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Abstract

The global burden of Ixodes tick-borne diseases, including Lyme disease, babesiosis, and anaplasmosis, is escalating due to the geographical 
expansion of tick vectors, particularly Ixodes scapularis and Amblyomma Americanum, in the USA. This expansion has led to increased cases of 
Lyme disease and human ehrlichiosis, with a similar rise noted in Europe and Asia for diseases like tick-borne encephalitis and hemorrhagic fever. 
The review highlights the widespread distribution of tick-borne pathogens and the urgent need for improved diagnostic methods and heightened 
awareness. Lyme disease, caused by Borrelia burgdorferi, is predominantly transmitted by black-legged ticks and presents in three stages, each 
with distinct clinical manifestations. Diagnosis involves serological testing, which has limitations, while treatment primarily includes antibiotics 
like doxycycline. Babesiosis, caused by Babesia species, often results from Ixodes scapularis bites, with clinical severity varying based on host 
immunocompetence. Diagnosis requires laboratory testing, and treatment typically involves atovaquone and azithromycin. Anaplasmosis, caused 
by Anaplasma phagocytophilum, is transmitted by several Ixodes species and presents with nonspecific symptoms. Diagnosis relies on serological 
and molecular methods, with doxycycline as the first-line treatment. The review underscores the complexity of Ixodes tick-borne diseases and 
the necessity for integrated approaches involving researchers, healthcare professionals, and policymakers to manage and control these infections 
effectively.
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Introduction 

The global burden of Ixodes tick-borne diseases, including 
Lyme disease, babesiosis, and anaplasmosis, is increasing due to  

 
the geographical expansion of tick vectors. Due to this expansion 
in the Northern Hemisphere, vectors such as Ixodes scapularis and 
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Amblyomma Americanum have recently become common in the 
USA. They are responsible for increased cases of Lyme disease and 
human erlichiosis. The rise of tick-borne diseases is also noted in 
Europe and Asia, with increased cases of tick-borne encephalitis 
and hemorrhagic fever [1]. Reye et al. discussed an increased 
burden of tick-borne pathogens in Ixodes Ricinus and Dermacentor 
Reticulatus ticks in Belarus, posing a risk to humans and animals 
[2]. The distribution of pathogens associated with well-described 
tick-borne zoonoses seems wider than previously thought. Telford 
et al. highlight the renewed interest in tick-borne infections and 
the recognition of diverse new emergent infections arising from 
increased interest in Lyme disease in recent decades [3]. Fang et 
al. identified 33 emerging tick-borne agents in mainland China, 
with 15 causing human disease in their study [4]. The black-
legged tick named Ixodes scapularis is spreading rapidly, carrying 
multiple pathogens that cause various diseases. The geographic 
range of Ixodes scapularis has expanded, the number of counties 
with established populations has doubled, and the incidence of 
reported cases of Ixodes scapularis-borne diseases has increased 
significantly [7]. The literature emphasizes the need for improved 
diagnostic methods and increased awareness of these infections 
[4,7].

Understanding the spectrum of diseases transmitted by 
Ixodes ticks is a fundamental step toward effectively preventing 
and controlling these zoonotic infections. The literature highlights 
that at least six tick-borne zoonoses are transmitted by the 
Ixodes ricinus species complex. Therefore, understanding the 
biology of these ticks is not just important, but essential for the 
prevention and control of the zoonoses they transmit [5]. Grey 
et al. aimed to clarify the role of diapause in the life cycle of four 
related Ixodes ticks: Ixodes pacificus, Ixodes persulcatus, Ixodes 
ricinus, and Ixodes scapularis and its impact on their biology and 
the transmission of pathogens. The study concluded that the role 
of diapause in the life cycles of medically important ticks is not 
fully understood. The diapause is a key factor in determining the 
seasonal activity of ticks, and its understanding can lead to better 
prevention strategies [5,6].

This review aims to provide a comprehensive understanding 
of the wide spectrum of Ixodes tick-borne diseases. It underscores 
the increasing prevalence and diversity of tick-borne diseases, the 
role of Ixodes ticks as vectors, and the challenges in prevention and 
control. Importantly, the review emphasizes the need for a more 
integrated approach. Given the complex interactions between 
ticks, pathogens, and their environments, a comprehensive 
understanding and management of these diseases require a 
collaborative effort from researchers, healthcare professionals, 
and policymakers in the field of infectious diseases and public 
health.

Lyme Disease

Epidemiology and Geographic Distribution 

Reported Lyme disease cases in the US are concentrated 

mainly in endemic regions, including the West Coast, upper 
Midwest, mid-Atlantic, and Northeast. Most cases are reported 
in east-central Pennsylvania and the northern New Jersey coast. 
However, ticks are spreading Lyme disease and continuously 
expanding their geographic range. Lyme disease has been 
observed to be expanding into both the northern side, like Canada, 
and the southern side, like Tennessee and North Carolina [8]. 
Lyme disease is highly prevalent in the US. According to recent 
research, almost 4,760,000 Americans are treated and diagnosed 
with Lyme disease annually [9]. This number involves patients 
generally treated based on clinical suspicion of Lyme disease [8,9].

Lyme disease is not just a random occurrence; it is mainly caused 
by bacteria known as B. burgdorferi. This bacterium can be carried 
by black-legged ticks, also known as deer ticks [10]. Furthermore, 
not every species of tick can carry such bacteria. Immature deer 
ticks, also known as nymphs, are the most significant vectors of 
this disease. The risk of contracting Lyme disease is not limited to 
a specific group, it can affect anyone who is bitten by an infected 
tick. Outdoor activities such as hiking, hunting, and gardening in 
regions where deer ticks live can significantly enhance exposure 
to these ticks, potentially leading to the emergence and spread of 
the disease [10]. Additionally, walking into high grasses in highly 
prevalent areas of Lyme disease can also increase the risk of its 
spread and emergence, highlighting the need for caution and 
preventive measures.

Lyme disease is reported occasionally in travelers to the 
US returning to their home nations. Some cases have also been 
reported in the US and in Australian travelers returning from 
endemic regions of Europe. This disease is endemic in Europe, from 
the northern Mediterranean nations of Spain, Italy, and Greece to 
southern Scandinavia. Incidence is highest in eastern and central 
European nations. Moreover, infected deer ticks in Asia range from 
Japan, China, and Mongolia to western Russia. Furthermore, some 
of the highly endemic regions in North America include North-
Central and Northeastern US [8,9].

Pathogenesis and Clinical Manifestations 

Hard-shelled ticks of the Ixodes genus contribute to the most 
critical vector of Lyme disease transmission. Although ticks are 
born uninfected, larvae acquire spirochetes by feeding on infected 
reservoirs, including rodents such as field mice, birds, and white-
tailed deer [11,12]. As they grow into nymphal and adult stages, 
they transmit spirochetes to reservoirs or other hosts, such as 
humans. Immature ticks are responsible for most transmission 
rates in humans [11,12].

Lyme disease is classified into three stages of clinical 
presentation.

Stage 1, or early localized disease, presents the most 
pathognomonic sign: a circular-oval red rash with central clearing 
in a “bulls-eye” configuration called erythema migrans [11,12]. It is 
the origin site of the tick bite and inoculation of bacteria. Although 
not always accounted for, it is found in up to 70-80% of cases and 
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measures 5 centimeters in diameter or more prominent [13]. 
Usually, erythema migrans emerge after 5 to 7 and up to 14 days 
after the separation of the tick and sometimes may be reported for 
up to three months [11-13]. Other manifestations may be related 
to flu-like symptoms, such as low-grade fever, chills, headaches, 
fatigue, and general malaise [11,13].

Stage 2 or early disseminated disease begins after 12 weeks 
of the original tick bite and may lead to neurological, cardiac, 
and rheumatologic symptoms. Some include cranial neuropathy 
presenting as diplopia, facial nerve palsy or Bell palsy, and 
lymphocytic meningitis. The most common cardiac involvement 
to be reported is an atrioventricular heart block proximal to the 
bundle of His [11]. Lyme arthritis is usually mono-articular or 
oligoarticular, and though not exclusive, it generally affects large 
joints, commonly the knees, ankles, and wrists [12,13]. Patients 
present with large effusions and swelling but are not limiting pain 
or mobility when related to knee involvement. Although rare, 
Borrelial lymphocytoma is a dermatological manifestation that 
presents as a nodular red-blue painful swelling in the ear, scrotum, 
or the areola of the breast [12,13].

Stage 3 or late disseminated/persistent/chronic disease 
results from untreated Lyme disease after several months or years 
of the original tick bite [13]. It is characterized by manifestations 
such as encephalomyelitis, with symptoms such as ataxia, seizures, 
and autonomic dysfunction. Chronic arthritis with usual knee joint 
involvement and/or peripheral polyneuropathy are also features 
of the late disseminated stage [11,12]. Cognitive deficits and 
psychiatric manifestations are also described in this stage of the 
disease [13].

Diagnostic and Treatment Approaches 

Overall, there are two diagnostic tests for Lyme borreliosis. 
Direct detection methods identify Lyme borreliosis antigens or 
components in patient specimens. In contrast, indirect detection 
methods detect a host response to the infection and are also 
known as serum antibody tests [14]. Regardless of recent advances 
in molecular methods for the direct detection of infectious 
agents, such as PCR and culture, direct detection methods only 
play a significant role in diagnosing Lyme borreliosis if used in 
research settings. Indirect detection methods are, therefore, 
the most useful and commonly utilized diagnostic aids. The 
diagnosis of Lyme borreliosis based on serology uses two tests: 
an enzyme-linked immunosorbent assay (ELISA) and a Western 
Blot (WB). After initial infection with B. Burgdorferi, antibodies 
may not be detectable for several days to a few weeks during the 
“window period.” The antibody response is initially marked by 
the appearance of IgM-class antibodies, often with rapid IgM-to-
IgG isotype switching. These antibodies detect surface-exposed 
antigens, outer membrane lipoproteins, and the 41-kDa flagellar 
protein (p41/flagellin/FlaB) [15-27]. Other immunogenic antigens 
are also targeted in serological tests. A robust IgG antibody 
response usually develops after 1 to 2 months of untreated active 

infection. The most robust IgG antibody response was found in 
Lyme arthritis patients in the United States, with reactivity with 
as many as 89 antigens, particularly outer surface proteins [28]. 
While the IgM antibody response usually wanes and may become 
undetectable in late-active disease, the IgG antibody response 
persists [28-31]. There may be cases, however, where IgM 
antibodies continue to be detected [28,30]. Therefore, specific IgM 
antibodies do not necessarily indicate active or recent infection or 
reinfection unless the appropriate clinical presentation is present.

Even though they are widely used, these techniques have 
many limitations [32]. Lyme borreliosis can escape the immune 
system using a variety of mechanisms, thereby resulting in 
reduced immune protection despite the activation of innate and 
adaptive immunity [33]. A further obstacle to early detection is 
that serodetection lacks sensitivity in the early stage of the disease 
because of the so-called “window period,” where insufficient time 
has lapsed between infection and serotesting [15-17]. Wormser 
et al. demonstrated in one study that conventional two-tiered 
testing (EIA and Western blot) showed only 14% sensitivity in 
patients with solitary EM lesions evaluated within one week 
of rash onset, compared to 86% sensitivity in patients with 
localized infection evaluated 22 to 30 days after symptom onset, 
indicating that the robustness of the antibody response with 
the progression of time affects the sensitivity of the tests [33]. 
Additionally, antibiotic treatment may limit the development 
of a strong antibody response. Furthermore, there is possible 
cross-reactivity of antibodies due to common antigens with other 
diseases such as Epstein-Barr Virus and Toxoplasma gondii, and 
also the existence of co-infection, implying serum antibody tests 
might lack specificity leading to false positive or false negative 
results. Lastly, serological tests cannot distinguish between a past 
but cleared infection and an active one [34-36].

Lyme disease symptoms vary by stage—early localized, 
early disseminated, and late disseminated. The pathognomonic 
symptom, erythema migrans (EM), appears in the first stage at the 
tick bite site but is not always detected. Later stages can present 
non-specific symptoms such as neuroborreliosis, carditis, or 
arthritis, complicating diagnosis [37,38]. Lyme disease treatment 
involves simple antibiotic therapy, resolving 80 to 90% of cases 
if detected early. According to CDC guidelines, erythema migrans 
are treated with doxycycline 100 mg twice daily for 10-14 days, 
amoxicillin 500 mg thrice daily for 14 days, or cefuroxime 500 mg 
twice daily for 14 days [39,40]. These guidelines are supported 
by studies showing high efficacy with these treatments. For 
instance, a study with 607 patients treated with doxycycline found 
treatment failure in less than 1%, with most cases suggesting 
reinfection [41]. Despite doxycycline’s effectiveness, it has rare 
potential adverse effects, including photosensitivity, pseudotumor 
cerebri, and esophageal perforation [42]. One study compared 
the effectiveness of cefuroxime as an alternative to doxycycline 
as a treatment option for children with erythema migrans. This 
study found total resolution of symptoms in 92% and 67% of 
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groups treated with cefuroxime and doxycycline, respectively 
[43]. Cefuroxime can, therefore, be used in patients with EM and 
is a viable alternative, especially for children, in whom side effects 
of doxycycline might be of concern. Confirmation of successful 
antibiotic treatment can be tricky because B. burgdorferi-specific 
IgM and IgG antibody responses may persist qualitatively after 
effective antimicrobial treatment. Thus, serologic testing cannot 
be reliably used to distinguish between active and past infection 
unless seroreversion or a ≥4-fold decline in IgG antibody titer can 
be demonstrated by analyzing multiple serum samples [43].

A significant proportion of patients with Lyme arthritis do 
not respond fully to a 28-day course of antibiotics, necessitating 
retreatment. B. burgdorferi evades immune attack through 
antigenic variation and reduced antigen exposure, resembling 
other chronic infections where persister cells enable survival 
despite antibiotic treatment [44-49]. The presence of different 
genotypes within Borrelia species has significant clinical and 
diagnostic implications. Exposure to one genotype does not 
guarantee immunity against others [50]. Consequently, individuals 
can experience multiple infections from various B. burgdorferi 
genotypes. Reinfection is possible after an antibiotic-treated 
episode of erythema migrans. In contrast, reinfection is rarely 
reported following the resolution of late-stage Lyme borreliosis, 
likely due to the broader protective immune response elicited 
during the later stages of the disease [50-53].

Another concerning aspect of Lyme disease is post-treatment 
Lyme disease syndrome (PTLDS), characterized by persistent 
symptoms after treatment. The pathogenesis of PTLDS remains 
unclear, with theories including immune response to residual 
bacteria, autoimmunity, cross-reactivity, molecular mimicry, co-
infections/co-transmission, borrelial tolerance to antibiotics, and 
central sensitization. Direct detection methods can have a role in 
this case by allowing the detection of Borrelia bacteria and helping 
to determine if the antibiotics-based therapy has to be prolonged. 
Although there is no definitive standard of treatment for PTLDS, 
current management is supportive, highlighting the need for more 
research [38,50-53].

Babesiosis

Epidemiology and Geographic Distribution 

Babesiosis is a tickborne (mainly) infection caused by the 
parasite of the genus Babesia; few species have been documented 
that can affect humans (B. microti, B. divergens, B. duncani, and 
B. venatorum, B. motasi, and Babesia crassa-like agent), being B. 
microti the most common cause [54,55]. It is transmitted from the 
bite of the blacklegged tick (Ixoides scapularis), widely distributed 
in the northeast, upper Midwest, mid-Atlantic, and southeast 
states of the United States and Canada [56-58]. It can also occur 
from a blood transfusion, organ transplant, or congenitally [56]. In 
the US, babesiosis is considered endemic in 7 states: Connecticut, 
Massachusetts, Minnesota, New Jersey, New York, Rhode 

Island, and Wisconsin [59]. The emergence of the disease in the 
northeastern areas is suspected to be related to human migration 
to wooded areas and the increased population of white-tailed deer 
nearby [60]. On the other hand, there is a higher incidence among 
travelers going to endemic areas where symptoms may be absent 
or subtle [61]. 

Pathogenesis and Clinical Manifestations

B. microti is primarily transmitted to people by I. scapularis. 
Progression of I. scapularis through each of the three stages 
of its life cycle (larva, nymph, and adult) requires a blood meal 
from a vertebrate host. The primary reservoir host for B. 
microti is the white-footed mouse (Peromyscus leucopus). Most 
cases result from exposure to nymphal ticks from late spring 
through summer. A few babesia species are transmitted through 
transfusion of blood or blood products. B. microti is the most 
common transfusion-transmitted pathogen reported to the 
Food and Drug Administration (FDA) [62]. The pathogenesis of 
babesiosis is closely linked to the host response to infection and 
parasite-induced modifications in the erythrocyte membrane. The 
disease results from the excessive production of proinflammatory 
cytokines. Proinflammatory cytokines may be released by contact 
with immune cells with the glycosylphosphatidylinositol (GPI) 
anchors of babesia proteins expressed at the parasite’s surface or 
the surface of infected red blood cells. Proinflammatory cytokines 
subsequently stimulate downstream mediators such as nitric 
oxide, which may kill parasites, but also cause cellular damage 
when produced in excess [63]. Intravascular sequestration of 
leukocytes and infected erythrocytes may lead to obstruction 
of the microvasculature and tissue hypoxia. Anemia caused by 
the rupture of erythrocytes during the egress of babesia also 
contributes to pathogenesis, as do nonhemolytic mechanisms, 
such as the clearance of uninfected erythrocytes [62].

The clinical presentation of babesiosis can range from 
asymptomatic to severe infection, causing multi-organ failure. The 
severity of infection is often dependent on the immunocompetence 
of the host. The asymptomatic infection has been reported in up 
to 20% of adults and 50% of children. The incubation period is 
1–4 weeks following tick bite and 1–9 weeks after contaminated 
blood transfusion [64]. Symptomatic illness in patients without 
immunodeficiencies usually consists of a febrile, flu-like illness, 
often with a chill, sweats, malaise, fatigue, and headache. Other 
less common symptoms include a cough, arthralgia, sore throat, 
abdominal pain, nausea, emotional lability, and depression. A rash 
is not a common symptom and may indicate co-infection with 
Lyme disease [65]. Severe B. microti illness requiring hospital 
admission is common among patients who have undergone 
splenectomy and those with cancer, human immunodeficiency 
virus infection, hemoglobinopathy, or chronic heart, lung, or 
liver disease. Other groups at increased risk for severe disease 
include neonates, persons over the age of 50 years, patients 
receiving treatment with immunosuppressive drugs for cancer 
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(e.g., rituximab) or undergoing organ transplantation, and those 
receiving anti-cytokine therapy [62]. Complications include adult 
respiratory distress syndrome, pulmonary edema, disseminated 
intravascular coagulation, congestive heart failure, renal failure, 
coma, splenic rupture, or a prolonged relapsing course of illness 
despite standard antibiotic therapy [66]. Death occurs in up to a 
tenth of patients hospitalized for B. microti infection. The fatality 
rate is even higher among those who are immunocompromised 
or acquired the infection through blood transfusion. Concurrent 
infection with B. microti and one or several tick-transmitted 
pathogens can occur and may increase the number and duration 
of acute symptoms [63].

Diagnostic and Treatment Approaches 

When diagnosing babesiosis, it is important to suspect 
patients who are travelers, especially in the summer, and more 
specifically but not exclusively, those who visited endemic areas. 
It may also present as Lyme disease refractory to antibiotics 
[67]. However, laboratory testing is necessary to diagnose 
babesiosis due to various presenting signs and symptoms. A 
complete blood count would be investigated in most patients with 
infection-like symptoms. In patients with babesiosis, anemia and 
thrombocytopenia are common findings, and Leukocyte count 
may be decreased [68].

Furthermore, the parasite can be visualized on a Giemsa 
stain of peripheral blood smear using a microscope as they are 
intraerythrocytic. There are many forms that the parasite may 
take, but the most common form is the ring form. Ordinarily, 
only 10% of erythrocytes would be infected, but this number can 
increase to 85% in asplenic patients [69]. In addition, laboratory 
findings directly resulting from the parasite’s pathogenic 
actions, erythrocyte invasion, and lysis will be observed. 
Therefore, reticulocyte count, liver enzyme concentrations, and 
unconjugated bilirubin will be elevated. If the disease progresses 
and begins to affect the kidneys, proteinuria and elevated blood 
urea nitrogen and creatinine will be observed [68]. If the blood 
smear is negative, other tests include polymerase chain reaction 
(PCR) and convalescent serology [70]. PCR is as sensitive as 
microscopic detection on blood smears but is also more specific. 
Immunofluorescent antibody and complement-fixation assays can 
also detect antibacterial antibodies [71]. It is more reliable than 
PCR and takes less time and money to conduct this investigation.

In the past, standard treatment changed over time as safer 
treatment options were discovered, which resulted in less severe 
adverse reactions. In the 1980s, a combination of Clindamycin and 
Quinine was used, but it caused many adverse reactions, including 
tinnitus, vertigo, syncope, and GI upset [72]. This was replaced 
by the combination of Atovaquone (750 mg every 12 hours) and 
Azithromycin (500 mg on day 1, then 250 mg per day) for 7 days, 
successfully clearing parasitemia and symptoms with significantly 
lower rates of adverse reactions [73]. In severe cases with high 

parasitemia, hemolysis, and renal or pulmonary involvement, 
exchange transfusion is the most appropriate treatment [74]. This 
helps to expel parasite-infected erythrocytes from circulation, 
as well as cytokines and thromboplastic agents that contribute 
to renal failure and the potential for disseminated intravascular 
coagulation (DIC). However, this treatment has many risks and 
is not a standard routine [75]. In a standard case of babesiosis, 
Atovaquone and Azithromycin are currently the gold standard for 
definitive treatment. 

 

Anaplasmosis 

Epidemiology and Geographic Distribution 

Anaplasmosis is an infection caused by the Anaplasma 
phagocytophilum [76]. It is a tick-borne condition transmitted 
by the Ixoides scapularis, also known as black-legged or deer 
tick in the Midwest and Northeastern US [77]; I. pacificus, I. 
persulcantus, and I. ricinus, are common vectors in Western 
US, in Asia, and Western Europe respectively [78,79]. A higher 
incidence of anaplasmosis is associated with the migration of 
humans to endemic areas and an increased deer population in the 
surrounding urban areas. 

Pathogenesis and Clinical Manifestations

Anaplasmosis is a zoonotic disease on the rise caused 
by the intracellular gram-negative bacterium Anaplasma 
phagocytophilum, which predominantly spreads through bites 
from Ixodes ticks. In North America, Ixodes scapularis and Ixodes 
pacificus are the primary species, whereas in Europe, Ixodes 
ricinus serves as the primary vector [80,81]. The bacterium 
targets leukocytes and platelets, entering cells via phagocytosis 
and replicating within cytoplasmic vacuoles, forming morulae 
that can be observed under a microscope [82]. Transmission 
has also been reported via blood transfusions and organ 
transplants, demonstrating the bacterium’s ability to persist in 
the bloodstream and stored blood products [80-83]. The disease 
pathogenesis includes preventing the fusion of phagosomes with 
lysosomes, promoting bacterial replication within cells, and 
delaying apoptosis [81].

Clinical symptoms of anaplasmosis are diverse and nonspecific, 
often including high fever, headaches, muscle pain, general 
malaise, and gastrointestinal and respiratory issues [81,84]. 
Typical laboratory findings are leukopenia, thrombocytopenia, 
and elevated liver enzymes [80]. Disease severity varies from mild 
to severe, with complications such as respiratory failure, multi-
organ dysfunction, and neurological issues [83]. Around 50% of 
anaplasmosis patients require hospitalization, and 7% of these 
cases necessitate intensive care, with a mortality rate of up to 
0.3% in North America [80,82]. Severe cases are less common in 
Europe compared to North America [81].
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Various factors impact the disease’s presentation and severity. 
Exposure to ticks is a significant risk, particularly in endemic 
regions and during peak tick activity seasons (spring to autumn) 
[80,84]. The disease is more prevalent in adults over 40 and 
males [83]. Immunocompromised individuals, such as organ 
transplants and blood transfusion recipients, are more prone 
to severe infections due to weakened immune systems [82,84]. 
Furthermore, coinfections with other tick-borne pathogens like 
Borrelia burgdorferi and Babesia microti can complicate diagnosis 
and treatment, thereby increasing morbidity and mortality [81]. 
Geographic variations also affect disease epidemiology, with 
higher incidence rates in the northeastern and upper midwestern 
United States.

Diagnostic and Treatment Approaches 

Diagnostic and treatment approaches for Ixodes tick-borne 
diseases face several challenges, particularly in the context 
of serological testing and molecular diagnostics. Serological 
tests, often used to detect antibodies against pathogens like 
Borrelia burgdorferi, can yield false negatives if conducted 
early in the infection when antibodies have not yet developed 
or false positives due to cross-reactivity with other bacteria 
[85]. Molecular diagnostics, such as PCR, offer the advantage 
of detecting pathogen DNA directly from clinical samples, yet 
their sensitivity and specificity limit them and the requirement 
for high-quality samples [86]. These diagnostic limitations 
complicate the accurate and timely diagnosis of diseases like Lyme 
disease, Anaplasmosis, and Babesiosis, often leading to delayed or 
inappropriate treatments.

The treatment options for Anaplasmosis primarily involve 
antibiotics, with doxycycline being the highly effective first-
line treatment. Doxycycline is known for its prompt resolution 
of symptoms [87]. In cases where patients cannot tolerate 
doxycycline, alternatives like rifampin may be used. However, 
antiparasitic treatments are less common for Anaplasmosis 
than Babesiosis, which requires drugs like atovaquone and 
azithromycin due to its protozoan etiology [88]. Despite effective 
antibiotic regimens, treatment can be complicated by co-infections 
with other tick-borne pathogens, which may require concurrent 
therapies and complicate clinical management.

Challenges in treating Ixodes tick-borne diseases extend 
beyond initial antimicrobial therapy, including antimicrobial 
resistance issues and persistent symptoms. Some patients 
continue to experience symptoms, such as fatigue, pain, and 
cognitive difficulties, even after completing appropriate 
antibiotic courses—a condition sometimes referred to as Post-
Treatment Lyme Disease Syndrome (PTLDS) [89]. The underlying 
causes of PTLDS are not fully understood but may involve 
lingering immune responses or persistent, low-level infections. 
Additionally, emerging resistance to standard antibiotics poses 
a significant threat, potentially limiting future treatment options 
and necessitating the development of novel therapeutics [90]. 

Addressing these challenges requires continued research into the 
pathophysiology of persistent symptoms, antimicrobial resistance 
mechanisms, and innovation in diagnostic and therapeutic 
strategies.

Innovations and Research Advances 

Innovations and research advances in Ixodes tick-borne 
diseases have significantly enhanced our understanding and 
management of these infections. Recent innovations include 
the development of more accurate diagnostic tools and the 
identification of biomarkers for early detection. Advancements in 
CRISPR-based technologies have enabled precise genome editing 
of pathogens and their tick vectors, opening new avenues for 
studying the mechanisms of disease transmission and potential 
intervention strategies [91]. Applying artificial intelligence and 
machine learning to epidemiological data has improved predictive 
modeling of tick-borne disease outbreaks, aiding public health 
efforts in disease surveillance and control [92].

Advances in genomics, transcriptomics, and other omics 
technologies have provided more profound insights into host-
pathogen interactions in tick-borne diseases. High-throughput 
sequencing and bioinformatics have facilitated comprehensive 
analyses of the genetic material of both Ixodes ticks and the 
pathogens they transmit. These studies have revealed complex 
gene expression and regulation networks underpinning the tick’s 
ability to harbor and transmit multiple pathogens [93]. Proteomics 
and metabolomics have further elucidated the biochemical 
pathways involved in infection and immune evasion, highlighting 
potential targets for therapeutic intervention [94]. Understanding 
these interactions at a molecular level is crucial for developing 
strategies to disrupt the life cycle of the pathogens within their 
tick hosts.

Exciting developments in discovering novel therapeutic targets 
and vaccine candidates are also emerging from these advanced 
research methodologies. Identifying unique surface proteins 
and metabolic enzymes in pathogens like Borrelia burgdorferi 
and Anaplasma Phagocytophilum has led to the development of 
targeted therapies that can disrupt essential biological processes 
in these organisms [95]. Furthermore, advances in immunology 
and vaccinology have facilitated the design of vaccines that elicit 
robust and long-lasting immune responses against multiple tick-
borne pathogens. Some of these vaccines, potentially potentially 
preventing diseases like Lyme disease and Anaplasmosis, are 
currently undergoing clinical trials and show great promise 
[96]. These innovations represent significant strides towards 
controlling and eventually eradicating tick-borne diseases, 
offering a brighter future in disease management.

Conclusion

The rising incidence and geographical spread of Ixodes tick-
borne diseases such as Lyme disease, babesiosis, and anaplasmosis 
underscore the urgent need for comprehensive strategies to 
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address these public health challenges. The increasing prevalence 
of these diseases in regions like the USA, Europe, and Asia 
highlights the critical role of ticks as vectors and the expanding 
habitats that facilitate their spread. As evidenced by the 
literature, improved diagnostic methods, heightened awareness, 
and a deeper understanding of tick biology are paramount for 
effective prevention and control. The detailed exploration of 
Lyme disease reveals complex clinical presentations, from the 
hallmark erythema migrans in early stages to severe neurological, 
cardiac, and rheumatologic complications in later stages. The 
challenges in diagnosing Lyme disease, particularly during the 
early “window period” and the persistence of antibodies post-
treatment, necessitate advancing more reliable diagnostic tools. 
Moreover, treatment approaches, while generally effective with 
early antibiotic intervention, require vigilance in managing late-
stage and post-treatment Lyme disease syndrome (PTLDS).

Babesiosis, predominantly transmitted by Ixodes scapularis, 
poses significant risks, particularly for immunocompromised 
individuals. The variability in clinical manifestations, ranging 
from asymptomatic to severe, life-threatening conditions, 
underscores the importance of accurate diagnosis through blood 
smears and PCR tests. Treatment regimens have evolved, with the 
combination of atovaquone and azithromycin becoming the gold 
standard due to its efficacy and reduced adverse effects compared 
to previous treatments. Anaplasmosis, another critical tick-borne 
disease, exhibits nonspecific symptoms complicating its diagnosis. 
The intracellular pathogen Anaplasma phagocytophilum targets 
leukocytes and platelets, leading to systemic complications. 
The reliance on serological and molecular diagnostic methods 
and effective antibiotic treatments like doxycycline highlights 
the need for prompt and accurate detection to mitigate severe 
outcomes. Addressing the global burden of Ixodes tick-borne 
diseases requires a multifaceted approach involving enhanced 
diagnostic techniques, effective treatment protocols, and robust 
public health initiatives. Collaborative efforts among researchers, 
healthcare professionals, and policymakers are essential to 
advance our understanding and management of these zoonotic 
infections, ultimately reducing their impact on human health. As 
tick populations and their associated pathogens expand, ongoing 
vigilance and innovation in infectious diseases are crucial to 

safeguarding public health.
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