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Introduction 

Extreme events caused by climate change, economic or 
geopolitical shocks, and pest or disease epidemics can induce, 
spread, and prolong food insecurity. These direct and indirect 
effects lead to reductions in the availability of, and access to, healthy 
and nutritious food [1,2]. The magnitude, extent, and complexity 
of the threats posed by extreme events to global food security can 
further create cascading and systemic impacts that are difficult 
to predict or plan and prepare for [3,4]. The volume and quality  

 
of crops is mainly affected by pests, diseases, factors such as 
temperature, soil salinity, soil nutrient deficiency, and drought [5]. 
So too, the increase in the proliferation of mycotoxigenic fungi and 
their metabolites can have serious side effects on agri-food crops. 
According to the FAO (Food and Agriculture Organization of the 
United Nations) around 25% of food crops worldwide are affected 
by mycotoxigenic fungi, generating food losses of 1 billion tons per 
year [6]. Global climate change is expected to cause some species 
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of mycotoxigenic fungi to dominate others, increasing mycotoxin 
production [7]. The consumption of these metabolites through 
diet generates a wide range of disorders, from gastroenteritis 
to cancer in humans and animals, which is why it is considered 
a public health problem in the world [8]. Due to this, there is a 
growing interest in new legislation that restricts the trade of 
chemical pesticides. The above encourages the development of 
new fungal pesticides that are friendly to the environment and do 
not generate toxic residues [9]. Because sustainable measures are 
necessary to control mycotoxigenic fungi and their metabolites. 
The aim of these paper was to review the main sustainable control 
strategies for mycotoxigenic fungi and their metabolites in food 
safety. To fully achieve this purpose, the following topics are 
addressed: 

i. We describe the relationship between global warming 
and the development of mycotoxigenic fungi in crops.

ii. We present and discuss the main mycotoxins.

iii. We explain some novel control strategies to prevent 
fungal development and toxin production in food safety.

Mycotoxigenic fungi in crops, global warming 

The agricultural system and a wide variety of foods for human 
and animal consumption are susceptible to contamination by 

mycotoxigenic fungi of the Aspergillus, Penicillium and Fusarium 
genera, which can cause severe damage to farmers and ranchers 
(Table 1) [10]. Although fungi can colonize cereals before or after 
harvest, colonization and proliferation depend on environmental 
and ecological conditions, because the resulting mycotoxin 
production will be different (Figure 1) [11]. Climate change has 
influenced the increase in temperature, as well as the variation in 
rainfall, modifying the scarcity of species even in cold regions [12]. 
For example, the current level of CO2 has increased from 280 to 
400 ppm, which has contributed to the effects of global warming 
[11]. Farming communities have the appropriate knowledge of 
the environment in which they farm, to obtain the best yields. 
However, if the weather changes, agricultural practices must be 
adjusted to maintain productivity [13]. Due to, changing adaptive 
associations under global climate change will modify the outcome 
of microbial plant-soil interactions. Which will affect crop 
production, food, and feed supply and quality, like so negatively 
affecting plant physiology [14]. It has been reported that, with 
high or low temperatures, the growth of fungi and the production 
of their metabolites is inevitable. Atanda et al., observed that 
temperatures below 20 °C favored Penicillium, while temperatures 
above 20 °C increased the growth of Aspergillus species. They also 
report that legumes and cereals are the food products most likely 
to be contaminated by Aspergillus species, even during storage 
because there is no temperature control [15]. 

Figure 1: Influence of climate change on mycotoxin production.

Aspergillus, Fusarium and Penicillium

Aspergillus flavus is one of the most frequently isolated species 
in agriculture and medicine, it is cosmopolitan and contaminates 
a wide range of crops in the world [23]. Aflatoxin contamination 
causes significant annual crop losses internationally. 
Contaminating food products include cereals, pistachios, tree nuts 

and peanuts, spices, and figs in hot climates, aflatoxin production 
occurs anywhere in the food supply chain, from preharvest to 
consumer (Wei et al., 2019; Zhang et al., 2022b). Most grain storage 
structures used by farmers do not provide the proper internal 
atmosphere, they do not give maximum protection against water, 
insects, and rodents; and they are not easy to clean. All these 

http://dx.doi.org/10.19080/ARTOAJ.2024.28.556402


How to cite this article: Karen Cristina Saez-G, Teresa Soledad Cid-P, Fabiola Avelino-F, Esperanza Duarte-E, Raúl Ávila-S. Sustainable Control 
Strategies for Mycotoxigenic Fungi and Their Metabolites in Food Safety: Review. Agri Res& Tech: Open Access J. 2024; 28(2): 556402
DOI:10.19080/ARTOAJ.2024.28.556402

003

Agricultural Research & Technology: Open Access Journal 

conditions promote fungal growth and aflatoxin production in 
stored grains and legumes [25]. Toxinogenic strains of Aspergillus 
flavus tend to produce higher levels of aflatoxin B1 (AFB1) and 
aflatoxin B2 (AFB2), while A. parasiticus produces more equal 
amounts of AFB1, AFB2, aflatoxin G1 (AFG1), and aflatoxin G2 

(AFG2) [26]. The phenotypic identification of this species is 
generally based on microscopic and macroscopic criteria, which 
consider the characteristics of conidiophores, phialides and 
spores, and colonial characteristics [27].

Table 1: Mycotoxigenic species and contaminating foods.

Mycotoxins Fungal species Contaminated food References

Aflatoxins Aspergillus flavus, A. parasiticus Peanuts, wheat, corn, white cheese, tree nuts, milk, figs, 
eggs [16]

Fumonisins Fusarium verticillioides, F. prolifer-
atum Corn, milk, meat, legumes, potatoes [17, 18]

Ochratoxin A (OTA) Aspergillus ochraceus, A. carbonarius, 
Penicillium verrucosum

Cereals, legumes, nuts, cheese, pork, coffee, raisins, 
grapes, nuts, wine [19]

Toxin T-2 Fusarium sporotrichioides Corn, wheat, barley, oats, rye [20]

Deoxynivalenol (DON) Fusarium graminearum Wheat, corn, rye, oats [21]

Zearalenone (ZEN) F. culmorum, F. graminearum, F. 
crookwellense Corn, wheat, barley, oats, rice, sorghum, soybeans [16]

Patulin (PAT) Penicillium expansum Apple, apple-based products, vegetables [22]

However, micro and macromorphological characteristics are 
not sufficient for correct identification in atypical Aspergillus 
isolates, which include those strains that present slow sporulation, 
or in the presence of cryptic or sister Aspergillus species. 
Furthermore, carrying out identification through these methods 
alone is time-consuming and requires considerable technical 
knowledge [28]. For this reason, there is a growing interest 
in polyphasic identification that includes not only phenotypic 
identification, but also genotypic identification, through 
molecular techniques. These molecular techniques are based on 
the partial or total sequencing of the genome of different genetic 
targets, including the internal transcribed spacer regions (ITS) 
of rDNA and genes that code for proteins such as calmodulin and 
β-tubulin (Nasri et al., 2015). Although Aspergillus fumigatus is the 
main causal agent of aspergillosis in humans and other animals, 
Aspergillus flavus is also of importance in this condition, which 
includes allergic, saprophytic colonizing and invasive aspergillosis 
[30]. The importance of this species is that it is the second main 
pathogen causing invasive and non-invasive aspergillosis [31]. 
Furthermore, A. flavus has been identified as one of the main 
causes of fungal keratitis, a fungal infection of the cornea [32]. 
Therefore, the correct identification of the species Aspergillus 
genus is important because these are the causal agent of a wide 
spectrum of clinical presentations, within these manifestations 
is bronchopulmonary aspergillosis, otomycosis, skin conditions, 
colonization of cavities and invasive aspergillosis (Nasri et al., 
2015).

Fusarium is considered opportunistic due to its ability to grow 
at 37 °C. Some of its species are producers of toxins which can 
affect man and animals. About 100 species have been described, 
of which 12 are considered pathogenic for man, among these 
are F. solani, F. oxysporum and F. verticilloides. It is a genus of 
great economic importance because they act as phytopathogens 

[34,35]. The genus Penicillium is a cosmopolitan genus that can 
grow on various substrates such as grains, fruits, nuts; it is one 
of the main contaminants in the postharvest phase [36]. It is 
important in animal and human nutrition due to the deterioration 
it produces in grains, in addition to producing toxins [37]. 
Many of the species belonging to Penicillium are abundant in 
the soil, as they can compete for organic substrates. In addition 
to this, its proliferation in food is easy, representing a serious 
problem for their conservation, in addition to being a potentially 
mycotoxigenic fungus, some of its species are producers of the 
mycotoxin called ochratoxin present in various foods, and which is 
considered nephrotoxic, inmunotoxic, teratogenic, in addition, the 
IARC (International Agency for Research on Cancer) classifies it 
within class 2B for being a probable human carcinogen [38]. Some 
other Penicillium species are important fruit pathogens during the 
postharvest period, and others are beneficial and widely used in 
the pharmaceutical and food industries [5].

Mycotoxins

The first reported signs of mycotoxicosis due to the 
consumption of food contaminated by mycotoxins arose in the 
Middle Ages in Europe. There are around 400 mycotoxins with 
toxigenic potential, produced by around 100 fungi [39,40]. 
Mycotoxins are naturally generated by certain filamentous 
fungal species, are chemically stable and heat resistant, so they 
can persist during food processing (OMS 2018). Two routes of 
exposure to these metabolites have been identified, through 
inhalation (frequently spores) and through diet, which can 
generate health effects for both humans and livestock [41,42]. 
The main effects are inmunotoxic, teratogenic, nephrotoxic, and 
carcinogenic. The most studied mycotoxins due to their effects 
on human and animal health, in addition to being important 
from the agroeconomic point of view, commonly found in food 
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are aflatoxins, zearalenone, fumonisins, trichothecenes, and 
ochratoxin A [43]. Mycotoxin contamination in the food chain is 
mainly conditioned by the diversity of fungal strains, the fungal 
vulnerability of the plant in the field, the microbial population, 
humidity, temperature, nutrients, and stress factors [44]. Fungal 
activity and toxin production elsewhere have been reported to 
be optimal at 25-37 °C [45]. In a study conducted by Zhao et al., 
they reported that 81.5% of feed ingredients were contaminated 
by aflatoxin B1, deoxynivalenol and zearalenone, while 95.7% 
of complete feeds were contaminated by these mycotoxins in 
various combinations [46]. In another study conducted by Ma et 
al they reported contamination by different mycotoxins in foods 
from different provinces of China with the following levels of 
contamination: AFB1 83.3%, ZEN 88.0% and DON 74.5% [47].

Aflatoxins

Aflatoxins consist of a group of approximately 20 related 
fungal metabolites, although the most studied for contaminating 
food are AFB1, AFB2, AFG1 and AFG2. Aspergillus flavus and A. 
parasiticus species are the main producers of aflatoxins and can 
grow on a wide variety of substrates. Their ability to produce 
aflatoxins depends on their individual metabolic system, essential 
for primary lipid metabolism, and specific enzymes (synthetases) 

capable of producing this secondary metabolite [48]. It should be 
noted that the synthesis of aflatoxins is not characteristic of the 
species, but of the strain [5]. These toxic substances are of low 
molecular weight, odorless, tasteless, and colorless, stable in food, 
it is also resistant, as it is not easily degraded by cooking processes 
[49-51]. High temperatures and humidity favor the growth of 
mycotoxin-producing fungi, so countries with these environmental 
conditions often experience increased contamination (Rushing 
and Selim, 2019). In addition to this, climate change has been 
modifying the variation in precipitation and temperature, this has 
meant that there are more regions prone to AFB1 contamination 
problems. Even that this contamination increases in crops where 
there were already problems due to this metabolite (Bbosa, G. 
S., Kitya, D., Lubega, A., Ogwal-Okeng, J., Anokbonggo, W. W., & 
Kyegombe, 2013, Rushing and Selim, 2019). Water content is a key 
determinant of aflatoxin development in food crops. To produce 
toxins by A. flavus, approximately 13% relative humidity and a 
water activity (aw) of 0.65 are required [15], however 0.77 of aw 
or more is optimal for growth and proliferation [54]. Aflatoxins 
are classified according to their chemical structure in the 
difurocomarocyclopentenone and difurocoumarolactone series, 
Table 2 shows the types of aflatoxins and their generalities.

Table 2: Aflatoxin’s classification of and its main toxic characteristics.

Serie Aflatoxins Generalities References

DC

Aflatoxin B1 Potent hepatotoxic and hepatocarcinogenic mycotoxin. [59] 

Aflatoxin B2 Development of cancer, from which aflatoxin M2 is formed. [60] 

Aflatoxin B2a Aflatoxin B2a (hydroxydihydro-aflatoxin B1) has lower toxicity and DNA binding than AFB1. [61]

Aflatoxin M1

It is a hydroxylated metabolite of AFB1, it is resistant to thermal inactivation, pasteurization, auto-
claving. [62]

Aflatoxin M2 It is a hydroxylated metabolite of AFB2. [63] 

Aflatoxicol It is a metabolite of AFB1, but less mutagenic. [64]

DL

Aflatoxin G1

Causes a chronic pulmonary inflammatory response, which is associated with oxidative damage to 
alveolar epithelial cells. [65]

Aflatoxin G2 Dihydroxy derivative of aflatoxin G1. [49]

Aflatoxin GM1 Basic and extremely weak polycyclic aromatic compounds. [66]

Aflatoxin GM2 Extremely weak basic compound (essentially neutral). Metabolite of Aflatoxin G2. [49]

DF: Difuranocumarines; DC: Difurocoumarociclopentenone; DL: Difurocoumarolactone

Exposure to aflatoxins is of relevance in the health sector, in 
2004 alone it was reported that approximately 4.5 billion people 
in developing countries were at risk of chronic and uncontrolled 
disease [15]. In a study carried out by Abdel et al. reported a 
maximum Aspergillus growth rate of 6.9 mm/day at 35 °C and 
a maximum aflatoxin production rate of 2278-3082 μg/g at 
37 °C in maize [55]. Wajih ul Hassan et al. reported aflatoxin 
contamination in maize in Pakistan, in all the samples there 
was aflatoxin contamination with limits higher than 20 μg/kg, 
in addition there was a higher concentration of AFG1 in all the 
maize varieties analyzed [56]. Even though the globalized world 

has allowed countries to take advantage of the tools to reduce the 
levels of aflatoxins in food, it is evident that developed countries 
have less risk of eating food contaminated with these metabolites 
compared to developing countries, due to the policies and 
mismanagement of operations in agriculture (Waliyar et al., 2015). 
In a study conducted in regions of Ghana by Sugri et al. farmers 
were surveyed to assess their knowledge about aflatoxins, 78% of 
the respondents knew about aflatoxins, however, 68.1% did not 
perceive aflatoxins as a major food safety problem. In this same 
study, aflatoxin contamination in corn samples will be limited to a 
range of 0.011 to 308 mg/kg (Sugri et al., 2015).
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Ochratoxin A

Among the ochratoxins that have been described are: β, 
α, A, B and C, however, it is reported that the most toxic is OTA 
(Ochratoxin A). OTA is one of the most important mycotoxins 
worldwide because it generates on human and animal health, 
within the effects it generates are nephrotoxic, mutagenic, 
teratogenic and inmunotoxic: this metabolite is generated by both 
Aspergillus and Penicillium species [67]. According to the IARC, it is 
in group 2B as a possibly carcinogenic substance [68]. The target 
organ of ochratoxin A is the kidneys, which is why it is associated 
with nephropathies [69]. It contaminates a wide variety of foods, 
including cereals, fruits, vegetables, spices, and animal products 
[70]. OTA is a white, odorless, crystalline solid compound, when 
absorbing ultraviolet light, it exhibits a strong fluorescence, which 
depends largely on the pH, the solubility in water is approximately 
0.42 mg/L at 25 °C and exhibits moderate solubility in polar 
organic solvents such as chloroform, ethanol, and methanol 
[71]. Because OTA compromises food safety, it is necessary to 
monitor this metabolite in food, its detection is mainly based 
on chromatography and immunoassays, but when using these 
methods there are limiting factors such as costs, processing time 

and trained personnel (Sugri et al., 2015; Waliyar et al., 2015). In 
a study by Wajih et al. contamination in corn by OTA in Pakistan 
was determined, reporting that 71% of the samples presented 
contamination by this metabolite in a range of 2.14 to 214 μg/
kg [74]. Majeed et al. report contamination by ochratoxin A with 
a value of 5.29 μg/kg in corn samples [75]. In another study by 
Ibáñez et al. in cereal samples obtained from a Spanish market, 
ochratoxin A contamination was reported in 39% of the analyzed 
samples of wheat and rice, whose values were 0.37 μg/kg [76].

Fumonisins

The Fusarium genus is the most prevalent plant pathogen 
invading agricultural crops, and the mycotoxins produced by 
species of this genus are the most economically important [77]. 
Within the group of metabolites produced by this genus, the 
most important due to their toxicity in humans and animals are 
fumonisins (FB), zearalenone (ZEA) and trichothecenes [78]. There 
are about 15 fumonisins, but the most studied are fumonisins B1 
(FB1), B2 (FB2) and B3 (FB3), of which the most toxic is FB1 and 
is classified within group 2B as a possibly carcinogenic substance 
in humans, by IARC [79, 80].

Figure 2: Impact of mycotoxins and control strategies. ELISA: enzyme-linked immunosorbent assay; FLD: lateral flow devices; TLC: thin 
layer chromatography; GC: gas chromatography; LC: liquid chromatography.

Control Strategies

Since mycotoxins can cause toxicity in animals and humans, 
there is a growing interest in the control or elimination of 

mycotoxigenic fungi and/or their metabolites. One of the 
systems affected by these metabolites is the agri-food system, 
which must guarantee the supply of sufficient and quality food. 
However, among the substances that compromise food safety are 
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mycotoxins, which represent a danger to food safety and to global 
health [81]. There are two strategic approaches aimed at the 
control of these fungal secondary metabolites. The first consists 
of the prevention of mycotoxins, which implies the inhibition of 
fungal growth, and the second consists of detoxification whose 
objective is to eliminate the fungal metabolite. Figure 2 shows the 
negative impact of mycotoxins on the world economy and food 
security. The latter being able to affect human and animal health; 
as well as strategies aimed at the control of mycotoxigenic fungi 
and their metabolites.

Detection

There are multiple techniques for the detection of mycotoxins, 
however, in a study conducted by Wei et al. the efficacy of surface 
plasmon resonance (SPR) was determined as a rapid detection 
method for mycotoxins in corn and wheat, the results showed 
that the minimum detection limits of ochratoxin A, AFB1, 
deoxynivalenol, and zearalenone were 1.27 ng/ml, 0.59 ng/ml, 3.26 
ng/ml, and 7.07 ng/ml, respectively [82]. Transducers have also 
been used, where the main detection method is the use of optical, 
piezoelectric, and electrochemical spectroscopy. In addition, 
biological materials such as peptides, enzymes, antibodies, cells, 
and nucleic acids are important elements in detection in biosensor 
studies [83]. Chen et al, described an Escherichia coli-based 
biosensor to evaluate AFB1 and ZEN (zearalenone) in peanut 
and corn oil samples. In this study they report the decrease in 
the concentration of AFB1 in the range of 0.01-0.3 μg/mL and of 
ZEN in a range of 0.05-0.5 μg/mL. They conclude that the method 

establishes a new approach for the detection of mycotoxins [84].

The damage caused by mycotoxins in human and animal 
health requires the development of effective detection methods. 
Immunoassays are a sensitive and highly specific tool for the 
rapid detection of mycotoxins [85]. Zhang et al. developed a 
multiple surface enhanced Raman scattering (SERS)-based 
lateral flow immunosensor to determine six major mycotoxins 
in maize. The results showed a recovery of 78.9 to 106.2% and 
a high precision of the assay, in addition to being an assay that is 
completed in less than 20 minutes [86]. Yan et al. used a mimotope 
of deoxynivalenol which specifically binds to anti-DON antibody. 
In this study, an average recovery in corn and wheat samples of 
90.4% to 118% and 101.3% to 111%, respectively, was obtained 
[85]. In another study conducted by Yang et al. developed an 
active signal electrochemiluminescence (ECL) biosensor for 
OTA determination, the results showed that ECL has a linear 
relationship with OTA in the range of 0.05 to 500 pg/mL with 
a correlation coefficient of 0.9957, with the limit of detection 
(LOD) being 0.02 pg/mL [87]. Therefore, the use of this biosensor 
for the detection of OTA in corn samples can give satisfactory 
results. Other studies carried out for the detection of mycotoxins 
which have proven to be effective and in some cases being able 
to detect multiple mycotoxins, are described in Table 3. Due to 
the importance of these metabolites in the agri-food chain, it is 
necessary to develop new methods for detecting mycotoxins in 
food and feed, which are rapid, low cost, as well as sensitive and 
selective [88], because these metabolites compromise food safety 
by putting human and livestock health at risk.

Table 3: Mycotoxin detection methods.

Evaluated mycotoxins Methods Results References

ZEN Competitive upconversion-linked immunosorbent 
assay (ULISA) Detection limit: 20 pg/mL-1 (63 pM). [95]

AFB1, DON, FB1, toxin T-2, 
ZEN

Microarray lateral flow test strip using an organic 
luminescent compound

Detection limits were 1.3, 0.5, 0.4, 0.4, and 
0.9 mg/kg, respectively [96]

Toxin T2, ZEN, FB1 Biosensor with a mass-sensitive microarray The sensitivity was 1.3, 2.0, and 6.8 ng/ml [97]

ZEN Modified polyvinyl chloride membranes. Detected with a sensitivity of 14.1 ± 3 μA/
μg [98]

OTA, FB1, DON
SERS array based on reverse opal silica photonic 

crystal microspheres loaded with AuNP (gold 
nanoparticles)

Detection limits were 2.46 pg/mL, 0.20 
pg/mL and 68.98 pg/mL [99]

AFB1, OTA, ZEN Quantum dot microsphere based immunochroma-
tography test strip

Sensitively detects at low detection limits 
of 0.01, 0.2, and 0.032 ng/mL [100]

AFB1 Fluorophore-based aptamer biosensor (Alexa Flu-
or 488) in combination with graphene oxide (GO)

Visible green bloom was observed at 20 
mg/kg, which was interpreted as 20 mg/

kg
[101]

AFB1 Surface enhanced Raman scattering radiometric 
aptasensor (SERS)

The detection limit was 0.6 pg/mL-1 in 
standard solution [102]

ZEN, PAT
Fluorescent aptasensor based on graphene oxide 

and fluorescence resonance energy transfer 
(FRET)

The detection limit of this aptasensor was 
2.29 nM for PAT and 0.037 nM [103]

AFB1, OTA, ZEN Catalytic Fork Assembly along with a Pregnancy 
Test Strip

Visual detection limits were 20.50 and 
20 pg/mL, these can be obtained in 15 

minutes
[104]
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Detoxification

It has been reported that the use of chemical fertilizers as 
the main fungal control measure is no longer efficient because 
chemical substances can destroy the ecological environment 
of the soil, resulting in fungal resistance [89]. Due to the above, 
there is a greater interest in the regulation of detoxification and 
detoxification of mycotoxins in food, from a physical, chemical, 
biological and nutritional approach [90]. The use of natural 
substances as an alternative in the detoxification of mycotoxigenic 
fungi and their metabolites is of great importance in food 
production. For example, the use of essential oils as a control 
measure is efficient due to its low toxicity, high volatility and 
because it is biodegradable [91]. The biosynthesis of mycotoxins 
is modulated by oxidative stress that occurs during the secondary 
exchange of fungi, through reactive oxygen species [44]. Therefore, 
there is a growing interest in the use of natural antioxidant 
substances that inhibit the growth of mycotoxigenic fungi and 
their metabolites, due to their non-toxicity and because they are 
friendly to the environment [92].

In a study carry out by Silva et al., the antifungal activity 
against Aspergillus flavus and A. parasiticus of the essential 
oils of fennel, ginger, peppermint and thyme was evaluated, 
reporting the following effective concentrations: 50, 80, 50 and 
50% respectively [93]. Kalagatur et al. evaluated the antifungal 
activity on strains of Aspergillus ochraceus and Penicillium 
verrucosum, of the essential oils of Cinnamomum zeylanicum and 
Cymbopogon martini, demonstrating a complete fungal inhibition 
of growth and OTA production at 1500 and 2500 μg/g in corn 
grains, respectively [44]. Gemeda et al. evaluated the antifungal 
activity of the essential oils of Cymbopogon martinii, Foeniculum 
vulgare and Trachyspermum ammi against Aspergillus strains, the 
results showed a better efficacy of T. ammi oil, showing mycelial 
inhibition absolute at 1 μl/mL, in turn completely inhibited spore 
germination at a concentration of 2 μl/mL. Furthermore, it totally 
inhibited the production of aflatoxins from A. niger and A. flavus at 
0.5 and 0.75 μl/mL, respectively [94].

In a study conducted by Gómez-Maldonado et al. the antifungal 
activity was evaluated from extracts of manila seeds, in the study 
they report an inhibition of mycelial growth against the fungus 
Colletotrichum brevisporum of 100% after 9 days and spore 
germination of 0% after 20 hours, with manila seed extract at 3 
g/L [105]. Andleeb et al. carried out a study in which they report 
an antifungal activity greater than 50% on strains of A. fumigatus 
and A. niger, by using extracts from flowers, berries and leaves of 
Argemone mexicana L. [106]. Rodriguez et al. carried out a study 
in which they report an 85% inhibition on the germination of F. 
oxysporum conidia on the fifth day of treatment, using phenolic 
extracts obtained from chiltepin fruits [107]. Trichoderma is a 
fungus widely studied in the world for its antifungal capabilities, 
as well as for promoting plant growth [108]. Trichoderma spp. it is 
cosmopolitan, it is characterized by the fact that it grows rapidly, in 
addition to having a metabolic diversity, even many of its species 

interact with animals, plants and other fungi [109]. In a study 
by He et al., showed that Trichoderma asperellum decreases the 
accumulation of DON (deoxynivatenol) and FB1 in the stem and 
cob of maize grown in soil [89]. Saravanakumar et al. determined 
that the cellulase genes Thph1 and Thph2 of Trichoderma 
harzianum, in addition to controlling foliar disease in corn, also 
act as biocontrol in stem rot caused by Fusarium [84].

In another study by Li et al. evaluated the efficacy of 
Sporidiobolus pararoseus Y16 against grape rot caused by 
Aspergillus niger, showing that at different concentrations of S. 
pararoseus Y16 the decomposition of table grapes by A. niger was 
significantly inhibited [51]. For their part Kinyungu et al. evaluated 
biological control treatments from harvest to storage. Concluding 
that biocontrol before harvest does not replace the need for better 
postharvest practices, since the population of toxigenic A. flavus in 
the harvested grain increased and produced aflatoxins throughout 
the drying time when the humidity was high [48]. Yerkovich et al. 
report a reduction in the accumulation of deoxynivalenol of 60% 
in wheat crops, when Bacillus velezensis RC218 was applied, this 
in greenhouse tests. Although, as they mention, climate change 
must be considered, when applying combined strategies with 
fungicides, biocontrol, and cultivars to control the accumulation 
of mycotoxins [103]. Finally, Table 4 describes other studies 
carried out to evaluate the detoxification of the main mycotoxins 
that contaminate food. These methods have proven to be a useful 
alternative for the control of mycotoxins, which can also be 
friendly to the environment. Likewise, Table 5 mentions some 
of the methodologies used for the identification and control of 
mycotoxigenic fungi.

Conclusion

The impact of climate change is affecting the agri-food 
system, generating optimal conditions for the proliferation of 
mycotoxigenic fungi. Environmental factors such as temperature 
and relative humidity, as well as agricultural practices, contribute 
to the production of mycotoxins. The foregoing makes this a topic 
of relevance worldwide since the control of these fungi and their 
metabolites compromises food safety. One of the most visible 
effects is the decrease in productivity, and therefore in the supply 
of food for both human and animal consumption. Even the poor 
quality of food contaminated by these metabolites affects human 
and animal health. These are friendly to the environment since 
the use of chemical fertilizers as a control measure destroys the 
ecological environment of the soil and can generate resistance. 
Detection methods for mycotoxins in food and feed must be fast, 
cheap, sensitive, and selective. Detection proposals include ELISA, 
ULISA, MSMA, aptasensors, and biosensors. Among the control 
measures that can become effective alternatives for detoxification 
are the use of natural extracts, essential oils, ultraviolet irradiation, 
co-cultures, and biodegradation. All these methods are a useful 
alternative to guarantee safe food, of good quality and sufficient 
for consumption demands.
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Table 4: Mycotoxin control strategies.

Micotoxins Control strategies Results References

AFB1
Aqueous extracts Passiflora alata, Psidium cat-
tleianum, Rosmarinus officinalis and Origanum 

vulgare

Reduction from 49.0 to 60.3% for R. officinalis, O. vulgare 
with 38.3% and P. cattleianum with 30.7% [78]

AFB1, FB1 CAPP Concentration reduction of up to 66% in corn for AFB1 and 
FB1 [98] 

DON Use of gaseous ozone, UV-C radiation, and CA Degraded more than 90% of AFB1 and AFB2 and more than 
99% of AFG1 and AFG2 [9]

Toxina T2, ZEN, 
FB1, FB2

Biodegradation of a collection of Bacillus mega-
terium BM344-1 and B. pumilus BP344-3

BM344-1 and BP344-3 showed 100% degradation of ZEN in 
Luria Bertani (LB) liquid medium. BM344-1 degraded FB1 

and FB2 by 14 and 12%, respectively.
[32]

ZEN Candida parapsilosis ATCC 7330 Level of ZEN (20 μg/mL) decreased by 97% [73]

DON Biological treatment using Lactobacillus fermen-
tation

L. uvarum allowed to reduce the DON content in wheat-
based products up to 75% [92] 

AFB1 Ultraviolet irradiation of the C region AFB1 reduction in corn ranged from 17 to 43% and in pea-
nuts from 14 to 51% [93]

AFB1 Co-culture of Aspergillus niger and Pleurotus 
ostreatus 93.4% of AFB1 degradation [96]

AFB1 Ratiometric surface-enhanced Raman scattering Limit of detection was as low as 0.1 pg/mL [21]

DON, beauveri-
cin. UHPLC–MS–IT–TOF Occurrence in more than 82% of the samples [31]

CAPP: Cold Atmospheric Pressure Plasma; CA: citric acid; UHPLC–MS–IT–TOF: ultra-high-performance liquid chromatography coupled to mass 
spectrometry–ion trap–time-of-flight.

Table 5: Detection and control of mycotoxigenic fungi.

Control strategies Results References

PeAfpA Alternaria, Aspergillus, Byssochlamys, Fusarium, and Penicillium were inhibited by concentrations 
ranging from 0.5 to 16 μg/mL [60]

PCR Of 227 isolates, Aspergillus made up 54.9%, Penicillium 23.3% and Fusarium 14.3%. [1]

qPCR LOD95: 123.5 spores/50 g and 37.1 spores/50 g for 24 h and 48 h respectively. [81] 

NaMBS No growth of A. flavus occurred with > 500–1250 NaMBS mg/l [5]

LAB Inhibition against A. flavus F008BA by L. fermentum 5KJEU5 (9.06%) [68]

LAB Lactiplantibacillus plantarum inhibited the growth of Penicillium spp. [59]

(E)-2-hexenal 4.0 μL/mL (MFC) of (E)-2-hexenal induced a 38.4% rate of early markers of apoptotic cell death in 
A. flavus conidia [56]

Stilbenes Pterostilbene with methoxy had the best antifungal properties, followed by piceatannol, and resver-
atrol. [17]

ITS1: internal transcribed spacer 1; ITS4: internal transcribed spacer 4; qPCR: quantitative real-time PCR; NaMBS: sodium metabisulphite; LAB: 
antifungal lactic acid bacteria; MFC: minimum fungicidal concentration.
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