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Introduction 

Biomass size reduction is a significant step for biomass to 
bioenergy conversion, which can affect the economics of the whole 
bioprocessing process. Corn stover (Zea mays L.), switchgrass 
(Panicum virgatum L.), and big bluestem (Andropogon gerardii 
Vitman) are some of the potential biomass feedstocks with the 
most abundant cultivated fields in the US [1]. The size reduction 
of biomass feedstocks employing various grinding devices was 
used for the production of both liquids (e.g., cellulosic ethanol) 
and solid biofuels as well as densified products (e.g., pellets and 
briquettes). The particle size and particle size distribution (PSD) 
influence size reduction energy (SRE). It was observed that with 
the increase in particle size in grinding, the SRE decreased for 
wheat (Triticum aestivum L.) straw, corn stover, and rice (Oriza  

 
sativa L.) straw [2]. The mono-sugar yields have increased with 
the decrease in particle size because small particle sizes enhance 
enzymatic hydrolysis. The smaller particle size of the feedstocks 
benefits further processing stages for the production of liquid and 
solid fuels, as size reduction increases the newly formed reactive 
surfaces [3,4]. Smaller particle size achieved by size reduction was 
also beneficial to biomass densification for producing pellets [5-
10]. 

The process of size reduction consumes high energy [11], and 
is important to evaluate and reduce the energy involved in this pre-
processing operation. To increase the SRE efficiency, the specific 
SRE consumption for various feedstocks by different grinders 
and other devices has been widely investigated. The various 
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technologies applied to biomass size reduction have been reviewed 
[12]. Several researchers have studied the SRE consumption 
of various biomass feedstocks with different grinders. Some of 
these studies dealing with the grinding of biomass feedstocks 
and biomass pellets include: energy consumption by using a knife 
mill for poplar (Populus L.) and wood chips [13], switchgrass, 
wheat straw, and corn stover [14] and biomass pellets [15] and 
using hammer mill for alfalfa (Medicago sativa L.) [16] Miscanthus 
(Miscanthus giganteus), switchgrass, willow (Salix babylonica L.), 
energy cane (Saccharum spp. L.) [17], pine wood chips [18], and 
biomass pellets [19].

Size reduction theories, based on the semi-empirical equations, 
such as Kick, Rittinger, and Bond were available to estimate the 
SRE [20]. These models determine the SRE requirement using 
parameters that were a function of the known input and output 
particle sizes.) Most of SRE models developed were based on 
only the particle size as the independent variable [21]. Different 
types of SRE regression models including linear, exponential, and 
polynomial were developed successfully [5,18,22]. Second-order 
polynomial models were developed to describe the SRE using 
grinder speed (rpm) for switchgrass, wheat straw, and corn stover 
in a knife mill and hammer mill [14,23-25], and to evaluate several 
PSD parameters from the knife mill screen size for switchgrass 
ground in a knife mill. The specific SRE with respect to the ratio 
of the initial to the final size of the screen was found to fit well in a 
linear model [16]. Mathematical models for PSD in grinding based 
on the population balance method were developed [22,26].

When the material is ground based on a particular screen 
size opening, the ground particle produced will have an array 
of sizes and the screen size will serve as only a rough indication 
of the actual particle size. The size reduction process produces 
a clear distribution of particle sizes and the parameters that 
represent this distribution may serve as a good factor in modelling 
the specific SRE consumption. The effect of the initial size of 
biomass, moisture content, and screen opening size on corn 
stover to SRE consumption was studied [27]. Energy consumed 
in grinding raw biomass materials is related to the toughness of 
the feedstock, which is one of the basic mechanical properties, 
as well as the other mechanical properties, such as cohesion and 
friction, are expected to influence the SRE [16]. Information on the 
mechanical stress related to SRE consumption was not reported. 
As to the several mechanisms involved in size reduction, shearing 
is the dominant action and efficient mode of operation [28-30], 
therefore, shear stress is an important mechanical property in the 
grinding process, and which is needed to be studied. In addition, 
biomass moisture contents are often cited as a factor influencing 
grinding energy consumption [5,17]. Exposure of biomass in the 
field or the condition in storage raises more concern about the 
moisture content of the feedstock and its influence on bioenergy 
utilization aspects [31].

Therefore, moisture content should also be included as one of 
the factors in modelling the SRE requirement. 

No studies have reported a comprehensive selection of 
crop, grinder, mechanical properties, and PSD parameters 
and subsequent modelling for SRE. Therefore, it will be useful 
to develop a family of SRE models, using the most influential 
parameters, from that involving the most number of parameters 
to the most simplified involving only a few parameters, and study 
their performance statistically. As several biomass feedstocks and 
grinding devices are involved, the number of specific SRE models 
will increase based on the combination. It is possible to develop 
generalized SRE models applicable to a set of biomass feedstocks 
specific to a grinding device and the most generalized SRE model 
applicable to both biomass and grinder. For the development of 
generalized SRE models, categorical regression methodology 
can be followed, and such generalized models, applicable to SRE 
evaluation, have not been reported so far.

The specific objectives of this study were to (i) determine 
specific SRE for selected biomass (big bluestem, corn stover, and 
switchgrass) using two different grinders (knife mill and hammer 
mill) at different screen sizes (ii) determine the mechanical 
shear stress of biomass stems and PSD parameters of the ground 
biomass, (iii) develop a family of SRE regression models from the 
most influential parameters (most parameters to simplified with 
less number of parameters), (iv) develop a family of generalized 
models using with categorical variables (grinder specific and 
most general), and (v) statistically analyze the models and make 
recommendations for SRE prediction model selection.

Materials and Methods

Test materials collection

Big bluestem (‘Bonilla’ cv; seeded May 2000), corn stover 
(YS8002GT cv; planted May 2012, and switchgrass (‘Sunburst’ cv; 
seeded May 2008) samples were collected in mid-October from 
the Northern Great Plains Research Laboratory (NGPRL) USDA-
ARS, Mandan, ND research field plots. Samples were harvested 
with a mechanical mower for big bluestem and switchgrass, 
but the whole corn plants were cut with a lopper from the base 
internode for the corn stover samples. Collected samples were 
made as bunches and were transported without baling and stored 
indoors until the experiment.

Moisture conditioning

Moisture is an important factor that influences the mechanical, 
handling, and size reduction properties of biomass. Thus, it is 
necessary to determine its effect on the size reduction. The test 
materials’ initial moisture contents were estimated based on 
ASABE Standards S358.3 [32], wherein the samples were oven-
dried at 103°C for 24 h, and results were expressed in dry basis. 
Three sub-samples of each biomass feedstock (big bluestem, 
corn stover, and switchgrass) were used. Starting from a uniform 
moisture reference material, samples of different moistures were 
produced by artificial conditioning by moisture addition. Although 
the conditioned material is technically different from the material 
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in the green state (different growth stages), the conditioned 
material represents a practical feedstock used in processing. 
Moisture conditioning of the biomass to the required moisture 
content was performed by applying a calculated amount of water 
evenly over the materials and equilibrating them in airtight 
bags. Several researchers follow a similar procedure of moisture 
conditioning [17,33]. Starting from a dry material, the amount 
of water required for moisture conditioning was calculated and 
applied to samples. The conditioned material was kept in a sealed 
plastic bag at room temperature at 22 to 25°C for 72 h for moisture 
equilibration before size reduction [5,17]. The exact moisture 
after equilibration was again determined [32] and was used in the 
analysis.

Sample preparation for experiments

For the mechanical characteristics measurements, the leaves 
were removed from the biomass samples and were cut into lengths 
of about 127 to 152 mm (5 to 6 in). Five samples were used for 
the shear test. Sample preparation was similar to that followed by 
researchers [28,34,35]. For the size reduction experiments, the 
whole harvested plants with leaves were used and the biomass 
samples were manually chopped to the length of about 38 mm (1.5 

in) for better feeding and flow through the grinders. Three samples 
were used for size reduction energy measurement, and each 
grinder used three different sieves during grinding experiments. 
The ground samples were collected and kept in sealed plastic 
bags before the PSD measurements. A well-mixed portion of the 
ground material was taken, from which a representative sample (a 
few mg) suitable for the machine-vision based PSD measurement 
was derived using a “cone-and-quartering” technique [36]. Three 
samples were used for the PSD measurement for each combination 
of grinder and biomass feedstock.

Size reduction performance

Overall size reduction energy modeling study experimental 
plan is presented in the form of a flowchart (Figure 1). The plan 
consists of three experiments, namely, (1) size reduction energy 
measurement using two different grinders, (2) mechanical 
characteristics (shear energy) measurement on a single stem of 
selected biomass, and (3) ground material PSD measurement. 
The results of these experiments were combined to determine 
the correlation of various parameters to the specific SRE and 
regression models were developed based on the most influential 
and meaningful parameters.

Figure 1: Flowchart of size reduction energy study experiments.
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Size reduction equipment

Knife mill (KM) and hammer mill (HM) are the commonly 
used size reduction equipment in the industry, and the laboratory 
models of these grinders were used in the experiments. A 
laboratory Wiley knife mill (Model 4, with a single-phase induction 
motor, 1 hp, 115 V, 50/60 HZ, 800 rpm, Thermo Scientific, 
Swedesboro, NJ, USA) fitted with the screens of 1, 3, and 6 mm was 
used in the study (Figure 2a). Weighed samples were fed into the 

grinder hopper. The amount of opening of the feed gate controlled 
the feeding rate of the sample. The ground sample was received 
in a collector attached at the bottom of the mill. The mass of the 
input and ground material was measured using a digital weighing 
scale (Model: KS-1, KTRON Arizona, Inc.) with an accuracy of 0.1 g. 
This knife mill allowed more residence time for the material while 
grinding, and the grinding was dust-free as all the components of 
the equipment were well sealed during operation.

Figure 2: Equipment used in size reduction study (a) Knife mill, (b) hammer mill, (c) clamp-on power meter digital display unit, and (d) power 
outlet wall connection showing line splitter for electrical power measurements during size reduction experiments.

Figure 3: A typical measured electrical power showing the power variation during grinding and idle run and a sample of the collected data.
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A laboratory hammer mill (Model G, 15”, Montgomery Ward, 
USA, with a single-phase induction motor 1 hp, 0.75 kW, 60 Hz, 
1750 rpm) fitted with 1.5875, 3.175, and 6.252 mm sieves was 
also used in the study (Figure 2b). Biomass samples were fed into 
the mill at a constant rate manually. About 2.27 kg (5 lb) of each 
selected biomass was fed to the mill at a fixed rate matching the 
grinding rate of the hammer mill. The ground biomass samples 
with different screen sizes were collected and weighed. Unlike 
the knife mill, the hammer mill grinder presented relatively less 
residence time for the material in the grinding chamber, which 
allowed for partially ground biomass also to fall through the 
screen.

Size reduction energy measurement

A clamp-on power meter (Model: CW120, YOKOGWA, Melrose, 
MA, USA) was used to measure the continuous stream of power 
consumed by the grinder indirectly measuring the flow of 
electrical energy (Figure 2c). The instantaneous grinding power 
was measured through the electric energy (watt-hour, Wh) data 
derived from voltage and amperage. A line splitter (Fluke ELS2A 
Outlet Line Splitter; 120 Volt, 15 Amp, Wilmington, NC, USA) 
was attached to the single-phase electrical power outlet, and the 

power card of the grinder was attached to the line splitter (Figure 
2d). The digital display unit of the clamp-on power meter was 
separately powered. The yellow clamp attached to the line splitter 
measured the current flow (ampere) and black and red alligator 
clips measured voltage shown in a digital display unit. The wiring 
was carried out according to the single “three-phase” connections 
shown in the power meter.

On the digital meter, settings for wiring method (1ø2W – 
read as a single-phase two-wire, 1ø3W, 3ø3W, 3ø4W) voltage 
range (150V, 300V, and 450V) and current ranges (5A, 10A, 20A, 
50A, 100A, 200A, 500A and 1000A) were appropriately selected 
(1ø2W; 150V; 20A) to avoid overloading. Measurements were 
made with grinder running without any material to determine 
the “no-load” characteristics. Regular size reduction experiments 
with samples were then performed at the desired feed rate and 
power measurements were made for all the grinder and biomass 
combinations. Power measurement data were saved at 1s intervals 
on a memory PC card. The data was later transferred from the 
memory card to the computer for data analysis. A typical sample 
measurement output plot of power (W) with respect to time (s) 
along with raw textual data during grinding from the power meter 
is shown in Figure 3.

Figure 4: Flowchart of various specific size families of reduction energy (SRE) models development.
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The area under this power-time curve gives the energy 
consumed during grinding, which is also obtained from the sum 
of all power data (P derived from V2 and I2) multiplied by the 
total elapsed time of interest (Figure 3). The idle run (no-load) 
power was represented by the relatively flat variation around 
600 W. The collected energy data will be in watts-hour (Wh) and 
the specific energy is calculated by dividing this by the amount of 
ground product (g) collected as Wh g-1. The size reduction energy 
thus measured is expressed as the energy consumed per unit mass 
of the ground material with standard units of kJ kg-1, for further 
calculations and reporting. The effective specific size reduction 
energy was obtained as a difference between the total power with 
load and no-load power measurements and this procedure was 
followed by several researchers [23,25,37,38].

Biomass mechanical characteristics and ground 
biomass PSD

Shear stress is a mechanical property that is characteristic of 
the biomass, hence considered an influential biomass property for 
modelling the SRE. The shear stress experiments were performed 
using the same method with the universal testing system (UTM) 
as outlined elsewhere [39]. The shear stress for corn stalks were 
based on the whole cross-section area, whereas for big bluestem 
or switchgrass the cross-section was hollow. The PSD of the 
selected biomass feedstocks generated by the knife mill and the 
hammer mill were determined through an image processing 
technique. The representative ground samples PSD were studied 
utilizing ΣVolume machine vision approach through a developed 
ImageJ plugin [36]. In this method, a regular document scanner 
(CanoScan 8800F, Canon, Melville, NY), at a high-resolution 
section of 1270 DPI, was used for capturing color digital images 
of the samples. An alternative user-friendly method for the PSD 
determination is using the ASABE Standard [40]. Particle sizes 
and PSD produced depended on the type of biomass, grinder, and 
other operating conditions. The plugin produced several particle 
size and PSD parameters, which are used in the correlation 
analysis and regression model development. A brief definition and 
description of the various PSD parameters are found elsewhere 
[41].

Methodology of SRE models development

The specific SRE models were developed following the 
methodology shown in Figure 4. Overall, the correlation of SRE 
with various biomass, grinder, mechanical characteristics, and 
PSD of ground material parameters were studied, the influential 
parameters were extracted, and various family of models was 
developed using linear regression. For the statistical analysis, 
R programs [42] were developed and utilized. As the number 
of variables considered in the regression, the most correlated 
variables to SRE (starting with 9 terms) were selected and 
progressively simpler regression models were developed.

In the methodology (Figure 4), one family of models called 
“Full Regression SRE Models” use the highly correlated 9 terms 

and develops the regression models (R function: lm), involving 
only the first order terms without interaction (6 models) using and 
their performances were reported as R2 and adjusted R2. To derive 
simplified models with the most influential 9 variables, a relative 
weights analysis [43,44] was performed. The relative weights 
ranked all 9 predictor variables based on their contribution to the 
model’s R2 (R function: relweights), and the most common high-
ranking variables were selected for the simpler 4-term regression 
models. The second family of models called “Auto-Regression SRE 
Models” uses the 9 terms and determines the best significant 
model, with the least number of terms, using a backward stepwise 
linear regression (R function: step with lm) based on Akaike 
information criterion (AIC). A model with the lower AIC value was 
considered the best model among the set of models tested. These 
auto models will result in a variable number of terms, based on the 
significance of the terms, and linear regression was again run to 
estimate the coefficients and model performance.

Generalized grinder-specific and most generalized SRE 
model development

A model capable of predicting the SRE for the selected biomass, 
using the biomass as an independent variable, will be compact 
and useful. Such a generalized model was developed using linear 
regression with categorical variables. Considering a categorical 
variable (sometimes referred as dummy variable), say DC, for the 
three selected biomass, where DC equals 0, 1, and 2 represents big 
bluestem, corn stalks, and switchgrass, respectively. Along with 
the selected independent variables (V1 through V4), the crop-
based categorical variable DC will make the generalized model 
specific to a grinder as follows: 

SRE = f (V1, V2, …Vn, DC) (1)

Simple linear regression procedure (R function: lm) was 
again used for this generalized model development after suitably 
categorizing the biomass variable names (DC) with numerical 
values and sub setting the data. Extending the analogy, the most 
generalized model that used biomass and grinders as categorical 
variables will be in the most compact form. Such most generalized 
model will represent six (3 biomass x 2 grinders) of the specific 
SRE models. Considering a categorical variable to represent the 
grinder, say DM, where DM = 0 represents hammer mill and DM = 
1 represents knife mill. With the selected dependent variables (V1 
through V4), and the DC (crop-based) and DM (grinder-based) 
categorical variables the most generalized SRE model suitable for 
any biomass or grinder, again derived from linear regression is 
given as: 

SRE = f (V1, V2, …Vn, DC, DM) (2)

Models comparison statistical analysis

Performance of the various groups of models (e.g., 9-term, 
4-term, 3-term, and generalized categorical) was compared using 
their performance measures, such as R2 and adjusted R2 (penalizing 
more variables), subjecting to Duncan’s new multiple-range test 
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[45] from the R package agricolae. Each group of models except 
the generalized models will have six models representing their 
grinder and biomass combination. For generalized models, which 
will be a single model representing a particular grinder or the 
most general for both grinders, the replications were simulated 
from the observed performance of the respective models and 
an assumed average standard deviation derived from the other 
models. The mean separation test with α = 0.05, will help select 
the best model based on statistically significant difference among 
them.

Results and Discussion

Specific SRE of biomass ground in knife mill and 
hammer mill 

Measured specific SRE was inversely proportional to the size 

of both knife mill screens (1, 3, and 6 mm) and the hammer mill 
screens (1.5875, 3.175, and 6.252 mm) for the selected biomass at 
the studied range of moistures (Figure 5). Overall, with the knife 
mill, the SRE was the highest for switchgrass followed by corn 
stover and big bluestem, while with the hammer mill the trend 
was opposite and the curves intersect around the 3 mm. Knife 
mill-specific SRE is lower than hammer mill SRE. The lower SRE 
of the knife mill may be attributed to the efficient size reduction 
mechanism of shear in the knife mill as opposed to the impact in 
the hammer mill. The specific SRE for both grinders increased 
as moisture content increased. A similar trend of increase in 
specific SRE with moisture content was also observed by others 
for bermudagrass (Cynodon dactylon L.) [46], for wheat, barley 
(Hordeum vulgare L.), corn stover, and switchgrass [5], and canola 
stem [47]. However, an opposite trend was observed for sugarcane 
[48].

Figure 5: Specific SRE at different screen size for knife mill (KM) and hammer mill (HM) with different biomass and moisture contents.
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Ground biomass machine-vision of PSD outputs

The scanned images had a 0.02 mm measurement accuracy 
(1270 DPI). The PSD plugin analysed over 15000 particles per 

second and the total CPU time taken is about 11 s and outputs the 
results in textual and graphical forms (Figure 6). The PSD results 
in combination with the other grinder, biomass, and mechanical 
properties formed the full data.

Figure 6: Sample textual and graphical outputs generated by the PSD plugin showing various results (mm or mm3) of analysis and 
performance parameters for corn stalks process in knife mill (2 mm screen).
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Correlation of specific SRE with other parameters

The actual Pearson’s correlation coefficients of the specific 
SRE with other moisture, mechanical, and PSD parameters of 
grinder and biomass combinations are presented in Table 1. 

In general, the moisture content, mechanical shear stress, and 
uniformity index are positively correlated to specific SRE, while the 
particle size-based parameters were negatively correlated. Thus, 
predominantly the parameters were negatively correlated with 
specific SRE with variation depending on the type of parameters.

Table 1: Pearson’s correlation coefficients of the specific SRE with other size reduction experimental parameters.

Parameter Big bluestem Knife mill Corn stover Switchgrass Big bluestem Hammer mill Corn 
stover Switchgrass

SRE 1 1 1 1 1 1

MC 0.687 0.802 0.674 0.257 0.796 0.807

SS -0.608 -0.471 -0.625 -0.955 -0.459 -0.534

ST 0.611 -0.556 0.673 0.207 -0.513 0.806

GM -0.371 -0.107 -0.416 -0.906 -0.005 -0.354

UI 0.732 0.71 0.617 -0.552 0.281 -0.441

D95 -0.498 -0.257 -0.545 -0.814 -0.034 -0.079

D90 -0.463 -0.262 -0.511 -0.867 -0.038 -0.246

D84 -0.518 -0.262 -0.499 -0.866 -0.063 -0.276

D80 -0.5 -0.247 -0.486 -0.877 -0.097 -0.258

D75 -0.488 -0.228 -0.467 -0.896 -0.116 -0.229

D60 -0.443 -0.181 -0.435 -0.91 -0.086 -0.296

D50 -0.413 -0.145 -0.422 -0.91 -0.018 -0.415

D30 -0.337 -0.065 -0.379 -0.915 0.058 -0.402

D25 -0.305 -0.033 -0.361 -0.908 0.054 -0.421

D16 -0.232 0.019 -0.31 -0.893 0.095 -0.441

D10 -0.133 0.079 -0.242 -0.883 0.141 -0.446

D5 -0.01 0.15 -0.147 -0.768 0.146 -0.41

MaxL -0.524 -0.238 -0.526 -0.779 -0.192 -0.164

AvgL 0.54 0.723 0.049 0.391 -0.126 0.053

AvgLstd 0.115 0.554 -0.189 -0.78 -0.207 -0.361

GMLstd -0.646 -0.72 -0.481 0.503 -0.278 0.397

AvgW 0.662 0.715 0.211 0.277 -0.022 0.319

AvgWstd 0.447 0.68 0.256 0.183 -0.149 0.13

SkewW -0.696 -0.451 -0.384 -0.84 0.275 -0.37

KurtW -0.63 -0.386 -0.432 -0.851 0.311 -0.329

RS -0.66 -0.57 -0.587 0.585 0.061 0.382

CU -0.577 -0.623 -0.454 0.589 -0.517 0.266

CG -0.345 -0.355 -0.247 -0.249 -0.125 0.021

SGN -0.413 -0.145 -0.423 -0.91 -0.018 -0.415

SRVC -0.763 -0.677 -0.539 0.654 -0.053 0.32

SkewL -0.528 -0.453 -0.396 -0.834 0.078 -0.299

KurtL -0.295 -0.31 -0.27 -0.767 0.097 -0.116

GraMean -0.453 -0.181 -0.459 -0.893 -0.03 -0.345

Igstd -0.559 -0.34 -0.557 -0.847 -0.076 -0.139

GstdHR -0.713 -0.634 -0.509 0.621 0.028 0.277
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GstdLR -0.642 -0.632 -0.45 0.629 -0.506 0.244

GstdTR -0.741 -0.676 -0.525 0.713 -0.367 0.36

IGS -0.489 -0.367 -0.501 0.653 0.082 0.362

Gkurt -0.143 0.002 -0.383 0.269 0.214 0.255

MaxV -0.43 -0.188 -0.527 -0.805 -0.09 -0.13

Note: For definitions and formulas of the listed PSD parameters Igathinathane et al. [41] may be referred. Data indicate the means of three mois-
ture contents studied.

Selection of parameters for specific SRE model development

The overall selection of influential parameters based on 
correlation coefficients will be easily accomplished through 
absolute values and ranking, rather directly from the actual 
values (Table 1). Increase values of r, either positive or negative 
correlation, are important in influencing the SRE, which can be 
easily collected by absolute values (|r|). Therefore, the absolute 
and ranked correlation coefficients of specific SRE with other 

parameters with r > 0.5 clearly depicted by gray shading of 
parameters with r < 0.5 for easy selection are presented in Table 
2. From the results, it can be observed that several parameters 
with r > 0.5 indicate that the specific SRE is well correlated with 
these parameters. It can be seen that the list and ranking of the 
parameters for the six combinations of grinder and biomass were 
different. However, some of the parameters were common among 
the combinations.

Table 2: Ranked absolute Pearson’s correlation coefficients of size reduction energy with other parameters (r < 0.5 in gray).

Knife mill Hammer mill

Big bluestem Corn stover Switchgrass Big bluestem Corn stover Switchgrass

Parameter |r| Parameter |r| Parameter |r| Parameter |r| Parameter |r| Parameter |r|

SRVC 0.763 MC 0.802 MC 0.674 SS 0.955 MC 0.796 MC 0.807

GstdTR 0.741 AvgL 0.723 ST 0.673 D30 0.915 CU 0.517 ST 0.806

UI 0.732 GMLstd 0.72 SS 0.625 SGN 0.91 ST 0.513 SS 0.534

GstdHR 0.713 AvgW 0.715 UI 0.617 D50 0.91 GstdLR 0.506 D10 0.446

SkewW 0.696 UI 0.71 RS 0.587 D60 0.91 SS 0.459 D16 0.441

MC 0.687 AvgWstd 0.68 Igstd 0.557 D25 0.908 GstdTR 0.367 UI 0.441

AvgW 0.662 SRVC 0.677 D95 0.545 GM 0.906 KurtW 0.311 D25 0.421

RS 0.66 GstdTR 0.676 SRVC 0.539 D75 0.896 UI 0.281 D50 0.415

GMLstd 0.646 GstdHR 0.634 MaxV 0.527 GraMean 0.893 GMLstd 0.278 SGN 0.415

GstdLR 0.642 GstdLR 0.632 MaxL 0.526 D16 0.893 SkewW 0.275 D5 0.41

KurtW 0.63 CU 0.623 GstdTR 0.525 D10 0.883 Gkurt 0.214 D30 0.402

ST 0.611 RS 0.57 D90 0.511 D80 0.877 AvgLstd 0.207 GMLstd 0.397

SS 0.608 ST 0.556 GstdHR 0.509 D90 0.867 MaxL 0.192 RS 0.382

CU 0.577 AvgLstd 0.554 IGS 0.501 D84 0.866 AvgWstd 0.149 SkewW 0.37

Igstd 0.559 SS 0.471 D84 0.499 KurtW 0.851 D5 0.146 IGS 0.362

AvgL 0.54 SkewL 0.453 D80 0.486 Igstd 0.847 D10 0.141 AvgLstd 0.361

SkewL 0.528 SkewW 0.451 GMLstd 0.481 SkewW 0.84 AvgL 0.126 GstdTR 0.36

MaxL 0.524 KurtW 0.386 D75 0.467 SkewL 0.834 CG 0.125 GM 0.354

D84 0.518 IGS 0.367 GraMean 0.459 D95 0.814 D75 0.116 GraMean 0.345

D80 0.5 CG 0.355 CU 0.454 MaxV 0.805 KurtL 0.097 KurtW 0.329

D95 0.498 Igstd 0.34 GstdLR 0.45 AvgLstd 0.78 D80 0.097 SRVC 0.32

IGS 0.489 KurtL 0.31 D60 0.435 MaxL 0.779 D16 0.095 AvgW 0.319

D75 0.488 D84 0.262 KurtW 0.432 D5 0.768 MaxV 0.09 SkewL 0.299

D90 0.463 D90 0.262 SGN 0.423 KurtL 0.767 D60 0.086 D60 0.296

GraMean 0.453 D95 0.257 D50 0.422 GstdTR 0.713 IGS 0.082 GstdHR 0.277
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AvgWstd 0.447 D80 0.247 GM 0.416 SRVC 0.654 SkewL 0.078 D84 0.276

D60 0.443 MaxL 0.238 SkewL 0.396 IGS 0.653 Igstd 0.076 CU 0.266

MaxV 0.43 D75 0.228 SkewW 0.384 GstdLR 0.629 D84 0.063 D80 0.258

D50 0.413 MaxV 0.188 Gkurt 0.383 GstdHR 0.621 RS 0.061 Gkurt 0.255

SGN 0.413 GraMean 0.181 D30 0.379 CU 0.589 D30 0.058 D90 0.246

GM 0.371 D60 0.181 D25 0.361 RS 0.585 D25 0.054 GstdLR 0.244

CG 0.345 D5 0.15 D16 0.31 UI 0.552 SRVC 0.053 D75 0.229

D30 0.337 D50 0.145 KurtL 0.27 GMLstd 0.503 D90 0.038 MaxL 0.164

D25 0.305 SGN 0.145 AvgWstd 0.256 AvgL 0.391 D95 0.034 Igstd 0.139

KurtL 0.295 GM 0.107 CG 0.247 AvgW 0.277 GraMean 0.03 MaxV 0.13

D16 0.232 D10 0.079 D10 0.242 Gkurt 0.269 GstdHR 0.028 AvgWstd 0.13

Gkurt 0.143 D30 0.065 AvgW 0.211 MC 0.257 AvgW 0.022 KurtL 0.116

D10 0.133 D25 0.033 AvgLstd 0.189 CG 0.249 SGN 0.018 D95 0.079

AvgLstd 0.115 D16 0.019 D5 0.147 ST 0.207 D50 0.018 AvgL 0.053

D5 0.01 Gkurt 0.002 AvgL 0.049 AvgWstd 0.183 GM 0.005 CG 0.021

Note: Frequency of r > 0.5: MC(5), ST(5), SS (4),UI(4), RS(4), CU(4), SRVC(4), GstdTR(4), GstdLR(4), GMLstd(3), GstdHR(3), Igstd(3) - The 
first 9 (out of 12) were used in the models development. Data indicate the means of three moisture contents studied.

Even though the highly correlated parameters for individual 
combinations were different, it will be useful to identify the 
common variables and develop SRE models based on them. A 
simple frequency of the most common parameters among the six 
combinations was obtained (Table 2 footnote). It is interesting 
to note that the moisture content (MC), ranked first in 4 out of 6 
combinations, and the shear stress mechanical (ST) property of 
the biomass had the highest frequency of 5 out of 6 combinations. 
The next group of 7 parameters that had a frequency of 4 out of 
6 are screen size (SS), uniformity index (UI), relative span (RS), 
coefficient of uniformity (CU), size range variation coefficient 
(SRVC), geometric STD of total region (GSTDTR), and geometric 
STD of low region (GSTDLR). Considering only r > 0.5, the average 
|r| of the two high-frequency parameters (MC, ST) was 0.693, for 
the next group of 7 parameters (SS, UI, RS, CU, SRVC, GSTDTR, 
and GSTDLR) was 0.634, and overall these 9 parameters (MC, ST, 
SS, UI, RS, CU, SRVC, GSTDTR, and GSTDLR) were 0.649, which 
shows their strength of correlation with SRE. The less frequent 
terms (≤ 3) were not considered in the model development. Thus, 
these total 9 parameters were used in the full and auto-regression 
model development.

The 9-term specific SRE models used all the terms in the 
regression. The auto-regression specific SRE models, developed to 
eliminate the insignificant terms based on AIC, made the models 
as compact as possible without compromising the performance. 
In each combination, the auto-regression models had a variable 
number of terms (3 to 7) after elimination and on average had 5 
terms, which is an elimination of 4 parameters. However, the auto-
regression models also had good predictions similar to the full 
model with R2 in the range between 0.87 and 0.99. In addition, 

the adjusted R2 showed an improvement with values ranging from 
0.8 to 0.99, and this improvement in performance is expected as 
the adjusted R2 penalizes models with an increased number of 
terms and overfitting. Overall, based on the mean R2 value of the 
combination of 6 models (not shown), the auto-regression models 
had 0.931±0.043 comparable to 0.934±0.043 of the full 9-term 
models, but the adjusted R2 had 0.913 which is a little improvement 
over 0.899 of the full models. Hence, in general, when possible, 
it can be recommended that the auto-regression models, which 
use fewer and the most significant parameters, is recommended 
for SRE predictions when the values of the necessary parameters 
are available. This set of models will help in selecting the best 
parameters for the simpler models.

Simplified 4-term specific SRE model development 

Simplified specific SRE models using only 4 parameters were 
selected from each group of models (full and auto-regression) 
following the methodology outlined in the flowchart (Figure 4). 
Different strategies were followed to obtain the most significant 
4 terms from each group of models. A simple frequency analysis 
from the group of full (9-term) specific SRE models was not 
possible as this group features all the 9 parameters. Thus, a relative 
weight analysis [43,44] determining the relative importance 
of the SRE predictor variables was performed (Figure 7). The 
ranking among the selected 9 parameters and the parameter’s 
relative contribution to the total R2 in the six grinders and biomass 
combination can be easily visualized from the relative analysis 
plot. It can also be observed that a few top-ranking (e.g., SS, MC, 
ST) parameters contribute more than the others, in other words, 
about 6 out of 9 parameters have < 10% contributions individually 
to the total R2 (Figure 7).
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Figure 7: Correlation plot of selected parameters for specific SRE modeling showing the variation among types of grinder and biomass 
tested. KM – knife mill, HM – hammer mill, bbs – big bluestem, cs – corn stover, and sg – switchgrass.

To select the best 4 parameters, the frequency of parameters 
based on the three top-ranked relative weights in the grinder and 
biomass combination was considered (Table 3). The frequencies 
of these three top-ranked parameters (shown in parenthesis) 

were: SS (6), MC (5), ST (3), UI (2), GSTDTR (1), and SRVC (1). 
The best 4 parameters selected for the simplified models from 
the full model category, based on their increased frequency, were: 
MC, SS, ST, and UI. The simplified (4-term) specific SRE models, 
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from the group of full models, based on the selected parameters 
using relative weights are presented in Table 4. These simplified 
(4-term) models gave good SRE predictions with R2 in the range 
between 0.87 and 0.99 (Adj. R2: 0.84 to 0.98), considering fewer of 
parameters. Among the 4 parameters, the contribution of UI was 

the least, as the absolute value of its coefficient < 6.5 compared 
to the next SS > 14.8 (Table 4). Overall, the mean R2 of all the 
combinations of 6 models was 0.917±0.049, and the mean adjusted 
R2 was 0.901±0.057, which substantiates the good performance of 
the simplified models.

Table 3: Ranked relative weights (% or R2) of the 9-terms based on full model for simplified 4-term model SRE selection (rank > 3 in gray).

Knife Mill Hammer Mill

Big Bluestem Corn Stover Switchgrass Big Bluestem Corn Stover Switchgrass

SS 25.886 MC 23.891 SS 31.23 SS 38.201 MC 44.229 MC 34.413

MC 16.836 SS 23.872 MC 20.423 GstdTR 10.867 SS 21.132 ST 34.357

UI 9.609 UI 10.875 ST 20.358 SRVC 10.2 ST 10.673 SS 14.52

SRVC 9.535 SRVC 7.585 UI 6.519 GstdLR 9.46 CU 7.586 RS 4.502

ST 9.394 CU 7.375 RS 6.444 RS 8.265 GstdLR 5.541 UI 4.436

GstdTR 7.753 GstdTR 7.307 SRVC 4.91 CU 6.953 GstdTR 4.977 SRVC 2.655

RS 7.468 ST 7.293 GstdTR 4.049 MC 6.775 UI 2.587 GstdTR 2.472

GstdLR 7.317 GstdLR 6.812 GstdLR 3.174 UI 5.651 SRVC 2.208 GstdLR 1.525

CU 6.202 RS 4.991 CU 2.893 ST 3.628 RS 1.067 CU 1.121

Note: Frequency of 3 top-ranked relative weights: SS - screen size (6), MC - moisture content (5), ST - shear stress (3), UI - uniformity index (2), 
GstdTR - geometric STD of total region (1), and SRVC - size range variation coefficient (1). Data indicate the means of three moisture contents 
studied.

Table 4: Developed simplified size reduction energy models using selected parameters (4-term) from full and automatic backward regression 
family of models.

Type Grinder Crop Model R2 AdjR2R2

Simplified 4-term 
models from 

relative weights 
of the full model 

parameters

Knife Mill 

Big blue-
stem SRE = 308.019 + 865.292 MC - 16.445 SS - 40.537 ST + 1.915 UI 0.865 0.84

Corn stover SRE = -63.6618 + 688.5365 MC -14.874 SS + 48.0305 ST + 2.6880 UI 0.903 0.885

Switchgrass SRE = 16123.621 + 209.411 MC - 27.652SS - 377.423 ST - 1.902 UI 0.864 0.839

Hammer Mill

Big blue-
stem SRE = 573.4361+873.9211 MC - 47.6839SS - 41.1975 ST + 0.4083 UI 0.987 0.984

Corn stover SRE= -1474.415 +2006.703 MC - 22.221 SS + 547.183 ST + 6.538 UI 0.935 0.923

Switchgrass SRE = 6466.764 + 8890.914 MC - 15.137SS - 543.984 ST - 1.847 UI 0.946 0.937

Mean  0.917 0.901

(STD)  -0.049 -0.057

Simplified 4-term 
models from 

auto-regression 
model parameters 

(r > 0.5)

Knife Mill

Big blue-
stem SRE = 351.975 + 873.558 MC - 17.720 SS -33.832 ST - 28.863 GstdLR 0.859 0.833

Corn stover SRE = -96.627 + 802.485 MC - 15.110 SS + 96.827 ST - 39.261 GstdLR 0.89 0.87

Switchgrass SRE = 15266.889 + 199.425 MC - 26.535 SS -1310.690 ST + 28.569 
GstdLR 0.863 0.838

Hammer Mill

Big blue-
stem SRE = 555.943 + 907.154 MC - 46.015 SS - 43.167 ST + 7.699 GstdLR 0.988 0.985

Corn stover SRE = -897.732 + 1922.930 MC - 20.815 SS + 346.243 ST + 7.033 GstdLR 0.913 0.897

Switchgrass SRE = 8137.780 + 10982.426 MC - 17.975SS -687.924 ST - 1.898 GstdLR 0.941 0.931

Mean  0.909 0.892

(STD)  -0.05 -0.058

Note: SRE - size reduction energy, MC - moisture content, SS - screen size, ST - shear stress, UI - uniformity index, and GstdTR - geometric 
STD of lower region (auto-regression introduced).
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A simple frequency analysis from the group of auto-regression 
(average 5-term) specific SRE models was possible to select the 
simplified (4-term) models. The simple frequency analysis of the 
auto-regression model parameters (Table 2) gave the following 
frequency (shown in parenthesis) for the parameters: MC (6), SS 
(6), ST (5), GSTDLR (4), GSTDTR (3), SRVC (2), UI (2), RS (1), and 
CU (1). Thus, the high-frequency 4 parameters selected for the 
simpler (4-term) model in the auto-regression group were: MC, 
SS, ST, and GSTDLR. It can be seen that the UI of the full model 
group was replaced by GSTDLR in the auto-regression group, 
while the other three parameters (MC, SS, and ST) remained the 
same underlying their importance in modelling the specific SRE.

The simplified (4-term) specific SRE models, from the auto-
regression group of models, based on the selected parameters 
using simple frequency are presented in Table 4. These simplified 
models also gave SRE predictions with R2 ranging between 0.86 
and 0.99 (Adj. R2: 0.83 - 0.99) similar to simplified models of the 
full model group (R2: 0.87 - 0.99; Adj. R2: 0.84 - 0.98). Among the 
4 parameters, the contribution of SS and GSTDLR parameters 
in SRE prediction was less, as their coefficient absolute values 
were between 1.8 and 46.0. The mean R2 of all the combinations 

of six models was 0.909±0.050, and the mean adjusted R2 was 
0.892±0.058, although comparable with the full model group but 
slightly reduced performance (Table 4). Therefore, the simplified 
(4-term) models, derived from the relative weights analysis can 
be recommended based on their performance and the selected 
parameters (MC, SS, ST, and UI) can be used for developing the 
generalized models.

Specific SRE model development - simplest 3-term 
models 

The simplest specific SRE models (3-term) by selecting 
the best three parameters were also developed to study their 
performance. From the group of 4-term models (full and auto-
regression; Figure 4, Table 4), the most common parameters such 
as MC, SS, and ST were selected, and the developed prediction 
models are presented in Table 5. These simplest (3-term) specific 
SRE model predictions had R2 ranging between 0.85 and 0.99 (Adj. 
R2: 0.83 to 0.91), the mean R2 was 0.903±0.055, and the adjusted 
R2 was 0.877±0.043. The performance was slightly less than the 
4 and 9 parameters models, but it was comparable to them (4-
term Table 4; and 9-term models - not shown) with their mean R2 
between 0.90 and 0.93 (Adj. R2: 0.89 and 0.91).

Table 5: Developed most simplified specific SRE models (3-term) based the most influential and common parameters.

Type Grinder Crop Model R2 AdjR2

Best 3- term 
models from 
#3+#4 r>0.5

Knife Mill

Big bluestem SRE = 205.736 + 205.736 MC - 18.583 SS - 19.610 ST 0.847 0.827

Corn stover SRE = -89.211 + 900.660 MC - 14.856 SS + 60.451 ST 0.871 0.854

Switchgrass SRE = 12103.324 + 158.514 MC - 25.273 SS -1032.650 ST 0.857 0.838

Hammer Mill

Big bluestem SRE = 576.316 + 881.991 MC - 47.369 SS - 41.685 ST 0.987 0.909

Corn stover SRE = -956.709 + 1908.333 MC - 20.325 SS +375.000 ST 0.912 0.9

Switchgrass SRE = 7936.244 + 10736.657 MC - 17.689 SS -671.047 ST 0.941 0.933

Mean  0.903 0.877

(STD)  -0.055 -0.043

Note: SRE - size reduction energy, MC - moisture content, SS - screen size, and ST - shear stress.

Generalized specific SRE models using categorical 
variables for each grinder 

The generalized specific SRE models were developed based 
on the selected 4 influential parameters, such as MC, SS, ST, 
and UI, derived from the full and auto-regression model with 9 
parameters. It is also possible to have more parameters and derive 
the generalized equations, but using only the most significant 
parameters will lead to compact as generalized models add new 
parameters (categorical variables) to represent biomass and 
grinders (Eqs. 1 and 2). The correlation of these parameters 
with SRE, as well as the inter-correlation among themselves for 
the grinder and biomass combinations are presented in Figure. 
7. The first row of the correlation diagram shows the correlation 
(r) of the selected 4 parameters with SRE visually in the form of 

a coloured dot of various sizes, and the actual values are shown 
along the first column. Any gaps in the correlation diagram mean 
non-significant correlation (e.g., MC vs SS), and no gaps in the 
first row showed a definite correlation of SRE with the selected 
variables. The generalized specific SRE models developed for each 
grinder, based on categorical variables representing the biomass 
tested, with model performance parameters as generated by the 
R program are presented in Table 6. The performance of these 
knife mill and hammer mill-specific generalized models in terms 
of R2 were 0.74 and 0.77 (Adj. R2: 0.73 and 0.77), respectively. The 
derived generalized SRE model applicable individually for knife 
mill and hammer mill (4 + 1 term) are as follows:

Specific SREknife-mill = 160.560+ 7.623×MC - 7.8098×ST - 15.7606 
×SS + 4.8413×UI - 4.9953×Crop(R2=0.744; Adj-R2=0.727)      (3) 
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 Specific SREhammer-mill = 242.0621 + 929.2551×MC - 
2.9642×ST - 28.8756 ×SS + 0.4223×UI + 2.1832×Crop

(R2=0.786; Adj-R2=0.772)  (4)

Where, the variable “Crop” takes numerical values of 0 = big 
bluestem, 1 = corn stalks, and 2 = switchgrass, respectively. Refer 
to Table 6 for the symbols and units.

Table 6: Generalized specific SRE model for knife mill and hammer mill.

Knife mill Hammer mill

Parameter Estimate P-value Parameter Estimate P-value

Intercept 160.56 1.67e-13 *** Intercept 242.0621 < 2e-16***

MC 7.623 2.75e-07 *** MC 929.2551 < 2e-16***

SS -15.7606 1.75e-10 *** SS -28.8756 < 2e-16***

ST -7.8098 1.31e-05 *** ST -2.9642 0.0243*

UI 4.8413 3.84e-11 *** UI 0.4223 0.8108

Crop -4.9953 0.491 Crop 2.1832 0.7683

R2 0.744

 

R2 0.786

 

AdjR2 0.727 AdjR2 0.772

F 43.62 F 55.14

P <2.2e-16 P <2.2e-16

AIC 559.85 AIC 579.26

Note: Model: SRE ~ MC + SS + ST + Crop (with appropriate parameter estimates)

Specific SRE - specific size reduction energy (kJ kg-1), MC - moisture content (% d.b.),

SS - screen size (mm), ST - shear stress (MPa), UI - uniformity coefficient (decimal),

Crop - categorical variable: 0 - big bluestem, 1 - corn stalks, and 2 - switchgrass,

AIC - Akaike Information Criteria.

Note: Model: SRE ~ MC + SS + ST + Crop (with appropriate parameter estimates).

Figure 7: Correlation plot of selected parameters for specific SRE modelling showing the variation among types of grinder and 
biomass tested.
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Prediction performance of the specific generalized models of 
knife mill (Eq. 3) and hammer mill (Eq. 4) with the observed values 
are plotted in Figure 8. The observed and predicted SRE were well 

correlated both for knife mill (r = 0.863) and the hammer mill 
(r = 0.887).

Figure 8: Observed and predicted SRE based on generalized grinder-specific SRE models with categorical variables.

Following the previous methodology (3-term), the most 
simplified generalized model with fewer parameters developed 
by selecting the most influential parameters (MC, SS and ST) are: 

Specific SREknife-mill = 252.848+ 9.440×MC -8.286×ST-19.571×SS 
-17.047×Crop 

(R2 = 0.540: Adj-R2 = 0.516)  (5)

Specific SREhammer-mill = 242.172+ 934.644×MC-2.991×ST 
-28.529 ×SS +2.694×Crop      
  (R2 = 0.786; Adj-R2 = 0.775)  (6)

Comparing to the above 4 parameters (4+1-term; Eqs. 3 and 
4) and 3 parameter (3+1-term; Eqs. 5 and 6) models for knife 
mill and hammer mill, in general, the 4 parameter models (R2: 
0.74 - 0.77) were better than the 3 parameter (R2: 0.54 – 0.79). 
Hence, the simplified generalized (4+1-term) models will be 
useful and the most simplified (3+1-term) models cannot be 
used for better predictions. These generalized models have the 
advantage of being simple and valid for different biomass types. 
It is evident that a direct regression model can be more accurate 
than the generalized model. However, the generalized model 
offers the convenience of being compact and gives a wide range 
of applications for approximate estimation, provided the data 
supports such modeling.

Generalized specific SRE model applicable to both 
grinders and biomass 

The most generalized model applicable to both grinders 
and the three biomass species tested was developed using two 
categorical variables (Mill = 0-HM, 1-KM; and Crop = 0-bbs, 1-cs, 
2-sg). The model (4+2-term) is highly significant (p < 2×10-16) 
and its performance was lower than the grinder-specific (4+1-
term) models (R2 > 0.74). Results also revealed that ‘Crop’ variable 
was not significant (p = 0.756), while the ‘Mill’ variable was 
highly significant (p < 2×10-16) along with other variables. The 
developed most generalized model (4+2-term) and its simplified 
version (3+2-terms) are presented in Eqs. 7 and 8, respectively.

Specific SRE = 338.632 + 4.775×MC – 2.947×ST – 25.106×SS + 
3.918×UI – 2.088×Crop – 157.143×Mill

(R2 = 0.668; Adj-R2 = 0.655) (7)

Specific SRE = 357.382 + 5.020×MC – 2.604×ST – 24.631×SS – 
2.737×Crop – 123.230×Mill     
  (R2 = 0.624; Adj-R2 = 0.612) (8)

As observed before with the grinder-specific models, the 4 
parameters (4+2-term; Eq. 7) had a better performance (R2 = 0.67) 
than the 3 parameters (3+2-term; Eq. 8) model (R2 = 0.62). Based 
on this result, it was observed that the grinder-specific models 
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tend to be better than the most general models; however, the most 
general (combined crop and grinder) model performance was not 
far behind given its compactness. The SRE prediction performance 
of the most generalized model (Eq. 7), with the observed values 
(whole data) plotted (Figure 9), were well correlated (r = 0.82). 
The results showed that it is possible to have a good prediction 

based on the most generalized model commonly applicable to 
grinding devices as well as biomass processed using categorical 
variables. The procedure outlined can be applied to develop better 
models with more devices and crops that will be compact and find 
application in the simulation and design of processing equipment.

Figure 9: Observed and predicted SRE based on the most generalized SRE model with categorical variables.

Comparison of all models

A comparison of the performance (R2) of all regular regression 
models, such as full with 9 parameters model (Full9), auto-
regression with 9 parameters model (Auto9), simplified full 
model of 4 parameters using relative weights (SimF4), simplified 
auto-regression model of 4 parameters using simple frequency 
(SimA4), and the most simplified model of 3 parameters (Sim3) 
was made to study their distribution for all the 6 combinations of 
grinder and biomass studied (Figure 10). These results (Tables 4 
and 5) show the usual ranking of the models from more to fewer 
parameters, which was evident from the relatively similar heights 
of the bars. However, the loss of performance (R2) with a reduced 
number of parameters was not too low. The simplified full model 
of 4 parameters (SimF4), having a comparable performance of the 
9 parameter models, forms the middle ranking. The compactness 
(4-term) and good performance make SimF4 a practical model for 
the prediction of specific SRE.

The statistical analysis results of Duncan new multiple-range 
tests of all models (including generalized total 11) showed how 
these models compared statistically (Figure 11). The generalized 
models also included in the analysis are: generalized specific knife 
mill with 4+1 parameters (GKM4), generalized specific hammer 
mill with 4+1 parameters (GHM4), simplified generalized specific 
knife mill with 3+1 parameters (GKM3), simplified generalized 
specific hammer mill with 3+1 parameters (GHM3), the most 
generalized model with 4+2 parameters (MG4), and the simplified 
most generalized model with 4+2 parameters (MG4).

It can be seen from the results that the adjusted R2, in general, 
is lower than the R2 but was not significantly different, however 
when it was higher a significant difference was observed as 
in the cases of GKM4 and MG4 (Figure 11). Overall, the regular 
model group (Full9 through Sim3) were not significantly different 
among themselves, but they were significantly different from the 
generalized model group (GKM4 through MG3). As there was 
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no significant difference among the regular group of models, 
the best-performing yet simplified model of SimF4 was selected 
and recommended for specific SRE prediction. All the models of 
the generalized group are also significantly different from one 
another. Among the generalized models, the first choice should 

be the specific models and the next will be the most generalized 
models. Between the most generalized models, based on adjusted 
R2 it is better to select the MG4 rather than the most simplified 
MG3.

Figure 10: Performance of the family of regular SRE models of the combination of biomasses and grinders.

Conclusion

This research showed that different specific SRE models 
developed based on crop, mechanical properties, grinder, and 
particle size distribution parameters to predict the specific SRE 
that can be useful to various applications. The 9 most influential 
parameters for specific SRE were found as moisture content 
(MC), shear stress (ST), grinder screen size (SS), uniformity 
index (UI), relative span (RS), coefficient of uniformity (CU), size 
range variation coefficient (SRVC), geometric STD of total region 
(GSTDTR), and geometric STD of low region (GSTDLR) were used 
to develop a family of full, simplified, and generalized models. 
All direct regression models, with all 9 parameters (Full9; mean 
R2 = 0.934±0.043), auto-regression with 9 parameters (Auto9; 
mean R2 = 0.931±0.043), simplified full models of 4 parameters 
using relative weights (SimF4; mean R2 = 0.917±0.049), simplified 
auto-regression models of 4 parameters using simple frequency 
(SimA4; mean R2 = 0.909±0.050), and the most simplified models 
of three parameters (Sim3; mean R2 = 0.903±0.055) were not 

significantly different among themselves. However, these models 
were significantly different from the generalized model with 4 
parameters (GKM4, GHM4; 0.744≤R2≤0.786), three parameters 
(GKM3, GHM3; 0.516≤R2≤0.775), and the most generalized model 
with 4 parameters (MG4; R2 = 0.668), and three parameters (MG3; 
R2 = 0.624).

All the models of the generalized group are significantly 
different from one another (p < 0.05). The best-performing 
simplified model (SimF4) with 4 parameters, namely MC, SS, ST, 
and UI were selected and recommended for specific SRE prediction. 
When predicting the specific SRE through the generalized models 
using categorical regression, the specific models should be the first 
choice and the next will be the most generalized. The procedure 
outlined in the study for developing the generalized models can 
be extended to other feedstocks and grinding equipment easily. 
Both regular models and generalized models will find application 
in process simulation and processing equipment design.
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Figure 11: Comparison of performance of the developed SRE models and statistical significance.
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