Critical Level of 13C Enrichment for the Successful Isolation of 13C-Labeled DNA

Teng-xiang Lian1,2, Guang-hua Wang1, Zhen-hua Yu1, Xiao-bing Liu1 and Jian Jin1*

1Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, China
2University of Chinese Academy of Sciences, China

Submission: December 11, 2015; Published: January 22, 2016

*Corresponding author: Jian Jin, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China, Tel: +86 451 8669 1286; Fax: +86 451 8660 3736; Email: jinjin29@hotmail.com

Abstract

In the stable-isotope probing (SIP) technology, the 13C-labelled substrate is normally used to incorporate 13C into nucleic acids. A proper abundance of 13C in substrate is critical to the success of SIP, because the 13C level not only determines whether 13C in nucleic acids is sufficient to be detected, but also affects the enrichment bias in the labeled microbes. However, such information is very rare. In this study, a serial of 13C-labelled glucose from 0 to 50 atom% 13C was used to incubate with Escherichia coli and then performed DNA-SIP. Our results showed that the detective level of 13C-DNA could be reduced to 2 atom% 13C of glucose (1.30 atom% 13C in DNA extract), while the ideal level was 10 atom% 13C glucose (2.25 atom% 13C in DNA). The critical level of 13C for the separation of 13C-DNA provides a new reference of DNA-SIP in order to trace active microbial populations utilizing specific C substrates in environments.

Keywords: Stable isotope probing; 13C-DNA SIP; 8C; Glucose; Microbes

Abbreviations: SIP: Stable Isotope Probing; DNA: Deoxyribonucleic Acid; RNA: Ribonucleic Acid; PLFA: Phospholipid-Derived Fatty Acid; Ecoli: Escherichia coli; CsTFA: Cesium Trifluoroacetate; GB: Gradient Buffer; OD600: Optical Density at 600nm

Introduction

Stable-isotope probing (SIP) of nucleic acids has become a focal method in microbial ecology since it can identify microorganisms being involved in the metabolism of specific substrates [1-7]. The 13C-labelled substrate has been typically used in this technique to incorporate 13C into deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and phospholipid-derived fatty acid (PLFA) [5,7]. The isolation of the 13C-labeled DNA or RNA can provide the solid information of nutrient cycling in relation to phylogeny and function of uncultivated microorganisms in the natural environment [8].

Two requirements have to be satisfied in a successful isolation of the 13C-labeled DNA (13C-DNA). The first one is that the labeled DNA should be distinguished above a background of abundant unlabeled molecules, which depends on the minimum substrate concentration and duration of the incubation. The other is the avoidance of too much substrate that may lead to cross-feeding of the substrate and enrichment bias [5,9]. Therefore, identifying the proper concentration of substrate is the key for an acceptable SIP experiment that can reflect the nature of microorganisms incorporating the substrate turnover.

However, various concentrations of 13C labeled substrate were used in the SIP studies. For example, Radajewski et al. [8] stated that approximately 15–20 atom% 13C was necessary for separating 13C-DNA from 12C-DNA and analyzing the link between identity and function of microorganisms, while around 30 atom% 13C substrate was recommended for DNA-SIP in other studies [10,11]. Fan et al. [10] reported that the maize residue with 31 atom% 13C was necessary to effectively identify the active microorganisms which decomposed the residues. In a study of commercial strains isolation, 32 atom% 13C of biphenyl was used to successfully probe polychlorinated biphenyls (PCB)-degrading populations in PCB-contaminated river sediment [11]. Although the protocol of the DNA-SIP technology per se has been well documented [4,12], the critical level of the 13C enrichment in substrate for differentiating 13C-labeled DNA has not been quantitatively tested. Narrowing such knowledge gap will be helpful to precisely assessing the metabolic “functional” genes on the specific substrates. In the present study, we incubated the Escherichia coli (Ecoli) with a serial of 13C enrichments in glucose to identify the critical level of 13C enrichment in the substrate for the effective separation of 13C-DNA. It is predicted that the minimum enrichment of 13C labeled substrate for the
distinguishable detection of 13C-DNA would be in a range of 10–30 atom% 13C substrate.

Materials and Methods

Incubation of the E.coli with 13C-glucose

Six levels of 13C enrichment in glucose were designed in this study. They were 0, 2, 5, 10, 20 and 50 atom % 13C in glucose (Sigma-Aldrich) as substrate. Each level comprised 3 replications. Using M9 medium with 4% of glucose (13,14), 15 µl of E. coli solution (optical density at the 600 nm, OD600 = 0.8) was added to the medium and incubated at 37°C for 96 hrs on an end-over-end shaker. The OD600 values of the medium were determined at the beginning and the end of incubation with a spectrometer.

Extraction of E.coli DNA

DNA of E.coli was extracted from each treatment according to Casas and Rohwer [15]. DNA samples were visualized by electrophoresis in a 1% agarose gel. The concentration of DNA was measured using a NanoDrop 1000 (Thermo Scientific, Wilmington, DE) and the δ13C of the total E.coli DNA was determined by the Mat 253 isotope ratio mass spectrometer (Thermo Fisher, Germany). 13C enrichments were expressed relative to Pee Dee Belemnite standard as either δ13C or atom fraction 13C excess.

DNA-SIP

Cesium trifluoroacetate (CsTFA, Amersham Pharmacia Biotech) density gradient centrifugation was performed to separate the 13C-labled DNA from total E.coli DNA [16]. Control gradients were run with the DNA from the unlabeled E.coli for each course to calibrate the centrifugation system. Approximately 7000 ng of each DNA sample was loaded into a centrifuge solution with a starting buoyant density of 1.60 g ml$^{-1}$. This centrifugation medium consisted of 3.2 ml of a 1.99 g ml$^{-1}$ the CsTFA solution and 1.8 ml of gradient buffer (GB). The CsTFA solution with DNA was transferred to 4.9 ml Ultracrimp tubes (Beckman, USA) using 5 ml syringes. The tubes were centrifuged in a vertical rotor (Vii 65.2, Beckman) at 179,000 g (43,500 rpm) for 40 hrs at 20°C. The gradients were fractionated into 14 fractions by being displaced with water at a flow rate of 11.3 µl/s using a syringe pump (New Era Pump Systems, Inc. New York, USA). An AR200 digital refractometer (Reichert Inc., Depew, New York, USA) in the nD-TC mode was used to measure the buoyant density of gradient fractions. DNA in each fraction was precipitated with isopropanol (885 µl) and 1/10 volume (30 µl) of 3 M sodium acetate (pH 5.2). The DNA pellets were then washed and redissolved in $ddH_{2}O$. The redissolved DNA was amplified using a universal primer pair for the 16S rDNA gene, i.e. 357f (5’- CCT ACG GGA GGC AGC AG -3’) and 517r (5’- ATT ACC GGG GGT GCT GG -3’) [17]. The cycling profile was 95°C for 10 min and 28 cycles of 95°C for 15 s, 60°C for 10 s and 72°C for 20 s, and then 72°C for 10 min. The PCR products from the 1st to 10th fractions were run on a 1% agarose gel.

The F (fractional abundance) was calculated as followed [18]:

$$F = \frac{^{13}C}{^{13}C + ^{15}C} = \left(\frac{\delta^{13}C}{1000} + 1\right) \times R_{PDB}$$

Where $R_{PDB} = 0.0112372$ (the absolute isotope ratio of the PDB 13C standard) [19].

Using SAS (SAS Institute, 1994), data were analyzed statistically. The difference of 13C enrichment in the extract DNA between treatments was assessed with protected ANOVA tests at $P<0.05$ level [20].

Since ultracentrifuge creates gradient fractions, the stability of buyout densities between treatments greatly affects the quality of the 13C labeled DNA fractionation [12]. This stability was determined by calculating the coefficient of variability (CV) of buyout densities across treatments. The smaller the CV, the more consistent the fractionation of 13C-DNA was between treatments.

Results

E.coli growth supplied with 13C substrate and DNA extraction

![Figure 1: Optical densities at the 600 nm (OD600) for Escherichia coli that were grown in the M9 medium [1,16] for 96 hrs. The dash line indicates the initial OD600 value at the beginning of incubation.](image)

After 96 hrs of incubation, there was no significant difference in optical density (OD600) of M9 medium between treatments (Figure 1). Relatively pure DNA was extracted from the E.coli and the concentrations of DNA were in a range from 441 to 760 ng/µl (Figure 2). The δ13C of DNA increased significantly with the
increase of 13C enrichment in glucose. The F values had the same trend (Table 1).

Figure 2: Agarose gel electrophoresis of total DNA extracted from the *Escherichia coli* incubated in the M9 medium for 96 hrs. *E. coli* was supplied with different levels of 13C enrichment in glucose, i.e. 0, 2, 5, 10, 20 and 50 atom% 13C.

Table 1: The δ^{13}C and F values of the DNA extracted from *Escherichia coli* mediums. *E. coli* was supplied with different levels of 13C abundance in glucose (0, 2, 5, 10, 20 and 50 atom% 13C).

<table>
<thead>
<tr>
<th>Treatments (atom% 13C)</th>
<th>δ^{13}C (% PDB)</th>
<th>F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-27.01f</td>
<td>1.08f</td>
</tr>
<tr>
<td>2</td>
<td>169.57e</td>
<td>1.30e</td>
</tr>
<tr>
<td>5</td>
<td>522.81d</td>
<td>1.68d</td>
</tr>
<tr>
<td>10</td>
<td>1044.76c</td>
<td>2.25c</td>
</tr>
<tr>
<td>20</td>
<td>3043.08b</td>
<td>4.35b</td>
</tr>
<tr>
<td>50</td>
<td>10716.09a</td>
<td>11.63a</td>
</tr>
</tbody>
</table>

F indicates fractional abundance, i.e. 13C/(^{12}C + 13C). Different letters represent significance of difference at $P < 0.05$ level.

Table 2: Buyout densities from the 1st to 14th fraction of DNA-SIP in the treatments of 13C-labeled glucose (0, 2, 5, 10, 20 and 50 atom% 13C).

<table>
<thead>
<tr>
<th>Fractions</th>
<th>13C abundance in glucose (atom% 13C)</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1.6187</td>
<td>1.6169</td>
</tr>
<tr>
<td>2</td>
<td>1.6151</td>
<td>1.6151</td>
</tr>
<tr>
<td>3</td>
<td>1.6115</td>
<td>1.6115</td>
</tr>
<tr>
<td>4</td>
<td>1.6080</td>
<td>1.6080</td>
</tr>
<tr>
<td>5</td>
<td>1.6044</td>
<td>1.6044</td>
</tr>
<tr>
<td>6</td>
<td>1.6010</td>
<td>1.6010</td>
</tr>
<tr>
<td>7</td>
<td>1.5975</td>
<td>1.5958</td>
</tr>
<tr>
<td>8</td>
<td>1.5941</td>
<td>1.5924</td>
</tr>
<tr>
<td>9</td>
<td>1.5907</td>
<td>1.5890</td>
</tr>
<tr>
<td>10</td>
<td>1.5873</td>
<td>1.5856</td>
</tr>
<tr>
<td>11</td>
<td>1.5840</td>
<td>1.5823</td>
</tr>
<tr>
<td>12</td>
<td>1.5823</td>
<td>1.5807</td>
</tr>
<tr>
<td>13</td>
<td>1.5710</td>
<td>1.5742</td>
</tr>
<tr>
<td>14</td>
<td>1.4707</td>
<td>1.4611</td>
</tr>
</tbody>
</table>

The buyout density (Table 2) ranged from 1.582 g ml$^{-1}$ to 1.622 g ml$^{-1}$. The density in each fraction was consistent across treatments with small CV. This suggested that the performance of ultracentrifugation was consistent and successful between courses.

PCR products of the fractions

For the unlabeled control, the DNA band was visible from the 8th to 10th fraction (Figure 3). However, appearance of DNA band started in the 7th fraction under the 2 atom% 13C treatment. The distinguishable DNA band moved towards smaller fractions with the increase of 13C enrichment. At 50 atom% 13C, DNA band was clearly observed in the 2nd–10th fraction.

Discussion

The insignificant OD 600 values between treatments (Figure 1) suggested that the growth of *E. coli* was not affected by the addition of glucose with different 13C enrichments. Furthermore, the relatively high concentration of DNA and the clear bands of total DNA indicated that the extracted DNA (Figure 2) was
appropriate for the DNA-SIP process.

In this study, the DNA band in the 7th fraction appeared for the 2 atom% 13C-glucose treatment, while non DNA band in the same fraction for the unlabeled control, revealing that the detectable level of 13C substrate for 13C-DNA-SIP under the pure culture condition can be reduced to 2 atom% 13C in glucose. However, the better separation of 13C-DNA was achieved in the \geq10 atom% 13C treatment since the DNA band was visible in the 5th, 6th and 7th fraction under that treatment.

The detectable level of 13C substrate for 13C-DNA-SIP in this study is lower than that in a study by Radajewski et al. [8], reporting that 20 atom% 13C in substrate would be feasible to incorporate 13C into DNA, and resolve 13C-DNA from 12C-DNA. The difference is probably because the carbon source of 13CH$_3$OH used in that study could only label the methylotrophic bacterium i.e. Methylobacterium extorquens and this bacterium was not dominant in the soil microbial communities, while the 13C-labeled glucose was the sole C source in the pure incubation solution in this study. Thus, the threshold of 13C enrichment in glucose for the separation of 13C-DNA in this study was not as high as other studies. In addition, compared with 15N substrate for 15N-DNA-SIP, the minimum requirement of 13C enrichment in substrate was much lower even under the similar pure culture condition [1]. The minimum level of a 15N-labelled substrate, i.e. NH$_4$NO$_3$ has been quantified as low as 40 atom% 15N for the clear separation of 15N-DNA of Pseudomonas putida [1]. The difference is attributed to the fact that the C concentration of DNA is theoretically in a range of 41.2 to 46.1%, while the N concentration of DNA varies only between 13.9 and 15.8% [1]. This is also reflected in the shifts in buoyant density in the CsCl gradients. For 13C-labeled DNA this shift is approximate 0.036 g/ml, while it is only 0.013–0.016 g/ml for 15N-labeled DNA [21,22].

Nevertheless, the 13C enrichment in the extracted DNA for the minimum requirement of DNA-SIP is probably more practicable than that in substrates when this technology are used in the environmental experiments, especially in the soil experiments, because a number of uncertain factors such as carbon-conversion efficiency and growth rate of the target organisms [5] may lower the convert efficiency of 13C from substrate to DNA. A number of
studies have also stated that the requirement for supplemental nutrient addition for C assimilation of microbes and the amount of carbon incorporated into nucleic acid mostly depend on the targeted microorganisms and the characteristics of the samples being analyzed [4,12]. On the point of these views, the 13C enrichment in the extracted DNA is likely to be more accurate for predicting the successful SIP. In this study, the detectable level of 13C enrichment for DNA-SIP in the extracted DNA was 1.3 atom% 13C (Table 1).

It is worth to note that 13C-DNA bands were successively distinguishable from light to heavy fractions with the increase of 13C enrichment in substrate (Figure 3). This indicates that 13C gradually and proportionally incorporates into the C frame of the DNA molecule. However, in some DNA-SIP studies [5,23], the 13C DNA bands were observed in the heavy fractions (the 4th and 5th fractions) rather than the fractions in between such as the 6th and 7th fractions. The difference may be attributed to the 13C enrichment of substrate, incubation time and microbial specificity in utilizing 13C substrates.

Conclusion

In this study, we confirmed that the level of 13C enrichment in glucose for detectable 13C-labeled DNA could be reduced to 2 atom% 13C (1.30 atom% 13C in DNA extract). The critical level of 13C for the isolation of 13C-DNA provides a new reference of DNA-SIP in order to trace active microbial communities utilizing specific C substrates in environments.

Acknowledgement

The project was funded by the Key Project of Chinese Academy of Sciences (KZTD-EW-TZ-16-01), the Hundred Talents Program, Heilongjiang Provincial Funds for Distinguished Young Scientists (JC201413) and the National Natural Science Foundation of China (41271261).

References

