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Introduction

The diffusion of artificial intelligence (AI) across sectors 
requires a reassessment of how productivity is measured and 
decomposed. This letter illustrates how economists, social 
scientists and management studies might address this issue in 
respect of productivity decomposition techniques. Traditional 
frameworks do not account for the heterogeneous, intangible, 
and non-linear effects associated with AI adoption. AI alters 
production through labour substitution and complementarity 
with organizational capital. Its impact therefore varies across 
firms. Established decomposition techniques were not designed 
for these dynamics and risk not capturing all the productivity 
gains AI delivers.

AI technologies substitute for both routine and cognitive labor. 
This can be in non-linear and task specific ways. We suggest that 
this violates the assumption of smooth substitution as presented 
in classical production functions. AI also induces heterogeneous 
firm responses. We suggest these increase the dispersion of 
productivity. Meanwhile, productivity focused firms are more 
likely to integrate AI effectively. In theory, this would expand their  

 
market share at the expense of laggards. This dynamic intensifies 
reallocation of resources, thereby representing another key driver 
of productivity growth that is not captured in decomposition 
models.

Decomposition techniques break down the effects of firm 
level dynamics. As such, we think they are a valuable way to 
access AI’s roll put. They do so by decomposing productivity into 
within firm and entry and exit effects within markets. Our letter 
therefore contributes to ongoing methodological re-evaluation 
by comparing four leading decomposition approaches. We assess 
their capacity to capture within-firm improvements, reallocation 
effects, and entry-exit dynamics. Each method offers corrections 
to limitations in earlier models, such as reference bias and omitted 
covariance terms.

In the context of AI diffusion, measurement matters. 
Productivity gains may arise not only from innovation, but from 
structural shifts in market composition. Methodology should 
provide a more accurate lens through which to observe these 
changes, and should guide empirical work in this area.
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Abstract  

This letter reconsiders firm-level productivity decomposition in light of structural changes induced by artificial intelligence (AI). Standard 
frameworks, such as the Griliches-Regev and Foster-Haltiwanger-Krizan decompositions, are ill-suited to capture the heterogeneity, intangible 
complementarities, and reallocation dynamics introduced by AI adoption. We propose an extension to the standard production function that 
explicitly incorporates AI-specific capital, absorptive capacity, and intangible assets. This allows for a reinterpretation of within-firm and 
between-firm productivity effects under conditions of technological diffusion. The paper provides a conceptual basis for adapting decomposition 
techniques and highlights the measurement implications for applied researchers and statistical agencies.
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Productivity Decomposition Techniques

We contend that existing empirical and theoretical frameworks 
require recalibration to account for how AI is reshaping production 
processes. As AI technologies diffuse through the economy, the 
assumption of homogeneous productivity responses embedded 
in representative decomposition models becomes increasingly 
untenable. We argue that this heterogeneity, coupled with the 
growing role of intangible complementarities and dynamic 
reallocation, necessitates a reconsideration of techniques.

We base our suggestion on the observation that AI alters the 
production process by both substituting for and complementing 
human capital across a range of tasks. It changes the marginal 
productivity of inputs and the efficiency of input-output 
transformation, thereby modifying the structure of the production 
function itself.

At the firm level, AI automates routine and cognitive tasks 
such as document classification and customer service. This shifts 
the role of labor and challenges the fixed substitution assumptions 
of the Cobb-Douglas framework Douglas [1]. For instance, the use 

of large language models (LLMs) in financial analysis increases 
analytical throughput. A logical approach would be to consider an 
extension to incorporate AI as a distinct input into the production 
function. We show how this can be done in equation 6, having 
explained the various effects in more detail.

Y A K L Mα β γ= ⋅ ⋅ ⋅

Table 1 serves to synthesize the principal decomposition 
techniques employed in the analysis of productivity dynamics. 
Its inclusion provides a methodological benchmark that clarifies 
the conceptual and empirical tradeoffs across approaches. 
In particular, it situates the four methods evaluated within 
a wider body of literature concerned with measuring firm-
level contributions to aggregate productivity. The relevance 
to our analysis lies in the ability of these techniques to address 
heterogeneous firm responses, selection dynamics, and the role of 
reallocation under conditions shaped by technological diffusion. 
As argued throughout, the emergence of AI intensifies the need 
for decomposition methods to be updated, so that they can isolate 
within-firm AI productivity gains from re-allocation and entry-exit 
effects.

Table 1: Comparison of Productivity Decomposition Techniques.

Technique Main Contribution Strengths Weaknesses

Foster et al. [14]
Introduces covariance 
term and uses time-t− 

k reference

Greater transparency, improves 
consistency

Sensitive to reference 
period, prone to measurement 

error

Diewert and Fox 
[21]

Corrects reference bias 
for entry/exit

Technically precise, conceptually 
robust

Requires accurate 
surviving firm benchmarks

Melitz and Polanec 
[26]

Models distributional 
properties via mean 

and covariance

Embeds heterogeneity and 
selection effects

Unweighted means can 
overweight small firms

Olley and Pakes 
[27]

Captures allocative efficiency 
via covariance

Widely used for static misallocation 
analysis

Not a full decomposition, 
no entry/exit

Baily et al. [10] Early entry/exit inclusion Precursor to GR, straightforward
Ignores relative productivity 

benchmarks, 
biased

Baqaee and Farhi 
[13]

Incorporates input output 
linkages

Suits macro models, GE 
consistent

Needs full input output 
data, not 

firm-specific

Hsieh and Klenow 
[36]

Measures TFP losses 
from misallocation

Strong theoretical base, 
policy relevance

Structural assumptions, 
not a decomposition 

per se

Traditional productivity metrics, often grounded in 
representative agent frameworks, have long been critiqued for 
their inability to account for heterogeneity across firms and 

sectors. In this respect, we are merely extending the critique to 
encompass AI productivity gains. An early but theoretical debate 
on the deficiency of representative agent models to properly 

1See for example Jovanovic [5] and Griliches and Mairesse [6].
2See Olley and Pakes [7] and Bartelsman and Dhrymes [8].
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capture aggregate productivity dynamics already started in the 
early 1970s, with the works of Griliches and Ringstad [2], Nelson 
and Winter [3], and Griliches [4].

According to these authors, it was the variability within the 
population of firms that drove changes in TFP.

The following techniques are past and present attempts to 
empirically cement this argument, giving validity to early structural 
models of financial allocation and the micro-level behavior of 
firms1. The rise of AI intensifies the need to distinguish between 
different sources of productivity. AI technologies are not adopted 
uniformly. Their effects depend on firm size, absorptive capacity, 
sectoral structure, and complementary intangibles. As such, we 
suggest that the aggregate impact of AI cannot be adequately 
captured by representative agent models. A disaggregated 
approach is therefore required to understand whether AI 
productivity gains originate from within-firm improvements, 
reallocation of market share towards more innovative firms that 
adopt AI, or the process of firm entry and exit.

In response, productivity decomposition techniques have 
been developed that partition aggregate TFP growth into distinct 
components. First, the within effect which captures productivity 
growth within surviving firms. Second, the between or reallocation 
effect that empirically measures how market shares are reallocated 
between surviving firms with different productivity levels. And 
lastly, net entry which captures the effect of entering and exiting 
firms within an industry. In the context of AI, there will likely 
be a clear differentiation between the winners and losers due 
to the reallocation effect. Fundamentally, the models start from 
the assumption that industry-level productivity is the weighted 
average of firm-level productivity, see equation (1):

,
.     (1),

n

i tt
i

P pi tθ∑=

Where 
t

P is log of industry-level productivity, ,i tθ is the firm-

industry share for firm i  and sums up to , ,1, i tp

is log of firm-level productivity, and n  is the total number 
of firms within the industry2. All decomposition techniques can 
be seen as empirical refinements or conceptual expansions of 
this equation, Griliches and Regev [9] To analyze productivity 
dynamics within the Israeli mining and manufacturing sector 

between 1979 and 1988, Griliches and Regev created the following 
decomposition method:

( ) ( ) ( ), , , , , , .          (2)t i i t i t i i t i t i t k i t k
i s i s i N i X

P p p P p P i p Pθ θ θ θ − −
∈ ∈ ∈ ∈

∆ = ∆ + ∆ − + − − −∑ ∑ ∑ ∑

Equation (2) decomposes the growth rate of industry 

productivity into four different factors; first, 
,

,ii S
i t

pθ∈ ∆∑ which 

is the within effect. Second, ( ), ,i S i t ip Pθ∈ ∆ −∑ which is the 

reallocation/between effect. Third, ( ), ,
,i N i t i t

Ppθ∈ −∑ which is the 

entry effect. And, lastly, the exit effect ( ), ,
.i X i t k i t k

Ppθ∈ − −
−∑  The 

letter S  signifies surviving firms, or the firms that are present 

in 1t − and ,t N are the entering firms, or the firms that enter in 

,t and X  are the exiting firms, or the firms that exit in 1t − and 

are therefore not present in .t A bar over the variable signifies the 

time average over the base year and the end year, that is, P is the 

reference productivity level computed as 1 2 .2
P P+

The development of such a decomposition technique was 
unprecedented by that time and therefore allowed researchers 
to see which margin would drive an expansion or contraction of 
industry productivity. One big development was that the between 
and net entry effects are deviations from their respective industry 

averages at time t  and t k− instead of absolute ending-level 
plant-level productivity endowments3.

Barwick et al. [11] use the Griliches and Regev method to 
analyze entry deregulation, market turnover, and efficiency 
during China’s business registration reform, starting locally but 
later being covered by the entire country. Their analysis shows 
that the reform increased firm entry by 25% and firm exit by 
8.7% in the manufacturing sector. Studying the relationship 
between environmental regulations and export upgrading from 
the perspective of the domestic value-added rate of exports, Sun 
et al. [12] observe an increase in domestic productivity in cleaner 
export production for the years between 2000 and 2011. Lastly, to 
measure the effects of distortions such as taxes, markups, frictions 
to resource reallocation, financial frictions, and nominal rigidities 
on an economy, Baqaee and Farhi [13] us the Griliches and Regev 
method to find that microeconomic shocks could reduce nation-
wide TFP by almost 15%.

3This was a significant development of earlier attempts to measure industry-level productivity dynamics, like in Baily et al. [10]. In the latter, a 
bias in the between and net entry effect arises if the market share of exiting firms is bigger than that of entering firms, regardless of any productivity 
differences. That is, if exiting firms have the same productivity endowment than entering firms, but higher market share, the net entry effect 
becomes negative even though the productivity distribution does not change.
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Foster, Haltiwanger, and Krizan [14] To analyze micro-level 
patterns and their relationship to aggregate TFP in the US from 
1972 to 1992, Foster et al. developed another decomposition 
technique a few years later.

( ) ( ) ( ), , , , , , , , , , .        (3)pt i t k i t i t i t k t k i t i t i t i t t k i t k i t k t k
i S i S i S i N i X

P p P p p P p Pθ θ θ θ θ− − − − − − −
∈ ∈ ∈ ∈ ∈

∆ = ∆ + ∆ − + ∆ ∆ + − − −∑ ∑ ∑ ∑ ∑

Where t kP− is the industry average at time t k− .

The Foster et al. decomposition, equation (3), shares the same 
components as the one developed by Griliches and Regev. That is, a 
within, between, and net entry effect. However, it has an additional 

covariance term, 
, , ,i t i ti S

pθ
∈
∆ ∆∑ measuring the cross effects of 

changes in market shares and changes in productivity levels. The 
authors argue that decomposing industry-level productivity in this 
way is important to make the interpretation more transparent and 
consistent. They show that the Griliches and Regev decomposition 
contains the covariance effect partly in its within and partly in 
its between effect, rendering results problematic at best, and 
inconsistent at worst4,5. A technical difference of this method is 
that instead of averaging out output shares and productivity levels 
over the beginning and end periods, industry average productivity 

levels at time t k− to compare current productivity dynamics are 
used.

Analyzing the impact of Covid-19 on productivity, Bloom et al. 

[18] use the Foster et al. decomposition  technique in conjunction 
with data from an innovative monthly firm survey that asks for 
quantitative impacts of Covid-19 on inputs and outputs. They 
find that US TFP fell by up to 6% during 2020–2021. Liu [19] 
studies the adoption of the Uniform Trade Secrets Act (UTSA). 
Finding a 5.1% increase in employment among affected public 
firms, he argues that effects are concentrated in firms with 
below-median initial employment, higher debt costs, and greater 
potential for knowledge spillovers. R&D expenditures and the 
accumulation of intangible assets emerge as key drivers of these 
employment effects. Lastly, analyzing employer market power in 
US manufacturing and how it has changed from the 1970s to early 
2000s, Yeh et al. [20] use the Foster et al. decomposition and find 
that most manufacturing plants that operate in a monopsonistic 
environment experience an average markdown of 1.53, implying 
a worker earning only 65 cents on the marginal dollar generated.

Diewert and Fox [21] A critical development in decomposing 
industry-level productivity into its components was the technique 
introduced by Diewert and Fox [21]. Their methodology was built 
to eliminate the bias caused by incorrect reference levels used by 
both, FHK and GR, when calculating the effect of entry and exit 
on industry-level productivity growth. This bias arises because 
the reference level with which entering and exiting firms are 
compared is not the actual productivity level of surviving firms at 
the time of exit or entry. Table 2 shows their differences.

Table 2: Entry and Exit bias.

Firms FHK 	 GR

Entry ( ), ,i t i t t kp Pi N θ −−∑ ∈ ( ), ,i t i t Ppi N θ −∑ ∈

Exit ( ), ,i t k i t k t k
p Pi X θ − − −

−∑ ∈ ( ), ,i t k i t k Ppi X θ − − −∑ ∈

As Table 2 illustrates, for GR and FHK, the benchmark against which entering and exiting firms are compared is respectively the 

same. This means that firms that enter and firms that exit are 
compared with firms that have not changed in their productivity 

levels from time t k− to time t  (FHK), or have changed between 
both time periods but are averaged out (GR)6. This, however, is 
inaccurate. Between both periods, productivity growth evolves 
and therefore entering firms need to be compared to surviving 
firms at the time of entry and exiting firms must be compared to 
surviving firms at the time of exit. Disregarding this will introduce 
a bias that overestimates the net entry effect if industry-wide TFP 

is increasing, and underestimates net entry if industry-wide TFP 
is decreasing. To account for this major shortcoming, Diewert and 
Fox develop the following decomposition technique, equation (4):

( ) ( ) ( ), , , , , , , , , , .        (4)p SS it i t S i t i t i t S t i t k i t k S t ki
i S i S i N i X

P p P p P p Pθ θ θ θ − − −
∈ ∈ ∈ ∈

∆ = ∆ + ∆ − + − − −∑ ∑ ∑ ∑

Compared to before, the first term is the within and the 
second the reallocation effect. The third and fourth terms are the 

4See Disney et al. [15] for a more thorough and empirical discussion.
5For the empirical analysis in section 4, we follow common practice and add the covariance term to the between effect, see Fukao and Kwon 

[16] and Riley et al. [17].
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mechanically updated entry and exit effects, respectively. With 
the help of the last two terms, Diewert and Fox solve the issue of 
incorrect reference levels by comparing entry in time t and exit at 

time t k− with the productivity level of surviving firms in the same 
time period. The rational behind this is that only entering (exiting) 
firms that have a higher (lower) than surviving firms productivity 
will increase industry-level productivity growth. This eliminates 
the bias of the aforementioned decomposition techniques and is 
therefore technically as well as conceptually preferable7.

To measure productivity outcomes of Finland’s ICT industry, 
Kuosmanen and Kuosmanen [22] use the Diewert and Fox 
decomposition to investigate whether productivity growth is 
driven within or between industries. We note that finlands ICT 
industry is an early adopted or AI. For the recent two decades, 
the authors find that the sharp decline of labor productivity 
was associated with structural changes, whereas the surviving 
firms that continued in the same industry managed to improve 
their productivity. Focusing on the Global Financial Crisis in the 
UK, Gerth et al. [23] discover that the main factor driving the 
aggregate TFP decline is the within effects. However, the entry and 
exit effects also significantly contribute to the long-lasting drop in 
aggregate TFP. First, exiting firms tend to have higher than average 
TFP. Second, newly entering firms tend to have lower than average 
TFP. And third, newly entering firms fail to increase their TFP 
levels over time, thereby depressing the within effect. Also using 
the Diewert and Fox decomposition, Cunningham et al. [24] study 
the nature of competition and frictions within different sectors 
in the economy, focusing on the sources of rising wage inequality 
across businesses. They conclude that productivity dispersion 
across businesses can provide information about these potential 
shortfalls in efficient allocation. Lastly, for the US between 1996 
and 2012, Alon et al. [25] find that declining firm entry and 
the aging incumbent firms have meaningful implications for 
sluggish labour aggregate productivity growth. They discover 
that the relationship between firm age and productivity growth is 
downward sloping and convex, the magnitudes are substantial but 
fade quickly, and selection and reallocation predominantly drive 
higher productivity growth of young firms.

Melitz and Polanec [26] Melitz and Polanec support Diewert 
and Fox’s argument about the importance of using the appropriate 
reference level. For the Slovenian economy, the authors find that 
the GR and FHK decompositions substantially overestimate 
net entry and consequently underestimate the contribution of 
surviving firms. Between 1995 and 2000, Melitz and Polanec 
estimate the magnitude of the measurement bias to be between 
7 and 10 percentage points of an aggregate productivity growth 
of 50%. We would suggest such measurement biases will only 
get biggeras AI rolls out and reallocation effects become more 
prevalent.

In addition to measuring net entry in a consistent manner, 
the MP decomposition models the first two moments of a joint 
probability distribution between firm-level productivity and 
market share, see equation (5): 

( ) ( ), , , , , ,,
1 .      (5), i t i t S t i t k i t k S t kt S t

i S i N i X
P p Cov p P p Pi tns

θ θ − − −
∈ ∈ ∈

= + − − −∆ ∆ + ∆∑ ∑ ∑

Where, unlike the other decomposition techniques, the first 
term represents the unweighted firm productivity mean and 
captures the shifts of the productivity distribution in terms of 
its measure of location8. The second term is the reallocation or 
covariance term between firm productivity and output shares and 
represents the second moment of P the joint productivity-market 

share distribution. In its full expression, ,S tCov is equal to

, , , ,
1 1 .S i t i t i ti S i S

p p
ns ns

θ∈ ∈

     − −        
∑ ∑

The two first terms not only represent the static Olley and 
Pakes [27] productivity decomposition, but also carry a very 
convenient feature; since they are based on two specific moments 
of a productivity density distribution, they can be more easily 
embedded into structural models of firm heterogeneity and 
resource misallocation and their effects on aggregate productivity 
dynamics9.

To estimate green TFP as a proxy for the green transformation 

6Averaging the productivity levels between t  and t k− possibly attenuates the bias but does not remove it.
7Another less obvious but still important advantage is that FHK is vulnerable to measurement error. That is, if output is measured with an error, 

the decomposition would find a mistakenly high correlation between p∆ and ,θ∆  therefore understating the covariance effect. Moreover, this would 
lead to an apparent high correlation between p∆  and , ,i t kθ − implying a low within-plant effect.

8An unweighted mean comes at a cost, however. A share-weighted mean leads to a more representative average productivity in the sense that 
it does not overemphasize the effect small firms have on the productivity distribution. Would the sample consist of many small firms, MP would skew 
the distribution towards the behavior of small firms. Not so with a share-weighted mean.

9Models of this classification are among others Hsieh and Klenow [28], Collard-Wexler and De Loecker [29], and Bartelsman et al. [30]. See the 
analysis by Gerth et al. [31] for an application of the Hsieh and Klenow model on the Global Financial Crisis experience of the UK.
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in China, Yu et al. [32] use a model that is based on the 
decomposition by Melitz and Polanec. These authors find that 
reforming counties into municipal districts, resource allocation 
is optimized. Especially, positive effects are more pronounced 
for district- and county-level enterprises, capital-intensive firms, 
and industries with high external financing dependency. Decker 
et al. [33] study the pace of job reallocation in the US for the last 
few decades. Observing a decline in the reallocation of resources 
between firms, the authors find that the responsiveness of 
business-level employment to productivity has weakened during 
the observation period. We observe that the AI roll out differs at a 
country level, and this could be the basis for future research.

The US is arguably leading in the roll out of AI. Using micro 
panel data from the US Economic Census since 1982, Autor et al. 
[34] assess the fall in the US labour share due to the entry and 
rise of high-productivity firms. They argue that if technological 
changes push sales toward the most productive firms in each 
industry, product market concentration will rise as industries 
become increasingly dominated by superstar firms, which have 
high markups and a low labor share of value added.

Conceptual Framework for AI-Augmented 
Productivity

The emergence of AI, and LLMs in particular, raises 
fundamental questions about how productivity gains are realized 
across an economy. Traditional productivity decomposition 

techniques, such as those described allow researchers to attribute 
aggregate TFP growth to firm-level dynamics including within-
firm improvements [35-37].

In this section, we propose a conceptual framework that links 
AI-related technological change to the channels of productivity 
growth identified in the literature. This framework synthesis 
empirical insights from decomposition techniques with theoretical 
arguments on firm heterogeneity and resource misallocation. 
Specifically, it distinguishes between within-firm effects, such 
as improvements in technical efficiency and the deployment 
of complementary intangibles (e.g. proprietary datasets or 
organizational know-how), and between-firm reallocation 
mechanisms, including market share shifts and the churn of less 
productive firms.

Figure 1 illustrates the conceptual framework explaining the 
structure of AI-augmented productivity. The diagram presents 
two principal channels through which AI adoption affects 
aggregate productivity: (1) within firm effects, where gains stem 
from internal improvements in processes and capabilities, and 
(2) reallocation effects, where the macro impact is driven by 
competitive dynamics and structural transformation in response 
to AI. These pathways map directly onto the analytical constructs 
used in productivity decomposition models and provide a 
theoretical basis for the empirical analysis that follows.

10We specify iφ  as a firm-specific absorptive capacity parameter that moderates the elasticity of output with respect to AI capital. This implies 
heterogeneity in the returns to AI across firms depending on their integration capabilities. Under strict constant returns to scale, the homogeneity 
condition becomes 1.iα β γ δφ+ + + = An alternative specification would be to embed iφ  in the efficiency term , ,i tF  thereby preserving the standard restric-
tion 1.α β γ δ+ + + =

Figure 1: Decomposition of AI-augmented productivity into within-firm and reallocation effects.
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Structural Interpretation of Decomposition Under AI

While Figure 1 outlines the conceptual channels through 
which AI influences productivity, we propose anextension to the 
standard production framework that explicitly captures these 
dynamics. In particular, we allow for heterogeneity in AI adoption, 
firm-specific absorptive capacity, and the role of complementary 
intangibles.

We modify the conventional Cobb-Douglas function to 
incorporate AI-specific inputs as follows:

where: ( ),

10

                (6), , , , , . . . .i

i ti t i t i t i t i tF A K L AI Iγφα β δ=

• 
,i t

F denotes output of firm i at time t ,

• ,i tA is firm-level TFP,

• ,i tK and ,i tL are physical capital and labor inputs, 
respectively,

• 
,i t

AI is the stock of AI-specific capital,

• [0,1]iφ ∈ denotes the firm’s absorptive capacity for AI 
(e.g., data infrastructure, integration),

• 
,i t

I captures intangible capital such as proprietary datasets 
or organizational routines,

• 1α β γ δ+ + + = under constant returns to scale.

This formulation allows the marginal effect of AI capital to 

be modulated by a firm’s organizational readiness ( )iφ and the 

presence of complementary intangible inputs ( ), .i tI  Both vary 
across firms and sectors, introducing non-uniform productivity 
responses.

This has direct implications for how we interpret productivity 
decomposition:

Within-firm effects. These now capture not only technical 

efficiency gains ( ), ,i tF∆ but also internal improvements from 

increased AI use ( ), ,i tAI enhanced absorptive capacity ( ) ,iφ and 

investment in intangibles ( ), .i tI For firms undergoing successful 
digital transformation, this term becomes the principal driver of 
productivity gains.

Reallocation effects. As AI leads to scale economies and 

diverging firm capabilities, market shares shift towards high
i
φ−

and 
,

high
i t

I− firms. The covariance between productivity and 
firm size increases, intensifying the between-firm reallocation 
term.

Net entry effects. Entry and exit dynamics evolve under 
AI diffusion. Entrants may have AI-native capabilities but 
underdeveloped intangibles; exiting firms may fail not due to 
low productivity per se, but due to an inability to integrate AI 
with legacy systems. These subtleties can be misrepresented 
unless decomposition benchmarks entry and exit against 
contemporaneous survivors.

By extending the production function and reinterpreting 
decomposition margins accordingly, we provide a structural 
foundation for aligning empirical measurement with the realities 
of the AI economy. These adjustments are not just theoretical 
refinements; they are prerequisites for any meaningful evaluation 
of how AI affects aggregate productivity.

Illustrative Implications or Measurement Implications

While this letter does not present new empirical estimates, it 
highlights the importance of selecting appropriate decomposition 
techniques when analyzing productivity dynamics in the context 
of AI diffusion. The implications of this choice are not merely 
technical. They shape how we interpret the mechanisms through 
which aggregate productivity evolves and, by extension, how 
policy and investment decisions are informed. The methodological 
revisions proposed in this letter carry direct implications for 
statistical agencies and productivity commissions.

To illustrate, consider an economy undergoing rapid adoption 
of AI technologies. If one were to use a Griliches-Regev framework, 
the net entry effect would be benchmarked against an average of 
productivity levels across two periods. In a setting where AI leads 
to accelerated divergence between frontier and laggard firms, such 
an averaging approach would obscure the true contribution of 
firm turnover. Similarly, if the Foster-Haltiwanger-Krizan method 
is used without adjustment for the covariance effect, the role of 
allocative efficiency may be overstated in periods when output is 
measured imprecisely or when intangible capital is unobserved.

More recent techniques, such as Diewert-Fox or Melitz-
Polanec, correct for these limitations. They offer empirically 
implementable refinements that are conceptually aligned with the 
characteristics of AI-led transformation: firm heterogeneity, entry-
exit churn, and the growing salience of intangible inputs. While 
implementation requires granular firm-level data, the conceptual 
underpinnings of these techniques are broadly applicable. Their 
adoption would lead to more credible productivity analysis and, 
crucially, prevent misguided conclusions about the sources and 

http://dx.doi.org/10.19080/ASM.2025.12.555831


How to cite this article:  Daniel B, Florian G. Artificial Intelligence and the Limits of the Measurement of Productivity. Ann Soc Sci Manage Stud. 2025; 
12(2): 555831. DOI:10.19080/ASM.2025.12.555831008

Annals of Social Sciences & Management Studies

sustainability of observed productivity trends. The objective here 
is not to adjudicate between techniques in a data-driven manner, 
but to underscore the methodological urgency for rethinking how 
we measure productivity in the face of technological discontinuity.

Conclusion

This letter calls for a revision of productivity measure 
techniques in light of the structural transformations associated 
with AI. Our purpose has not been empirical estimation, but rather 
to urge the economics profession to reconsider its approach in 
an era of accelerating technological change. The methodological 
tools already exist. However, their adoption remains uneven, and 
too often empirical work relies on legacy frameworks that obscure 
the very dynamics we seek to understand.

AI challenges conventional assumptions embedded in 
representative firm models and additive production functions. It 
introduces heterogeneity in adoption, complements intangible 
assets, and reshapes reallocation dynamics across sectors. 
Decomposition techniques that ignore these features risk 
misattributing the sources of productivity change, particularly 
during periods of disruption. Newer methods, such as those of 
Diewert-Fox and Melitz-Polanec, are better equipped to capture 
the structural and allocative forces at play, especially under 
conditions of firm turnover and intangible capital deepening.

We argue that economists must align measurement practices 
with the realities of the digital economy. This requires abandoning 
overly simplistic models in favour of approaches that reflect how 
AI diffuses, interacts with organizational structures, and alters the 
margins of adjustment. Doing so will not only improve the accuracy 
of productivity analysis, but also enable more informed policy 
responses. The time to recalibrate our empirical frameworks is 
now.
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