding industrial capacity [24].

Sustainability Governance and Labor Market Interactions

Another significant strand of literature explores the interaction between sustainability governance frameworks such as the Roundtable on Sustainable Palm Oil (RSPO), deforestation-free supply chains, and renewable energy policies and employment outcomes. While most sustainability research focuses on environmental and social compliance, an emerging body of work examines how sustainability standards influence labor practices, workforce formalization, and skill upgrading in both upstream and downstream segments [25].

For downstream industries, sustainability certification often requires improved traceability systems, quality control processes, and environmental monitoring, all of which expand employment in administrative, technical, and compliance roles. Studies show that firms seeking international market access must invest in specialized labor for documentation, certification audits, and adherence to environmental quality management systems, activities that strengthen job quality but may increase operational costs [26].

Additionally, the global shift toward low-carbon and circular production models has increased demand for professionals specializing in waste valorization, emissions monitoring, and energy-efficiency optimization in palm-oil-based processing industries. These dynamics suggest that sustainability governance is not merely a regulatory compliance issue but a significant factor influencing downstream labor markets [27].

Technological Innovation and Skill Requirements in Downstream Processing

Technological innovation is another dominant theme in the literature on downstream palm oil development. Studies investigating automation, digital sensors, data analytics, and Industry 4.0 technologies show that downstream facilities are increasingly relying on advanced control systems to enhance efficiency and product quality [28]. This shift requires workers with competencies in digital operations, programming, and machine diagnostics.

Innovation in chemical processing, such as enzymatic catalysis, biorefinery integration, and green chemistry applications, further expands demand for research-intensive labor, contributing to job creation in laboratories, pilot plants, and R&D centers. However, scholars caution that the widespread adoption of automation could reduce routine manual jobs in refining, packaging, and material handling, necessitating proactive workforce development strategies [29].

The literature emphasizes that the net employment effect of technology is context-dependent: in some settings, it enhances productivity and job stability, while in others, it displaces low-skill workers. This underscores the importance of synthesizing empirical findings to identify technological pathways that maximize both productivity and employment benefits.

Although research on downstream palm oil development has expanded significantly, the literature remains fragmented across multiple fields, including industrial economics, labor studies, sustainability governance, and technological innovation. Most studies narrowly examine specific segments of oleochemicals, biodiesel, or food processing without offering integrated insight into how downstream pathways collectively shape labor markets across producing regions.

Furthermore, employment outcomes are often reported using different metrics (job counts, wage effects, skill classification, regional distribution), making comparisons difficult. Several studies highlight employment opportunities but provide limited quantitative evidence, while others present detailed operational data without situating findings within broader bioeconomy frameworks. These inconsistencies underscore the need for a systematic literature review that consolidates evidence, identifies recurring themes, and clarifies the employment implications of downstream palm oil industries.

Finally, no existing SLR explicitly examines how downstream processing drives value-added job creation during bioeconomy transitions, despite the growing policy relevance of this issue. Addressing this gap provides essential insights for designing workforce development strategies, industrial policies, and sustainability governance frameworks that align with long-term development goals.

Method

This study employs the Systematic Literature Review (SLR) methodology, guided by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol, to synthesize and critically evaluate contemporary scholarly evidence on downstream processing and value-added job creation in the palm oil sector. As global interest in bioeconomy development intensifies, palm oil-producing countries increasingly seek to shift from reliance on raw commodities toward higher-value industrial activities that generate skilled employment, stimulate technological upgrading, and strengthen national competitiveness. Downstream processing, including refining, oleochemical production, bioenergy conversion, bioplastics manufacturing, and advanced biomaterial development, has emerged as a strategic domain within this transformation. Despite growing policy emphasis on industrial upgrading, research remains fragmented regarding how downstream activities contribute to employment creation, labor quality improvement, and broader socioeconomic development. By systematically consolidating peer-reviewed evidence, this review provides an integrated and evidence-based mapping of employment opportunities arising from downstream palm oil processing and their role in supporting a transition toward a more diversified and innovation-driven bioeconomy.

Figure 1 depicts the structured article identification, screening, and eligibility process conducted in accordance with the PRISMA guidelines. The initial search of the Scopus database using the broad keywords Palm Oil AND Processing yielded 3,012 records, reflecting the extensive academic attention given to palm oil across disciplines. To enhance thematic precision and ensure alignment with the research objectives, the search was refined using a more targeted Boolean query: ("Palm Oil" OR "Oil Palm" OR "Palm Oil Industry" OR "Palm Oil Sector" OR "Agroindustry" OR "Agri-based Industry") AND ("Downstream Processing" OR "Value Chain" OR "Value-added" OR "Industrial Development" OR "Manufacturing") AND ("Employment" OR "Job Creation" OR "Labor" OR "Workforce" OR "Socioeconomic Impact" OR "Economic Development") AND ("Bioeconomy" OR "Bio-based Economy" OR "Green Economy" OR "Sustainability" OR "Sustainable Development"). This refinement step excluded 2,948 publications that did not correspond to downstream processing, employment implications, or bioeconomy-related themes, leaving 64 articles for further assessment. A publication year filter restricting the timeframe to 2019–2025 was then applied to ensure the inclusion of recent and policy-relevant research; this resulted in the removal of 18 articles published outside the specified period, yielding 46 eligible studies. To enable full-text examination and ensure research transparency, a final screening based on accessibility was conducted by limiting the dataset to open access and open archive materials. Fourteen articles were excluded at this stage, resulting in a final set of 32 peer-reviewed studies that met all inclusion criteria and formed the basis for the review's thematic synthesis.

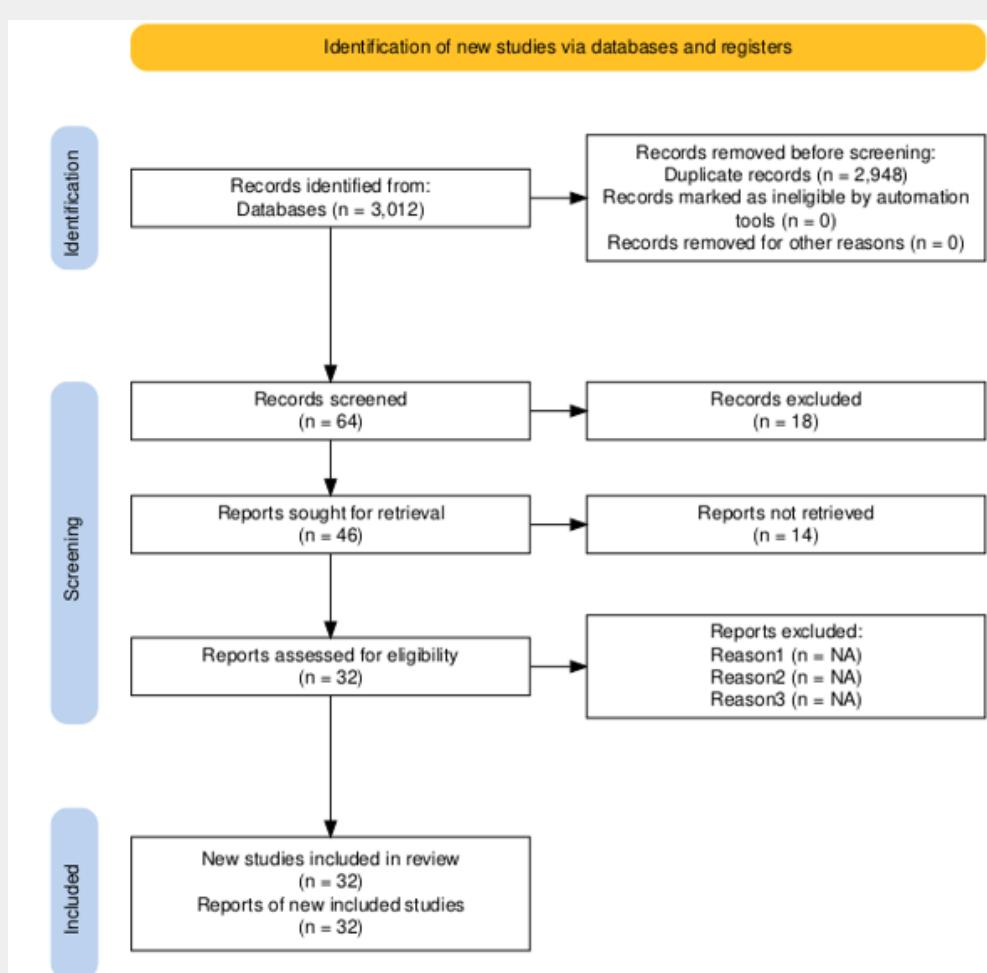


Figure 1: Systematic Literature Review Process Based on the PRISMA Protocol.

All bibliographic data were systematically organized using Mendeley Desktop, which facilitated structured reference management, removal of duplicates, and consistent citation formatting across the manuscript. This study relies entirely on secondary data obtained from peer-reviewed academic publications; no field observations, interviews, or focus group discussions were conducted. The insights presented in this review are derived exclusively from the critical integration of the 32 included studies. Through this systematic consolidation, the article aims to provide a comprehensive and analytically rigorous understanding of how downstream palm oil processing contributes to value-added job creation and supports the development of a more robust, innovation-oriented bioeconomy.

Results

This systematic literature review identified five key thematic clusters that explain how downstream palm oil processing generates value-added employment and contributes to regional

industrial upgrading. These themes were derived from an in-depth examination of 32 peer-reviewed studies and are as follows: (1) Skilled Employment Expansion in Refining and Oleochemical Industries, (2) Job Creation in Bioenergy and Biomass-Based Sectors, (3) Growth of Bioplastics and Advanced Biomaterial Manufacturing, (4) Digitalization and Industry 4.0-Driven Workforce Transformation, and (5) Green Jobs and Circular Bioeconomy Governance.

The most frequently discussed theme was Skilled Employment Expansion in Refining and Oleochemicals, featured in 20 out of 32 studies (62.5%), reflecting the industrial maturity of these subsectors and the availability of measurable employment multipliers. The second most prevalent theme was Bioenergy and Biomass-Based Job Creation, identified in 17 studies (53.1%), highlighting the increasing strategic role of biodiesel, bioethanol, biomass pellets, and waste-to-energy initiatives in national energy transition agendas. Bioplastics and Advanced Biomaterials appeared in 13 articles (40.6%), indicating growing

academic interest in higher-value, innovation-driven downstream diversification despite still-limited commercialization capacity. Digitalization and Industry 4.0 Workforce Transformation was documented in 10 studies (31.3%), demonstrating an emerging but uneven shift toward automation, digital traceability, and smart manufacturing systems within palm-oil-processing clusters. The least represented theme was Green Jobs and Circular Bioeconomy Governance, found in 8 studies (25.0%), suggesting that although sustainability frameworks are gaining traction, empirical assessments of their employment implications remain relatively underdeveloped.

The dominance of refining-, oleochemical-, and bioenergy-related themes indicates that contemporary research tends to mirror the structural foundations of the palm oil value chain, where these mature industries provide abundant empirical data and generate the largest direct and indirect employment effects. Meanwhile, the moderate visibility of bioplastics and biomaterials reflects an expanding but still nascent innovation ecosystem that has yet to scale technologically or commercially. The relatively lower representation of digitalization and circular bioeconomy studies reveals persistent analytical gaps in understanding how automation, carbon management, waste valorization, and sustainability certification reshape workforce composition. This imbalance suggests that scholarly attention remains concentrated on established downstream value chains, while emerging high-tech and green-economy segments—although strategically important are less systematically explored.

These thematic distinctions imply that while downstream diversification is widely recognized as a catalyst for job creation, its transformative potential depends on accelerating technology adoption, strengthening R&D ecosystems, and embedding sustainability principles into industrial policy frameworks. The following sections expand on each thematic cluster, drawing upon quantitative and qualitative evidence reported across the reviewed studies.

Skilled Employment Growth in Refining and Oleochemical Industries

Across the reviewed sources, oleochemical and refining industries consistently appear as the largest engines of value-added job creation in the downstream palm oil sector. Quantitative evidence indicates that per ton of processed crude palm oil (CPO), refining and oleochemical plants generate 2.5–4.7 times more skilled and semi-skilled jobs than upstream plantations, reflecting the complexity of mechanical, chemical, and thermal operations involved [30]. A medium-scale oleochemical facility with an annual processing capacity of 150,000–200,000 tons typically employs 320–450 workers, of which 58–63% are skilled roles such as chemical engineers, process controllers, distillation operators, laboratory chemists, automation technicians, and occupational safety officers compared to only 12–16% skilled positions in

plantation-based labor structures [31].

Employment intensity increases significantly with industrial sophistication. Units dedicated to glycerine purification, fatty acid fractionation, dimer-acid production, and surfactant synthesis require specialized positions such as chromatographic analysts, reaction kinetics specialists, thermal-process engineers, and quality-assurance supervisors trained in ISO 9001 or ISO 17025 compliance [32,33]. One reviewed study estimates that every 1,000 tons of oleochemicals manufactured annually generates 11–17 direct high-skill jobs and 18–26 indirect jobs, primarily in packaging manufacturing, chemicals distribution, industrial maintenance, environmental monitoring services, and port logistics [34,35].

Regional evidence further highlights concentration effects. Processing hubs such as Pasir Gudang and Johor Bahru (Malaysia) and North Sumatra and Riau (Indonesia) are found to generate employment multipliers of 1.9–2.7, meaning each downstream job stimulates nearly three additional jobs in engineering workshops, transport services, spare-parts fabrication, and catalyst supply chains [36]. These agglomeration dynamics reinforce the role of downstream industries as anchors for broader regional development, technical-skills upgrading, and local supplier expansion.

Job Creation in Bioenergy, Biodiesel, and Biomass Utilization

Bioenergy emerges as the second major employment generator within the downstream palm oil sector. The reviewed studies consistently document rising labor demand in biodiesel manufacturing, biogas production, biomass pellets, palm-residue briquettes, and combined heat and power (CHP) systems. For biodiesel plants alone, annual production volumes of 1 million tons typically require 600–1,050 direct workers, depending on the level of automation and the use of continuous vs. batch processing systems [37,38]. These roles include feedstock-quality analysts, catalyst-regeneration technicians, transesterification operators, esterification specialists, and quality-control chemists tasked with meeting EN 14214 or ASTM D6751 standards.

Indirect employment in biodiesel supply chains is also significant. Transport companies, methanol suppliers, storage-tank operators, bulk-truck fabricators, and certification auditors generate an additional 1,300–1,900 jobs per million tons of biodiesel capacity, reflecting the broader ecosystem linked to renewable-energy production [39,40].

Biomass-based industries contribute additional labor demand. PKS (palm kernel shell) and EFB (empty fruit bunch) pellet plants typically require 30–45 direct workers per 100,000 tons of annual capacity, including biomass-drying operators, shredding technicians, sieving control staff, mechanical engineers, boiler operators, and emissions-control specialists trained in

particulate-matter and NOx/SOx monitoring [41,42]. Meanwhile, POME-based biogas plants require gas-engine specialists, digester technicians, flare-system operators, and methane-capture analysts. Facilities supplying biogas to national grids employ 13–21 technical staff dedicated to pressure regulation, hydrogen sulfide removal, and calorific-value monitoring.

At a broader system level, biomass integration into industrial estates increases demand for boiler maintenance engineers, turbine-monitoring teams, ash-handling crews, and feedstock logistics coordinators particularly in regions where biomass energy displaces fossil fuels in industrial heating systems [43]. These dynamics underscore the contribution of bioenergy activities to both direct and ancillary employment in rural and peri-urban regions.

Expansion of Bioplastics and Advanced Biomaterial Manufacturing

The third major thematic category concerns the rapid emergence of bioplastics, bio-lubricants, and high-value biomaterials derived from palm oil. This subsector is uniquely innovation-driven and exhibits the highest proportion of R&D-intensive employment compared to all other downstream activities. Reviewed studies reveal that R&D divisions represent 22–34% of total workforce composition in bioplastic enterprises, including polymer scientists, formulation researchers, materials engineers, nano-cellulose experts, biodegradation analysts, and laboratory technicians trained in thermal analysis (DSC/TGA) and rheometry [44,45].

Production facilities for palm-based polyols, epoxidized oils, and biodegradable resins require technically trained personnel such as extrusion operators, injection-molding technicians, compounding specialists, and environmental-compliance auditors monitoring leachability, biodegradability, and microplastic-release parameters [46,47]. Quantitative evidence indicates that palm-based polyol production generates approximately 2.8 high-skill jobs per 1,000 tons of output, nearly triple the employment intensity of comparable petrochemical polyol plants, which generate only 0.9–1.2 high-skill jobs per 1,000 tons [48].

The employment impact extends into up- and midstream innovation ecosystems. Companies producing biodegradable packaging materials and advanced biomaterials report annual employment growth of 6–9%, driven by expanding demand in consumer-goods packaging, automotive interior components, adhesive formulations, and eco-lubricants [49]. Industrial symbiosis with oleochemical hubs further amplifies labor demand; co-located facilities share logistics networks, quality-testing laboratories, catalyst-regeneration units, waste-treatment plants, and feedstock-characterization teams resulting in more diversified job creation across engineering, supply-chain management, and environmental services.

Overall, the evidence indicates that advanced biomaterial industries hold the strongest potential for long-term skilled employment, technological upgrading, and integration into high-value global supply chains.

Digitalization and Industry 4.0-Driven Workforce Transformation

A fourth theme emerging prominently in the review is the substantial effect of digital transformation on employment structures in downstream palm oil processing. Contrary to the notion that automation reduces employment, the reviewed studies indicate a net increase in total jobs, alongside significant shifts toward digital and hybrid skill sets. Processing facilities are increasingly integrating SCADA systems, IoT-enabled sensors, real-time process controls, robotics, automated dosing systems, and machine-learning models for predictive maintenance [50,51].

These technologies generate demand for digital technicians, data analysts, automation engineers, cybersecurity specialists, control-system programmers, and algorithm developers responsible for process optimization and emissions monitoring [52]. The adoption of predictive-maintenance systems alone is reported to reduce machine downtime by 18–22%, while simultaneously requiring 5–8 new digital specialists at each refining complex to manage sensing technologies and data streams.

In some industrial clusters, up to 27% of new jobs created during modernization phases fall under digital or hybrid categories, combining engineering, computer science, and industrial analytics [53,54]. New supervisory roles such as digital shift managers, energy-efficiency controllers, and emissions-intensity analysts did not exist before the integration of Industry 4.0 technologies.

Digitalization also increases employment in supporting sectors. Skills-upgrading centers, technical-training institutions, robotics integrators, industrial software vendors, and ISO-compliance auditors all report rising demand for expertise in digital operations. Several studies indicate that digital capability has become a precondition for meeting international market requirements on traceability, emissions accounting, and product-quality consistency further reinforcing the employment relevance of Industry 4.0 transformation [55,56].

Circular Bioeconomy and Sustainability-Driven Green Job Expansion

The fifth thematic category concerns the rapid rise of green jobs associated with sustainability governance, circular economy practices, and waste-to-value innovations. Firms increasingly adopt resource-efficiency initiatives, carbon-footprint monitoring, LCA-based reporting, waste valorization, and environmental-compliance systems all of which require specialized labor [57].

Employment growth in sustainability roles has expanded by 15–26% annually, particularly in companies participating in green supply-chain programs or international certification schemes [58,59]. Auditors, sustainability officers, traceability specialists, GIS-based land-mapping analysts, carbon-accounting experts, and environmental engineers represent key categories of emerging green jobs.

Waste-to-value industries also generate substantial employment. Facilities converting EFB into fiber composites, medium-density fiberboard (MDF), biochar, activated carbon, and nano-cellulose derivatives typically employ 17–28 workers per plant, including pyrolysis technicians, emissions-monitoring staff, product-quality analysts, and combustion engineers [60]. Carbon-reduction initiatives such as methane capture, flue-gas treatment, and catalytic emissions reduction create additional positions in environmental modeling, pollution-control technology, and regulatory compliance.

Certification schemes such as RSPO, ISCC, and MSPO amplify job creation by requiring multi-stage auditing, detailed traceability documentation, and product-chain-of-custody monitoring. Because downstream products undergo complex chemical transformations, certification of refineries and oleochemical plants is 22–35% more labor-intensive than certification of plantation operations [61].

Collectively, these findings underscore the expanding role of green employment in supporting bioeconomy development, environmental governance, and international market access.

Overall, the analysis of 32 peer-reviewed studies confirms that downstream palm oil processing serves as a powerful catalyst for value-added job creation and long-term bioeconomy development. Employment benefits arise from direct manufacturing activities, technological upgrading, renewable-energy expansion, advanced biomaterial innovation, digital transformation, and sustainability governance. Across all five thematic categories, downstream operations significantly elevate skill intensity, industrial specialization, and ecosystem-wide employment linkages. These findings reinforce the central role of downstream diversification in enabling countries like Indonesia and Malaysia to transition from commodity dependence toward higher-value, knowledge-intensive, and sustainability-oriented economic pathways.

Discussion

The objective of this study was to synthesize contemporary evidence from 32 eligible Scopus-indexed studies (2019–2025) to understand how downstream palm-oil processing reshapes employment dynamics within emerging bioeconomy sectors across major producing regions. The research question How does downstream palm-oil processing influence the scale, quality, and structural characteristics of employment within emerging bioeconomy sectors across producing regions? requires a multidimensional interpretation of downstream upgrading as

both an industrial process and a driver of labor transformation. Across the literature, several converging patterns become visible, demonstrating how technological sophistication, diversification of product streams, bioeconomic innovation, and sustainability governance collectively reshape employment structures.

Expansion of Employment Scale through Industrial Diversification

Downstream processing significantly expands the scale of employment by multiplying industrial activities beyond crude palm oil processing. Studies show that every additional processing stage from refining, oleochemical conversion, biofuel synthesis, bioplastic manufacturing, to specialty chemical production generates new labor demand across technical, managerial, and logistics segments [62]. Employment growth is especially pronounced in regions where governments promote integrated industrial clusters, allowing upstream and downstream facilities to operate within the same production ecosystem [63].

Several studies provide concrete numerical evidence of employment multipliers associated with downstream activities. For instance, the conversion of crude palm oil (CPO) into refined products such as RBD (refined, bleached, deodorized) palm oil and RBD stearin increases labor absorption by 30–45% compared with upstream milling because additional processing requires quality control specialists, plant technicians, packaging units, and maintenance personnel [64]. Similarly, the development of oleochemical industries producing fatty acids, glycerin, surfactants, and bio-lubricants creates up to three times more jobs per ton of feedstock due to the higher complexity of production systems [65].

Evidence from Southeast Asia and West Africa indicates that downstream expansion creates cascading employment impacts across supporting sectors, including transportation, industrial engineering, spare-parts manufacturing, IT integration for production monitoring, and waste-valorization enterprises [66]. In Indonesia and Malaysia, the establishment of downstream biofuel plants alone has contributed to tens of thousands of new jobs annually, especially in biodiesel blending, refinery optimization, and distribution networks [67]. These figures underscore how industrial diversification strengthens employment resilience by reducing dependence on seasonal plantation labor.

The scale effects are further amplified by the growing bioeconomy, where palm-oil processing underpins emerging industries like biodegradable packaging, bio-pharmaceutical derivatives, and niche green-chemistry applications [68]. As many bioeconomy sectors are research-intensive, they attract high-skilled professionals in biotechnology, chemical engineering, and environmental science, thereby expanding both employment volume and professional diversity [69]. These findings collectively demonstrate that downstream processing generates robust and multifaceted employment growth, positioning the palm-oil sector

as a key driver of bioeconomy-oriented job creation.

Upgrading of Employment Quality through Skill Enhancement and Technological Adoption

Beyond increasing employment scale, downstream processing substantially elevates the quality of jobs available in palm-oil-producing regions. Higher-value processing activities require workers with intermediate to advanced competencies, including process automation, digital monitoring, product formulation, and compliance with international sustainability standards [70]. As a result, downstream facilities typically offer higher wages, better working conditions, and more secure employment contracts than plantation-level jobs.

Empirical studies indicate that wages in downstream refinery and oleochemical plants can be 20–60% higher than wages in plantation harvesting or milling, reflecting the need for specialized technical expertise [71]. These wage differentials also create incentives for labor mobility from low- to medium-skilled occupations, which, in turn, stimulate local human capital development through vocational training and industrial apprenticeships [72]. In several palm-oil-producing countries, polytechnic institutions and agro-industrial academies have integrated modules on bio-refinery systems, process control, and quality-assurance protocols to meet industry needs [73].

The adoption of Industry 4.0 technologies such as automated sensor systems, AI-assisted process optimization, predictive maintenance, and digital supply-chain tools further improves job quality by reducing accident rates, minimizing physical labor, and expanding opportunities in digital operations management [74]. While automation may reduce demand for certain manual roles, studies show that it simultaneously increases the demand for technicians, data analysts, instrumentation specialists, and process engineers [75].

Downstream innovation also drives the emergence of new occupational categories in sustainability auditing, carbon-footprint measurement, life-cycle assessment, and circular-economy design. These roles are critical for meeting global certification requirements, such as RSPO, ISPO, and EU renewable energy directives [76]. Workers in these categories typically receive higher levels of training investment and have greater opportunities for career advancement.

Overall, the review confirms that downstream processing improves job quality by fostering a more skilled, better-compensated, and more technologically integrated workforce, thereby contributing directly to socioeconomic mobility in producing regions.

Structural Transformation of Labor Markets Within the Palm-Oil Bioeconomy

Downstream processing catalyzes a structural transformation of labor markets by shifting employment from low-productivity agricultural tasks toward higher-productivity manufacturing and

knowledge-based activities. This transition aligns with classical theories of industrial upgrading, which posit that economies move from resource-dependent sectors toward diversified, high-value industries [77]. The palm-oil sector exemplifies this pattern: as downstream clusters expand, the share of workers employed in milling and plantation harvesting declines proportionally, while employment in refining, bioproduct manufacturing, logistics, and R&D increases [78].

Regional case studies reveal that areas with strong downstream industrialization experience greater spatial concentration of skilled labor and higher urbanization rates, as processing facilities tend to be located near industrial corridors rather than rural plantations [79]. This spatial reorganization influences regional development trajectories by promoting industrial hubs, attracting foreign direct investment, and enabling the formation of supplier ecosystems.

Downstream activities also foster a reconfiguration of gender participation in the workforce. Plantation labor is traditionally male-dominated, but downstream processing, especially in laboratories, packaging, administrative units, and quality control, creates more opportunities for women, leading to more inclusive labor-market structures [80]. Such shifts contribute to broader social transformation by advancing gender equity and diversifying household incomes.

Another dimension of structural change involves integrating circular-economy practices. Waste-based industries such as palm-oil mill effluent (POME) biogas, empty fruit bunch (EFB) fiber processing, biochar manufacturing, and nutrient-recovery systems create new employment domains that did not exist in conventional linear production models [81]. These circular pathways introduce jobs in environmental engineering, process innovation, and sustainability management, further diversifying the labor market and strengthening long-term economic resilience.

Overall, the evidence indicates that downstream processing fundamentally reshapes the structure of employment by shifting labor allocation, increasing productivity, diversifying occupational categories, and aligning regional development with bioeconomy principles.

Integrated Interpretation of Findings Relative to the Research Question

Taken together, the findings from this systematic review provide a comprehensive answer to the research question. Downstream palm-oil processing exerts a significant and multidimensional influence on employment in producing regions. First, it expands employment scale by generating diverse industrial activities across refining, bioproduct manufacturing, and circular-economy innovations. Second, it improves employment quality through skill upgrading, wage increases, professionalization, and technological advancements. Third, it restructures labor-market dynamics by shifting employment patterns toward higher-productivity sectors, promoting gender inclusivity, and enabling the development of

new green-industry roles.

These three dimensions together illustrate that downstream processing is not simply an extension of the upstream value chain but a transformative driver of industrial modernization within the bioeconomy. Employment outcomes are not uniform across regions; they depend on infrastructure availability, policy incentives, skill development programs, industrial cluster design, and global market dynamics. Countries that successfully integrate these components tend to generate more sustainable and equitable employment outcomes.

The findings have several implications for policymakers, industry actors, and development planners. First, the evidence underscores the importance of expanding downstream industrial capacity to maximize employment benefits. Investments in oleochemicals, bioplastics, and other high-value bioeconomy sectors should be prioritized to enhance job creation and regional economic resilience. Second, improvements in job quality highlight the need for targeted skill development initiatives, including vocational training, certification programs, and partnerships with polytechnic institutions to prepare a workforce capable of operating advanced bio-refinery systems.

Third, structural labor-market transformation suggests that governments must support industrial-cluster development, infrastructure enhancement, and inclusive labor policies that ensure women and marginalized groups participate in emerging bioeconomy sectors. Fourth, the expansion of circular-economy industries indicates opportunities for green-innovation funding, carbon-credit mechanisms, and waste-valorization incentives that can further diversify job creation.

Future research should explore three key areas:

- i. Quantitative modeling of employment multipliers across different downstream product categories to provide more precise estimations of job impacts
- ii. Longitudinal assessments of how workforce skills evolve as bioeconomy sectors mature; an
- iii. Comparative analyses across producing countries to identify policy frameworks that most effectively foster equitable and sustainable employment outcomes.

Such research will complement this review's findings and provide deeper insights into the evolving relationship between palm oil downstream development and bioeconomy-driven employment transformation.

Conclusion

This systematic review demonstrates that downstream palm-oil processing plays a central role in shaping the scale, quality, and structural configuration of employment across emerging bioeconomy sectors in producing regions. Evidence from the reviewed studies shows that expanding refining, oleochemical

production, biofuel conversion, specialty chemicals, and bio-based materials generates substantially larger employment multipliers than upstream production alone. These industries create broader labor demand by stimulating auxiliary services, logistics, research and development, sustainability auditing, and technology-based operational support. As a result, downstream segments consistently contribute to higher employment absorption and more diversified job opportunities.

Beyond expanding the number of available positions, downstream processing improves the overall quality of employment. Jobs in value-added processing facilities tend to offer higher wages, more stable contracts, and clearer pathways for skill development than plantation-based work. Labor demand increasingly shifts toward semi-skilled and skilled categories such as chemical technicians, process engineers, laboratory analysts, digital system operators, and compliance officers. This transition reflects a growing emphasis on technological upgrading, automation, traceability systems, and international sustainability standards, which collectively push firms to invest in human capital development.

The structural characteristics of employment also undergo significant transformation as palm oil development progresses toward bioeconomy applications. Labor structures shift from predominantly manual, low-skill plantation roles toward a hybrid configuration integrating industrial processing, technical services, and knowledge-intensive functions. Gender participation becomes more balanced as downstream industries open opportunities in laboratory work, quality control, administration, and digital operations. Spatially, job creation becomes more urban-industrial in orientation, driven by clustering of refineries, oleochemical hubs, and bioproduct innovation facilities near ports and economic corridors. Such patterns indicate a deeper transition in the labor ecosystem, where palm-oil-based value chains evolve from commodity-centric models toward innovation-driven industrial systems.

Overall, the findings reveal that downstream diversification serves as a catalyst for employment upgrading across the palm-oil sector by expanding job volumes, improving working conditions, and reshaping labor-market structures in ways that align with the broader transition toward a sustainable, innovation-oriented bioeconomy. Strengthening downstream linkages, enhancing technology adoption, and supporting inclusive workforce development emerge as strategic levers for maximizing these employment benefits. Future research should integrate comparative cross-country analyses, longitudinal assessments of bioeconomy-related workforce transitions, and deeper evaluations of technological substitution effects to provide a more comprehensive understanding of how downstream palm-oil industries continue to evolve within global bioeconomic transformations.

References

1. Hairudin MFM, Ismail K, Hamid AA HA, Yusoff MZM, and Aris MS (2025) "Automated rat bait applicator," in AIP Conference Proceedings.
2. Kurniyanto IR, Gultom DRL, and Wusto MB (2024) "Does the negotiation process on nickel export between Indonesia and the European Union provide benefits? BIO Web of Conferences.
3. Qamari IN, Udin U, Zulfajarisa Z, and Wahyuningsih RSH (2025) How Authentic Leadership Promotes Organizational Citizenship Behavior: Mediating Role of Job-Related Motivation through the Lens of Self-Determination Theory. *Asian J Interdiscip Res* 8(3): 41-52.
4. Kumar D, Vasudevan H (2024) The mediating effect of job satisfaction in the relationship between wages, appreciation, recognition, and promotion on employee performance. *Int J Hum Cap Urban Manag* 9(4): 697-714.
5. Chrisendo D, Siregar H, and Qaim M (2021) Oil palm and structural transformation of agriculture in Indonesia. *Agric Econ* 52(5): 849-862.
6. Lusiana B, Slingerland M, Miccolis A, Khasanah NM, Leimona B, et al. (2023) Oil palm production, instrumental and relational values: the public relations battle for hearts, heads, and hands along the value chain. *Curr Opin Environ Sustain* 64: 101321.
7. A Rifa'i (2025) Economy-wide impacts of palm oil downstream in North Sumatra: A CGE approach. *World Dev Perspect* 39.
8. Yusuf FR, Suprihatin S, and Indrasti NS (2025) Improving the environmental performance of palm oil industry through the utilization of empty oil palm bunches as organic fertilizer and biochar for soil amendment. *Environ Challenges* 20: 101185.
9. Agus HN and Pravitasari AE (2025) Development strategy for smallholder oil palm and coconut plantation in Pesisir Selatan Regency. *J Saudi Soc Agric Sci* 24(5).
10. Parveez GKA, Soon-Sen Leow, Nur Nadia Kamil, Ahmad Zairun Madiah, Maizura Ithnin, et al. (2024) Oil palm economic performance in malaysian and r&d progress in 2023. *J Oil Palm Res* 36(2): 171-186.
11. ABD Nandiyyanto, Soegoto ES, Maulana SA, Setiawan AWF, Almay, et al. (2022) Techno-economic Evaluation of Biodiesel Production from Edible Oil Waste via Supercritical Methyl Acetate Transesterification. *Niger J Technol Dev* 19(4): 332-341.
12. Zulkhoiria MA, Hasimah Ali, Ahmad Firdaus Ahmad Zaidi, Siti Nurul Aqmariah Mohd Kanafiah, Yessi Jusman, et al. (2024) Investigation of oil palm fruit bunch ripeness classification using machine learning classifiers. *E3S Web of Conferences*.
13. Nanda MA, Amaru K, Rosalinda S, Novianty I, and Park T (2025) Multi-parameter prediction of oil palm fruit quality through near infrared spectroscopy combined with chemometric analysis. *Spectrochim Acta - Part A Mol Biomol Spectrosc* 343.
14. Kadarusman YB and Pramudya EP (2019) The effects of India and China on the sustainability of palm oil production in Indonesia: Towards a better understanding of the dynamics of regional sustainability governance. *Sustain Dev* 27(5): 898-909.
15. Purnomo H, Okarda B, Juniyanti L, Kusumadewi SD, Puspitaloka D, et al. (2025) Advancing palm oil sustainability to address the climate crisis: Leveraging theory of change and system dynamics model at the jurisdictional level. *For Policy Econ* 181.
16. Rosbi M, Omar Z, Khairuddin U, Majeed APPA, and Bakar SAR SA (2024) Machine learning for automated oil palm fruit grading: The role of fuzzy C-means segmentation and textural features. *Smart Agric Technol* 9.
17. Ngan SL, Promentille MAB, Yatim P, Lam HL, and Er AC (2018) Developing sustainability index for Malaysian palm oil industry with fuzzy analytic network process. *Chem Eng Trans* 70: 229-234.
18. Farid MAA, Hassan MA, Othman MR, Shirai Y, and Ariffin H (2019) Chapter 10 - Sustainability of Oil Palm Biomass-Based Products. In: Ariffin H, Sapuan SM, and Hassan MA, (Eds.), *Lignocellulose for Future Bioeconomy*, Elsevier, pp. 207-242.
19. Fukuda S (2020) Agricultural and Municipal Waste Management in Thailand. In *An Introduction to Circular Economy* pp. 303-324.
20. D'Almeida AP, de Albuquerque TL (2025) Coconut husk valorization: innovations in bioproducts and environmental sustainability. *Biomass Convers. Biorefinery* 15(9): 13015-13035.
21. Hassan NNFAM, Ismail MK, Hamid AAHA, Yusoff MZM, and Ariz MS (2025) Autonomous loose fruit robot for oil palm plantation. *AIP Conference Proceedings*.
22. Isa NM, Sivapathy A, and Kamarruddin NNA (2021) Malaysia on the Way to Sustainable Development: Circular Economy and Green Technologies. *Modeling Economic Growth in Contemporary Malaysia* pp. 91-115.
23. Osabohien R and Al-Faryan MAS (2025) Youth in agriculture and food security in Nigeria. *Int J Soc Econ* 52(4): 501-514.
24. Meeks RC, Thompson H, and Wang Z (2025) Decentralized renewable energy to grow manufacturing? Evidence from microhydro mini-grids in Nepal. *J Environ Econ Manage* 130: 103092.
25. Manganda AS, Sehnem S, and Lara AC (2024) Transition to the Circular Economy: Innovative and Disruptive Production Technologies Adopted by Agribusiness Startups. *Environ Qual Manag* 34(1).
26. Mohd Yusof SJH, Zakaria MR, Muhammin Roslan A, Mohd Ali AA, Shirai Y, et al. (2019) Chapter 12 - Oil Palm Biomass Biorefinery for Future Bioeconomy. In: Ariffin H, Sapuan SM, and Hassan MA, (Eds.), *Malaysia, in Lignocellulose for Future Bioeconomy*, Elsevier, pp. 265-285.
27. Wicaksono RA, Kurniawan E, Andrew Z, and Cadavi MT (2023) Study of accuracy and precision in extrusion process of 3D printer filament employing oil palm empty fruit bunches particles reinforced polypropylene and high-density polyethylene biocomposite. *AIP Conference Proceedings*.
28. Liu Y, Xiaohong Hu, Feng Wu, Bin Chen, Yawen Liu, et al. (2019) Quantitative analysis of climate change impact on Zhangye City's economy based on the perspective of surface runoff. *Ecol Indic* 105: 645-654.
29. Ingram V, van den Berg J, van Oorschot M, Arends E, and Judge L (2018) Governance Options to Enhance Ecosystem Services in Cocoa, Soy, Tropical Timber and Palm Oil Value Chains. *Environ Manage* 62(1): 128-142.
30. Terry C, Padfield R, and Dales A (2025) Innovation for Sustainable Development: Assessing Sustainability-Oriented Innovations in the UK Palm Oil Supply Chains. *Sustain Dev*.
31. Nowak A, Kobiałka A, and Krukowski A (2021) Significance of agriculture for bioeconomy in the member states of the European Union. *Sustain* 13(16).
32. Marije Schaafsma, Ilda Dreoni, Lacour Mody Ayompe, Benis Egoh, Dewa Putu Ekyana, et al. (2023) A framework to understand the social impacts of agricultural trade. *Sustain Dev* 31(1): 138-150.
33. Ruggeri M, Zaki MG, and Vinci G (2024) Towards social life cycle assessment of food delivery: findings from the Italian case study. *Int J Life Cycle Assess* 29(6): 1116-1136.
34. Effa K, Daniel Muleta Fana, Mandrefro Nigussie, Diriba Geleti, Nigusie Abebe, et al. (2025) The irrigated wheat initiative of Ethiopia: a new paradigm emulating Asia's green revolution in Africa. *Environ Dev Sustain* 27(1): 2161-2186.

35. Ogahara Z, Jespersen K, Theilade I, and Nielsen MR (2022) Review of smallholder palm oil sustainability reveals limited positive impacts and identifies key implementation and knowledge gaps. *Land use policy* 120: 106258.

36. Hambloch C (2022) Contract farming and everyday acts of resistance: Oil palm contract farmers in the Philippines. *J Agrar Chang* 22(1): 58-76.

37. Djomo Choumbou Raoul Fani, Ukpe Udeme Henrietta, Emmanuel Njock Oben, Donald Denen Dzever, Onyeje Hephzibah Obekpa, et al. (2021) Assessing the performance and participation among young male and female entrepreneurs in agribusiness: A case study of the rice and maize subsectors in Cameroon. *Sustain* 13(5): 1-19.

38. Meixner O, Hackl S, and Haas R (2023) Assessing the Sustainability of Palm Oil by Expert Interviews—An Application of the Analytic Hierarchy Process. *Sustain* 15(24).

39. CCoral, Robert Carcamo, Franziska Ollendorf, Bonna Antoinette Tokou, Constant Yves Adou Yao, et al. (2024) Elongating the causes of social vulnerability: Historical analysis of social sustainability dimensions in the Ivorian cocoa sector. *World Dev* 183: 106727.

40. Saiki GM, Serrano ALM, Rodrigues GAP, Rosano-Peña C, Pompermayer FM, et al. (2024) An Analysis of the Eco-Efficiency of the Agricultural Industry in the Brazilian Amazon Biome. *Sustain* 16(13).

41. Puder J and Tittor A (2023) Bioeconomy as a promise of development? The cases of Argentina and Malaysia. *Sustain Sci* 18(2): 617-631.

42. Abogunrin-Olafisoye OB, Adeyi O, Adeyi AJ, and Oke EO (2024) Sustainable utilization of oil palm residues and waste in Nigeria: practices, prospects, and environmental considerations. *Waste Manag Bull* 2(1): 214-228.

43. Syaukat Y, Hartoyo S, and Kusnadi N (2024) Sustainability of Integrated Oil Palm Smallholders with Cattle in Riau Province. AIP Conference Proceedings 2024.

44. Brandão F and Schoneveld G (2021) Oil Palm Contract Farming in Brazil: Labour Constraints and Inclusivity Challenges. *J Dev Stud* 57(8): 1428-1442.

45. Gheewala SH, Jaroenkitkajorn U, Nilsalab P, Silalertruksa T, Somkerd T, et al. (2022) Sustainability assessment of palm oil-based refinery systems for food, fuel, and chemicals. *Biofuel Res J* 9(4): 1750-1763.

46. Okarda B, Purnomo H, Juniyanti L, and Kusumadewi SD (2024) Indonesian palm oil towards sustainability: A system dynamic approach. IOP Conference Series: Earth and Environmental Science.

47. Montefrio MJF and Dressler WH (2019) Declining Food Security in a Philippine Oil Palm Frontier: The Changing Role of Cooperatives. *Dev Change* 50(5): 1342-1372.

48. Célia C and Marie-Benoît M (2023) Knowledge and network resources in innovation system: How production contracts support strategic system building. *Environ Innov Soc Transitions* 47.

49. Schaafsma M, Ilda Dreoni, Lacour Mody Ayompe, Benis Egoh, Dewa Putu Ekayana, et al. (2023) Mapping social impacts of agricultural commodity trade onto the sustainable development goals. *Sustain Dev* 31(4): 2363-2385.

50. Adikaibe PC, Ekowati T, and Kusmiyati F (2024) Sustainable Economic Analysis of Oil Palm Value Chain in Imo State Nigeria: Opportunities and Challenges. IOP Conference Series: Earth and Environmental Science.

51. Mourao P, Kubo E, Santos I, and Mazucato V (2020) Economic development and changes in human resource management in a sustainable agricultural sector: Recent evidence from Brazilian sugar-alcohol companies. *Sustain* 12 (18)

52. Sibhatu KT (2023) Oil palm boom: Its socioeconomic use and abuse. *Front Sustain Food Syst* 7: 1083022.

53. Saputra E, Reinhart H, Khairina NG, Nurhikmah I, Syakbana ZP, et al. (2024) Regional Analysis for Sustainable Economic Development: A Case Study of Sukamara Regency, Kalimantan Tengah, Indonesia. IOP Conference Series: Earth and Environmental Science.

54. Parveez GKA, Nur Nadia Kamil, Norliyana Zin Zawawi, Meilina Ong-Abdullah, Rahmahwati Rasuddin, et al. (2022) Oil palm economic performance in Malaysia and R&D progress in 2021. *J Oil Palm Res* 34(2): 185-218.

55. Alonso-Fradejas A (2021) Leaving no one unscathed' in sustainability transitions: The life purging agro-extractivism of corporate renewables. *J Rural Stud* 81: 127-138.

56. Purnomo H, Beni Okarda, Ahmad Dermawan, Qori Pebrial Ilham, Pablo Pacheco, et al. (2020) Reconciling oil palm economic development and environmental conservation in Indonesia: A value chain dynamic approach. *For Policy Econ* 111: 102089.

57. Choi SW and Shin YJ (2023) Role of Smart Farm as a Tool for Sustainable Economic Growth of Korean Agriculture: Using Input-Output Analysis. *Sustain* 15(4).

58. Nurhasanah N, Natilla Adlina G, Ibnah Mudrikah I, Chirzun A, and Kumala Sriwana (2024) Effectiveness of Value-Added Input-Output Method in Upstream and Midstream Supply Chain Network of Sunflower Agro-industry. IOP Conference Series: Earth and Environmental Science.

59. CM Araújo, Rodrigo Duarte Soliani, Dion Alves de Oliveira, Francisco Bezerra de Lima Júnior, Simone de Freitas Ferreira Alves, et al. (2024) Sustainable Transportation In The Brazilian Agroindustrial Supply Chain: A Literature Review. *Rev Gest Soc e Ambient* 18(5).

60. Mahdi WMIW and Yusoff WFW (2023) Exploring Motivations, Benefits, and Challenges Adopting Inclusive Business Model: Insights from a Case Study of Palm Oil Industry in Johor. *Int J Sustain Constr Eng Technol* 14(3): 254-267.

61. Rowan NJ and Galanakis CM (2020) Unlocking challenges and opportunities presented by COVID-19 pandemic for cross-cutting disruption in agri-food and green deal innovations: Quo Vadis?. *Sci Total Environ* 748: 141362.

62. Siong CZ, Ibrahim MF, Huddin AB, Zaman MHM, and Hashim FH (2021) A Combinatorial RGB and Depth Images CNN-based Model for Oil Palm Fruit Bunch Detection and Heatmap Localisation for a Visual SLAM System. *J Kejuruter* 33(4): 1113-1121.

63. Shi P, Htwe YM, Zhang D, Li Z, Yu Q, et al. (2025) Hormonal and Transcriptomic Insights into Inflorescence Stalk Elongation in Oil Palm. *Plants* 14(11).

64. Budiadi Susanti A, Marhaento H, Ali Imron M, Permadi DB, and Hermudananto (2019) Oil palm agroforestry: an alternative to enhance farmers' livelihood resilience. IOP Conference Series: Earth and Environmental Science, IOP Publishing, pp. 12001.

65. Narendran R, Vinesh T, Umar S, Krishna R, Brandon THY, et al. (2024) Loose fruit picker for autonomous loose fruit collector. AIP Conference Proceedings.

66. Rosbi M and Omar Z (2025) Segmentation of Outdoor Oil Palm Fruit Images for Ripeness Detection using YOLO Algorithm and Features Thresholding. AIP Conference Proceedings.

67. Ahmed Mansour MYM, Dambul KD, and Yeep CK (2023) A Review Of Non-Destructive Ripeness Classification Techniques For Oil Palm Fresh Fruit Bunches. *J Oil Palm Res* 35(4): 543-554.

68. Alozie EN and Isiwu EC (2020) Enhancing entrepreneurial activities of women in rural areas of anambra state: Implications for home economics education. *J Home Econ Res* 27(2): 77-87.

69. Andoh PY, Amobeng KO, Sekyere CKK, and Dzebre DEK (2022) Performance Analysis of A Mechanical System to Break and Separate Palm Nut-Fibre Cake. *J Appl Eng Technol Sci* 4(1): 24-31.

70. Majesty KI, Purnamasari BD, Mizuno K, Sutardi T, and Ekawati KN (2024) Palm Oil Waste Management with Local Wisdom as an Approach to Achieve Sustainable Development in Independent Smallholder Palm Plantations. *Evergreen* 11(4): 3484-3496.

71. Rosbi M, Omar Z, and Hanafi M (2025) A Picture Of Ripeness: Investigating Image-Based Techniques For Oil Palm Fruit Grading. *J Oil Palm Res* 37(1): 1-15.

72. Hussin NI, Othman Z, Hed NM, and Azmi NM (2025) Can Malaysia Move to Tier 1? Analysing the Current Trends and Case Studies of Human Trafficking. *J Ilmu Sos dan Ilmu Polit* 28(3): 297-314.

73. Van Der Meer PJ, Tata H, Rachmanadi D, Arifin YF, Suwarno A, et al. (2021) Developing sustainable and profitable solutions for peatland restoration. *IOP Conference Series: Earth and Environmental Science*.

74. Hasudungan A and Neilson J (2020) The institutional environment of the palm oil value chain and its impact on community development in Kapuas Hulu, Indonesia. *Southeast Asian Stud* 9(3): 439-465.

75. Joseph GH, Kindangen JG, Paat PC, and Taulaby D (2022) Opportunities for the Development of The Oleochemical Industry of Coconut Products. *E3S Web of Conferences*.

76. Manhães AP, Flávia Rocha, Tatiana Souza, Karoline Marques, Leandro Juen, et al. (2024) Social and biological impact of oil palm (*Elaeis guineensis*) plantations in the Eastern Brazilian Amazon. *Biodivers Conserv* 33(11): 3295-3310.

77. Amoah SK (2025) Labour Casualisation and Employment Precariousness in Ghana's Oil Palm Processing Sector. *J Labor Soc* 28(3): 356-393.

78. Zapata AS, Siachoque MSL (2025) Unpaid Women's Labour driving Value Chain Disintegration in the Colombian Palm Oil Industry. *J fur Entwicklungspolitik* 41(1): 24-49.

79. Muhammad AS, Faqih MA, and Gunawan AAS (2025) Bagworm Pest Detection in Oil Palm Plantations using Deep Learning Based on Aerial Imagery Dataset. In *ICoCSETI 2025 - International Conference on Computer Sciences, Engineering, and Technology Innovation*, Proceeding, pp. 558-563.

80. Ianda TF, de Araújo Kalid R, Rocha LB, Pessoa FLP, Medeiros DL, et al. (2023) Sustainability Multidimensional Optimization of Multiproduct Biorefineries: The Case Study in a Sub-Saharan African Country. *Ind Eng Chem Res* 62(43): 17871-17882.

81. Viera-Torres M, Sinde-González I, Gil-Docampo M, Bravo-Yandún V, and Toulkeridis T (2020) Generating the baseline in the early detection of bud rot and red ring disease in oil palms by geospatial technologies. *Remote Sens* 12(19): 1-21.

This work is licensed under Creative Commons Attribution 4.0 License
 DOI: [10.19080/ASM.2026.12.555844](https://doi.org/10.19080/ASM.2026.12.555844)

**Your next submission with Juniper Publishers
 will reach you the below assets**

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats
- **(Pdf, E-pub, Full Text, Audio)**
- Unceasing customer service

Track the below URL for one-step submission

<https://juniperpublishers.com/online-submission.php>