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Introduction

Abiotic stresses significantly impact plant physiology, leading 
to adaptive responses in growth, root and shoot architecture, 
germination rate, and developmental transitions. While these 
adaptations are crucial for plant survival, they often result in 
reduced crop yields, posing a threat to food security [1-3].

Plant-Microbiota Interactions

In nature and agriculture, plants form complex associations 
with diverse microbial communities, collectively referred to as 
the plant microbiota [4-8]. These microbes, originating from soil, 
air, precipitation, seeds, and other organisms, create a holobiont, 
emphasizing the interconnectedness of the host plant and its 
associated microbes [7,9,10].

Role of Microbes in Plant Growth and Health

Plant-associated microbes contribute to plant growth and 
health through mechanisms such as increasing mineral solubility, 
modifying phytohormone signaling, providing nutrients, and 
enhancing pathogen resistance [11-14].

Microbial Impact Under Abiotic Stress Conditions

Under abiotic stress conditions, plant-associated microbes 
play a crucial role in influencing plant physiological conditions,  

 
promoting plant growth, and enhancing abiotic stress tolerance. 
Researchers are increasingly exploring the application of plant-
associated microbes in agriculture under stress conditions [15-
19].

Dynamics of the Bacterial Community Under Drought 
Stress

Drought stress affects the structure of bacterial communities 
in the rhizosphere and root endosphere, influencing the alpha 
diversity and relative abundance of specific bacterial taxa, such 
as Actinobacteria [20,21]. The enrichment of Actinobacteria, 
particularly Streptomyces, in the belowground parts of plants 
during drought appears to be a conserved response among various 
plant species [22].

Mechanisms Behind Microbial Responses to Drought

The enrichment of Actinobacteria is not only attributed to 
their drought-tolerant nature but also to their active adaptation 
to the drought environment, as revealed by metatranscriptome 
analysis [21]. The regulation of Streptomyces spp. enrichment 
during drought involves complex interactions, including plant iron 
metabolism and the secretion of phytosiderophores [23].
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Fungal Community Responses to Drought

While the effects of drought on fungal communities are 
generally smaller than those on bacterial communities, certain 
studies highlight changes in arbuscular mycorrhiza (AM) and 
ectomycorrhizal (ECM) fungi, crucial for drought stress mitigation 
[24,25]. Co-inoculation of AMF plants with Glomus sp. has shown 
potential for improving plant growth in saline soils by enhancing 
phosphate acquisition and reducing Na+ concentration in shoots 
[26].

Microbial Contributions to Drought and Salinity Stress 
Tolerance

The plant-associated microbiome has been recognized for 
its potential role in enhancing plant adaptation to drought stress 
[27]. Specific strains, such as Achromobacter piechaudii ARV8, 
have been identified for their ability to enhance drought stress 
tolerance in pepper and tomato through ACC deaminase activity 
[28]. Additionally, bacterial priming has shown promising results 
in improving wheat seedlings’ biomass and photosynthesis under 
severe drought conditions [29,30].

Conclusion

In conclusion, deciphering the intricate dynamics governing 
the interplay between plants and microbes under abiotic stress 
conditions stands as a crucial endeavor for unlocking the full 
potential of plant microbiota in the realm of sustainable agriculture. 
There exists a pressing need for further research endeavors aimed 
at unraveling the underlying molecular mechanisms, thereby 
facilitating the optimization of practical applications in agricultural 
contexts. A comprehensive understanding of the dynamic and 
intricate interactions between plants and microbes during abiotic 
stress is imperative for effectively harnessing the capabilities of 
plant microbiota in agriculture. This mini-review has offered 
valuable insights into the impact of abiotic stresses on microbial 
communities, underscoring their pivotal role in fostering plant 
adaptation and stress tolerance. The elucidated mechanisms shed 
light on the promising applications of microbial interventions, 
paving the way for sustainable agricultural practices.
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