Nitrogen-Containing Heterocycles in Agrochemicals

Eman A Al-Harbi* and Wafaa Ahmed Gad

Department of Chemistry, Taibah University, Saudi Arabia

Submission: May 06, 2018; Published: May 22, 2018

*Corresponding author: Eman A Al-Harbi, Department of Chemistry, Taibah University, Al-Madinah Al-Minawara, Saudi Arabia, Email: eman.a.alharbi@hotmail.com

Introduction

Nitrogen-Containing heterocyclic compounds are the most abundant and integral scaffolds that occur in a variety of synthetic drugs, bioactive natural products, pharmaceuticals and agrochemicals.

Lei Zhou et al. [1] reported the synthesis and the bacterial activity of pyridinium -5- trifluoro-methylpyrazoles (1a-f) bearing 1,3,4 oxadiazole moiety. These thioethers exhibited significant inhibitory activity against pathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo), Ralstonia solanacearum and Xanthomonas axonopodis pv. citri (Xac).

Benzo[d] imidazolyl tetrahydropyridine carboxylates (2a-c) have been prepared and were evaluated for their antifungal activity against Aspergillus niger (ATCC 16404). These compounds are significally toxic toward the fungi. Compounds with the electron- donating methoxy group on the phenyl ring are highly toxic [2].

Gregory Landellea et al. [4] reported the synthesis of imidacloprid and thiacloprid containing either 6- trifluoromethoxy or 6-difluoromethoxy –pyridin-3-yl methyl moieties (6a,b) and (7a,b), respectively. F2HCO-Imidacloprid (6b) is more active in vivo against green-peach aphid (M. persicae) than F3CO derivatives (6a), both derivatives are less active than imidacloprid. F3CO-Thiacloprid (7a) is more active in vivo against M. persicae than (7b). Both derivatives (7a,b) are much less active than thiacloprid.

Compounds (2a,b) inhibit 14-α demethylase in sterol biosynthesis pathway of the fungi 2018.

Stephan et al. [5] synthesized 4-(2,5-dichlorothiophen-3-yl)-1,3-dithiolan-2-ylidene)methyl)-1H-imidazole derivatives (8a,b)
inhibited 14-α-demethylase in the sterol biosynthesis pathway of the fungi.

\[
\begin{align*}
\text{(S,S)}
\end{align*}
\]

The above investigations open the route to a new access to bioactive ingredients and their further evaluation, which could possibly lead to large activity enhancements.

References

