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Abstract 

As proved by the recent literature, the developed in-silico (math-model-based) numerical analysis of such biochemical/biological systems turned out to be a beneficial tool to (i) off-line 

determine optimal operating policies of complex multi-enzymatic or biological reactors with a higher precision and predictability, or (ii) to design GMO (genetically modified micro-organisms) of 

desired characteristics for various uses. This work presents a holistic ‘closed loop’ approach that facilitate the control of the in vitro through the in-silico development of dynamic models for living 

cell systems, by deriving deterministic modular structured cell kinetic models (MSDKM) (with continuous variables and based on cellular metabolic reaction mechanisms). The ever-increasing 

availability of experimental (qualitative and quantitative) information about the tremendous complexity of cell metabolic processes, stored in large bio-omics databanks (including genomic, 

proteomic, metabolomic, fluxomic cell data for various micro-organisms), but also about the bioreactors’ operation necessitates the advancement of a systematic methodology to organise and 

utilise these data. This work is aiming to prove the feasibility and the advantages of using the classical and novel concepts and numerical tools of the chemical and biochemical engineering (CBE) 

to develop MSDKM of the extended cell-scale CCM-based (central carbon metabolism), and of genetic regulatory circuits (GRC) / networks (GRN). These extended kinetic models will be further 

linked to those of the bioreactor dynamic models (including macro-scale state variables), thus resulting hybrid structured modular dynamic (kinetic) models (HSMDM) proved to successfully 

solve more accurately difficult bioengineering problems compared to the classic (default) unstructured (apparent) math dynamic models. In the HSMDM, the cell-scale model part (including 

nano-level state variables) is linked to the biological reactor macro-scale state variables for improving both model prediction quality and its validity range. 

By contrast, as proved in the 3&4 parts of this work, by considering only the macroscopic key-variables of the process (biomass, substrate, and product concentrations), and ignoring 

detailed representations of metabolic cellular processes, the unstructured (apparent, global) math dynamic models do not adequately reflect the metabolic changes of the bioreactor biomass, 

being inadequate to accurately predict the cellular response to the medium disturbances through the self-regulated cellular metabolism. These classical global/unstructured dynamic models 

may be satisfactory for an approximate modeling of the biological process, but not for modeling of cellular metabolic processes, and they cannot make any correlation between the bioreactor 

operation and the continuous adaptation of the biomass metabolism to the variable conditions of the bioreactor. Even worse, as proved by the author in previous papers, such global models may 

lead to biased and distorted conclusions about the GERM’s performances, thus making the modular constructions of GRC-s difficult by linking individual GERM-s. 

In this 2nd part of the paper, a special attention is paid to the conceptual and numerical rules used to construct various individual GERM-s kinetic models, but also various GRC-s (e.g. toggle-

switch, amplitude filters, modified operons, etc.) modular kinetic models from linking individual GERM-s. To develop more accurate and realistic math (kinetic) models of GERM-s and GRC-s, 

this part briefly reviews sa novel holistic ’whole-cell of variable-volume’ (WCVV) modelling framework introduced and promoted by the author in previous works. The WCVV has been proved 

to be more realistic and robust, by explicitly including in the MSDKM math-model relationships linking the cell-volume growth with the species dynamic mass balances, with also preserving 

the cell-osmotic pressure (that is the cell membrane integrity). The added isotonicity constraints were proved to be essential for more adequately predicting the performance regulatory indices 

(P.I.) of GERM-s and GRC-s. More specifically, this part briefly reviews the WCVV deterministic model hypotheses, and its advantages when simulating GERM-s, and GRC-s dynamics in living cells, 

by contrast to the classical (default) WCCV (whole-cell constant-volume modelling framework); regulatory performances indices (P.I.-s) of GERM-s; rules to link GERM-s when modelling GRC-s, 

and other related theoretical aspects.
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Introduction

As discussed in the Part-1 of this work, the current off-line in-
silico approach (based on the math models) used in biochemical 
engineering and bioengineering practice for solving desisgn, 
optimization and control problems of industrial biological 
reactors is to use unstructured Monod (for cell culture reactor) 
or Michaelis-Menten (if only enzymatic reactions are retained) by 
ignoring detailed representations of metabolic cellular processes, 
or interactions among enzymatic reactions in multi-enzymatic 
systems. As discussed, the applied engineering rules are imported 
or are like those used in the chemical and biochemical engineering 
(CBE), and in the control theory of nonlinear systems (NSCT), and 
Bioinformatics. However, by considering only the macroscopic 
key-variables of the process (biomass, substrate, and product 
concentrations), these unstructured (apparent, global) math 
models do not adequately reflect the metabolic changes of the 
bioreactor biomass, being inadequate to accurately predict the 
cellular response to the medium disturbances through the self-
regulated cellular metabolism over dozens of cell cycles. These 
global dynamic models may be satisfactory for an approximate 
modeling of the biological process, but not for modeling of cellular 
metabolic processes, and they cannot make any correlation 
between bioreactor operation and the continuous adaptation of 
biomass metabolism to the variable conditions of the bioreactor. 
Even worst, as proved by [1-9], such global CCM models, or the 
whole-cell (WC) math kinetic models of GERM-s (individual 
gene expression regulatory modules), or for GRC-s (genetic 
regulatory circuits) constructed in a WC constant cell volume 
(WCCV) modelling framework, may lead to biased and distorted 
conclusions about the GERM’s performances, thus making difficult 
the modular constructions of GRC-s by linking individual GERM-s 
[1,2,4-9].

The current trend to solve such engineering problems 
more accurately is to use deterministic modular structured cell 
kinetic models (MSDKM), or hybrid structured modular dynamic 
(kinetic) models (HSMDM) with continuous variables, and based 
on cellular metabolic reaction mechanisms, that consider, with a 
degree of detail suitable to the each approached case study, the 
cellular metabolic reactions and the cell key-species dynamics. In 
the HSMDM, the cell-scale model part (including nano-level state 
variables) is linked to the biological reactor macro-scale state 
variables for improving both model prediction quality and its 
validity range. As proved ny Maria [1-5], and Yang et al. [10], the 
modular structured kinetic models can reproduce the dynamics 
of complex metabolic syntheses inside living cells. This is why 
the modular GRC dynamic models, of an adequate mathematical 
representation, seem to be the most comprehensive mean for a 
rational design of the regulatory GRC with desired behaviour [11]. 
These structured dynamic math models (MSDKM, or HSMDM) 
can satisfactorily represent the key steps of the central carbon 
metabolism (CCM) at a cell scale, by also including reaction 
modules responsible for the synthesis of cellular metabolites of 

interest for the industrial biosynthesis. The same MSDKM can 
satisfactorily simulate, on a deterministic basis, the self-regulation 
of cell metabolism for its rapid adaptation to the changing 
bioreactor reaction environment, by means of complex “genetic 
regulatory circuits” (GRC-s), which include chains of individual 
„gene expression regulatory modules” (GERM-s).

In this way, more accurate predictions are obtained both for 
the dynamics of the biological process at the cellular level, and 
for the dynamics of the operating parameters of the analyzed 
industrial bioreactor. The immediate applications of these 
MSDKM and HSMDM refer to (i) the more precise determination 
of the optimal operating policy of an industrial bioreactor, and (ii) 
facilitates, by means of an in-silico (math-model based) numerical 
analysis, determination of GMO-s with a cell metabolism of 
desired characteristics [12-16]. In this context, this 2nd part of the 
work shortly review the essential CBE and NSCT principles and 
rules used to elaborate MSDKM, but also the so-called „Hybrid 
structured modular dynamic (kinetic) models” (HSMDM) with 
continuous variables [12,13,15] that combine the characteristics 
of the cellular metabolic process involving species participating 
to the essential reaction modules of CCM (Figure 1 & Figure 2) 
at a nano-scopic level, with the macro-scopic processes involving 
the state variables of the industrial bioreactor. Special attention 
is paid to the conceptual and numerical rules used to build-up 
modular CCM kinetic models, in direct connection to various 
individual GERM-s kinetic models, but also to various GRC-s 
(e.g. toggle-switch, amplitude filters, operons expression, etc.) 
modular kinetic models by linking a couple of GERM-s. To do such 
a complex modelling work in a consistent way, this 2nd part of 
the work will briefly reviews the novel „Whole cell variable cell 
volume” (WCVV) modelling framework introduced and promoted 
by introduced and promoted by the author in previous works, 
such as [1,2,4-6,8,9,17], as an essential modelling instrument 
to develop more realistic and precise MSDKM-s and HSMDM-s. 
Besides presenting the WCVV deterministic model hypotheses, 
this paper points-out its advantages when simulating GERM-s, and 
GRC-s dynamics in living cells, in a holistic approach, by contrast 
to the classical (default) WCCV (whole-cell constant-volume 
modelling framework). Even worst, as proved by [1,2,4-6,8,9], such 
global CCM models, or the whole-cell (WC) math kinetic models of 
GERM-s, or for the GRC-s constructed in a WC constant cell volume 
(WCCV) modelling framework, may lead to biased and distorted 
conclusions about the GERM’s performances, thus making difficult 
the modular constructions of GRC-s by linking individual GERM-s.

The novel WCVV has been proved to be more realistic and 
robust [1,2,4-6,8,9], by explicitly including in the MSDKM math-
model relationships linking the cell-volume growth with the 
species dynamic mass balances, with also preserving the cell-
osmotic pressure (that is the cell membrane integrity). The added 
isotonicity constraints were proved to be essential for more 
adequately predicting the performance regulatory indices (P.I.) 
of GERM-s and GRC-s. More specifically, this part briefly reviews 
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the WCVV deterministic model hypotheses, and its advantages 
when simulating GERM-s, and GRC-s dynamics in living cells, by 
contrast to the classical (default) WCCV ; regulatory performances 
indices (P.I.-s) of GERM-s; rules to link GERM-s when modelling 
various GRC-s (e.g. toggle-switch, amplitude filters, modified 
operons, etc.), and other related theoretical aspects. As is proved 
in the Parts 3 and 4 of this work, the in-silico (math/kinetic model-
based) numerical analysis of biochemical or biological processes 
by using MSDKM or HSMDM models are proved to be not only 
an essential but also an extremely beneficial tool for engineering 

evaluations aiming (i) to determine with a higher accuracy the 
optimal operating policies of complex multi-enzymatic reactors, 
[18-23], or of bioreactors including the biomass adaptation to the 
variable bioreactor environment over hundreds of cell cycles [12-
14, 24-27], or even (ii) to easier and quickly simulate and analyze 
the performances/ characteristics of various GMO-s alternatives, 
by using the “metabolic flux analysis” (MFA) [27-31], together 
with the gene-knock-out technique, or the cell cloning procedure 
[4,5,12-15,31,32].

Figure 1: Simplified representation of the CCM pathway in E. coli of Edwards and Palsson [144] Maria et al., 2011] (the “wild” cell 
including the PTS-system). Fluxes characterizing the membrane transport [Metabolite(e) ↔ Metabolite(c)] and the exchange with 
environment have been omitted from the plot. See [30] for details and explanations regarding the numbered reactions. Notations: 
[e]= environment; [c]=cytosol. Adapted from [32] courtesy of CABEQ Jl. The considered 72 metabolites, the stoichiometry of the 95 
numbered reactions, and the net fluxes for specified conditions are given by [30]. The pink rectangle indicates the chemical node 
inducing glycolytic oscillations [98,100,102]. Notations   , and   denotes the feedback positive or negative regulatory loops 
respectively. GLC = glucose; F6P= fructose-6-phosphate; FDP = fructose-1,6-biphosphate; see the abbreviation list for species 
names; V1-V6 = lumped reaction rates indicated by [15]. Species abbreviations are given by [15].
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Figure 2:Summary (principle) scheme of the CCM in a eukaryotic cell. Glycolysis (the central vertical pathway) represents the key 
core of CCM. Source =
https://en.wikipedia.org/wiki/File:Metabolic_Metro_Map.svg

A central part of cell metabolic math (kinetic) models 
concerns self-regulation of the metabolic processes via GRC-s. 
Consequently, one application of such dynamic cell MSDKM 
or HSMDM models is the study of GRC-s, connected to the CCM 
reaction modules to predict ways by which biological systems 
respond to signals, or environmental perturbations. The emergent 
field of such efforts is the so-called ‘gene circuit engineering’ 
(GCE), that is a part of the Synthetic Biology (see the Part-1 of 
this work), and many examples have been reported with in-silico 
re-creation of GRC-s conferring new properties/functions to the 
mutant cells. Thus, Synthetic Biology was defined as “putting 
engineering into biology”. [33]. This emerging field is strongly 
linked to the systems Biology which, is one of the modern tools, 
that uses advanced mathematical simulation models for in-silico 
design of GMOs that possess specific and desired functions and 
characteristics. By using simulation of gene expression, the 
GCE realizes in-silico design of GMO-s that possess desired cell 
functions. By inserting new genes or knock-out some of them, 
modified GRC-s can be obtained inside a target micro-organism, 

thus creating a large variety of mini-functions / tasks (desired 
‘motifs’) to the mutant (GMO) cells in response to external stimuli 
[4,5,32-39,40-48]. This needs to have good quality MSDKM 
structured cell models to simulate the dynamics of the bacteria 
CCM (and its regulation via cell GRC-s/GRN-s) became a subject of 
very high interest over the last decades, allowing in-silico design 
of GMO-s with desirable characteristics of various applications in 
the biosynthesis industry, civil engineering, medicine, and other 
fields [1,2,4,5]. This important motivation fully justifies derivation 
of more accurate and realistic modelling frameworks of CCM and 
GERM-c / GRC-s, as those described in the next section.

1.	 Modelling the Dynamics of GRC/GRN in Living Cells

Because the GRC-s are responsible for the control of the cell 
metabolism, the adequate kinetic modelling of the constitutive 
GERM-s, but also the adequate representation of the linked GERM 
regulatory efficiency in a GRC is an essential step in describing the 
cell metabolism regulation via the hierarchically organized GRC-s 
(where key-proteins play the role of regulatory nodes). Eventually, 
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such models allow simulating the metabolism of modified cells 
[1,2,4,5]. Various reduced / extended math (kinetic) models have 
been proposed to represent the elementary metabolic fluxes of a 
CCM (Figure 1 & Figure 2). (see the reviews of [49,50,1,2,4,5]), or 
of various GRC-s [12-14, 35-39, 51-74, 1,2,4,5]. Eventually, such 
models allow a multi-criterion design and optimization of a target 
GRC-s [12-14,75]. Generally, living cells are evolutionary, auto-
catalytic, self-adjustable structures able to convert raw materials 
from the environment into additional copies of themselves. Living 
cells are hierarchically organized, self-replicating, evolvable, 

and responsive biological systems to environmental stimuli. 
The structural and functional cell organization, including 
components and reactions, is extremely complex, involving O (103-

4) components, O (103-4) transcription factors (TF-s), activators, 
inhibitors, and at least one order of magnitude higher number of 
(bio)chemical reactions, all ensuring a fast adaptation of the cell to 
the changing environment [1,2,4,5, 74-77]. Relationships between 
structure, function and regulation in complex cellular networks 
are better understood at a low (component) level rather than at 
the highest-level [80,81].

Figure 3: The library of [1,2,4,5,74] with lumped modular models to represent the GERM-s dynamics. Adapted from [4,5,74] with 
the courtesy of CABEQ Jl. Simplified representations of some generic gene expression G/P regulatory modules (GERM) types 
following [74]. The horizontal arrows indicate reactions; vertical arrows indicate catalytic actions; absence of a substrate or product 
indicates an assumed concentration invariance of these species; Up-row: simplified representation of the gene expression model 
corresponding to [G(P)n] regulatory module types. The transcriptional factor is the protein P itself, the self-regulation over the 
transcription and translation steps being lumped together. To improve the system homeostasis stability and self-regulation, despite 
of perturbations in nutrients Nut*, and metabolites Met*, or of internal cell changes, a very rapid buffering reaction G + P <===> 
GP (inactive) has been added. Middle-row. Simplified representation of the gene expression model corresponding to a [G(PP)
n] regulatory module types. The transcriptional factor (TF) is the dimmer PP. Down -row. simplified representation of the gene 
expression model corresponding to [G(P)1; M(PP)n] regulatory module types. The models account for the cascade control of the 
expression via the separate transcription and translation steps.
Notations: G* = DNA gene encoding the protein P*; M = mRNA; P, PP = allosteric effectors of the transcription/translation.”

Cell regulatory and adaptive properties are based on 
homeostatic mechanisms, which maintain quasi-constant key-
species concentrations and output levels (i.e. quasi-steady-state 
- QSS, of a cell balanced growth) by adjusting the synthesis rates, 

by switching between alternative substrates, or development 
pathways. Cell regulatory mechanisms include allosteric 
enzymatic interactions and feedback in gene transcription 
networks, metabolic pathways, signal transduction and other 
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species interactions [80]. Protein synthesis homeostatic 
regulation includes a multi-cascade control of the gene expression 
with negative feedback loops and allosteric adjustment of the 
enzymatic activity [1,2,4,5,74,76,77,81,82]. When the cell-model 
used to construct an extended HSMDM includes individual 
GERM-s of various types (Figure 3 & 4) [1,2,4,5,74], or complex 
GRC-s gathering chains of inter-connected GERM-s, such as genetic 
switches (Figure 5), or operons’ expression (Figure 6), genetic 
amplifiers, etc. [1,2,4,5, 58,76,83,84], the classical (default) is to 
use the ’whole-cell-constant-volume’ (WCCV) kinetic modelling, 
by writing the species differential mass balances in terms of 
concentrations but neglecting the cell-volume continuous 
growth. However, as proved by [1,6-9,17] this classic (WCCV) 
kinetic modelling framework cannot longer be applied because 
the regulatory properties of GERM / GRC are related to the cell 
holistic properties, in direct connection to the cell-volume growth, 
and to a lot of additional constraints derived from the cell holistic 
properties (e.g. isotonic constraint ensuring the cell membrane 
integrity). 

To also account for the cell growth, and their holistic 
constraints, a novel holistic “whole-cell” (WC) math modelling 
framework of cell processes must be applied, to also account for 
the cell variable volume and other constraints. This novel WC 
math modelling framework was introduced by Maria [6,74,85], 
that is the so-called ’whole-cell-variable-volume’ (WCVV), by 
analogy with the CBE concepts/rules [86]. More specifically, 
WCVV uses the same concepts/principles and analytical/
numerical rules employed by CBE when developing kinetic 
models for chemical reactions conducted in variable-volume 
systems [86]. Implications of the novel WCVV concept when 
modelling metabolic cell processes (especially GRC-s) under 
variable cell-volume were systematically studied, compared to 
the WCCV models [6], positive results extrapolated, and widelly 
promoted in a large number of applications by Maria [1,2,4,5, 6-9, 
12-15, 25, 74,76,77, 85,87-89] that is the so-called „whole-cell-
variable-volume (WCVV) framework. The next chapters aim to 
briefly describe the characteristics of the WCVV approach, and its 
superiority in the prediction accuracy offered by the WCVV kinetic 
modelling framework compared to the classical WCCV, as proved 
by [1,2,4,5, 6-9,17].

In this context, the adequate modelling of the genetic 
regulatory circuits (GRC), made from linked GERM-s, together 
with modelling the cell central carbon metabolism (CCM) 
remain subjects of tremendous importance on which researches 
have been focus over the last decades, as long as GRC-s are the 
essential metabolic components used to re-design the whole cell 
metabolism, and in regulating the whole cell syntheses [1,72]. 
GRC-s, also denominated as ’genetic regulatory networks’ GRN-s, 
is a combination (network) of GERM-s ensuring precise functions 
into the cell (Figures 5 & 7). Due to the gene location in the GRC 
nodes, a more sophisticated definition was given by [90], by using 

the graph-theory:

Definition- Gene Regulatory Network (GRN): a Gene 
Regulatory Network is a mixed graph G: = (V, U, D) over a set V 
of nodes, corresponding to gene-activities, with unordered pairs 
U, the undirected edges, and ordered pairs D, the directed edges. 
A directed edge dij from vi to vj is present iff a casual effect runs 
from node vi to vj and there exist no nodes or subsets of nodes in 
V that are intermediating the casual influence (it may be mediated 
by hidden variables, i.e. variables not in V). An undirected edge 
uij between nodes vi and vj is present iff gene-activities vi and vj 
are associated by other means than a direct casual influence, and 
there exist no nodes or subsets of nodes in V that explain that 
association (it is caused by a variable hidden to V). 

The modular modelling approach of GRC-s

In fact, any lumped representation of a GERM, or a GRC 
should include, in one form or another, the main ’actors’ of such 
regulatory circuits, that is: metabolites (Met*) as substrates 
for genes (MetG) and protein (MetP) synthesis, genes (G*) and 
their encoded proteins (P*), as depicted in (Figure 7). This is 
a very simplified representation of the biochemistry in living 
cells (“hiding” hundreds of enzymatic reactions) conceptually 
decomposed in three ‘spaces. Influences between gene-activities, 
without explicitly accounting for the proteins and metabolites, 
result from a projection of all regulatory processes on the ‘gene 
space’ [91]. The used analysis of GRC-s/GRN-s is those of a modular 
one. Thus, more complex functions, such as regulatory networks, 
synthesis networks, or metabolic cycles can be built-up by using 
the building blocks rules [33]. The modular organization of cell 
regulatory systems is computationally very tractable. Moreover, it 
is known that one gene expression interacts with less than 23-25 
other GERM-s [92], while most GERM structures are repeatable. 
Thus, to study one individual GERM, it is not necessary to model 
the whole cell GRN.

The modular GRC dynamic models, of an adequate math 
representation, seem to be the most comprehensive means for a 
rational design of the regulatory GRC-s with desired behaviour 
[42,74,77]. However, the lack of detailed information on reactions, 
rates and intermediates makes the extensive representation 
of the cell large-scale GRC–s difficult, if not impossible, for both 
deterministic and stochastic approach [41,74]. When continuous 
variable dynamic models are used, the default framework is that of a 
constant volume / osmotic pressure system (WCCV), by accounting 
for the cell-growing rate as a ‘decay’ rate of key-species (often 
lumped with the degrading rate) in a so-called ‘diluting’ rate. Such 
a representation might be satisfactory for many applications, but 
not for accurate modelling of cell regulatory / metabolic processes 
under perturbed conditions, or for division of cells, distorting the 
prediction quality [1,2,4,5, 6-9]. The variable-volume modelling 
framework WCVV detailed in this section, with explicitly linking 
the cell-volume growth, external conditions, osmotic pressure, 
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cell content ballast (that is the cell content, expressed as a total 
concentration in nano-moles/cytosol volume), and net reaction 
rates for all cell-components, is proved as being more promising 
in predicting local and holistic properties of the CCM metabolic 
networks, or of various cell GRC-s [1,2,4,5,77,77], or even the cell 
cycle [93]. By contrast, the classical WCCV modelling framework 
tends to overestimate the GRC dynamic regulatory properties 
[6,7,74,77,94,95].

Examples of such GRC modulated functions.

As mentioned by the pioneers of this field, with the aid of 
recombinant DNA technology, it has become possible to introduce 
specific changes in the cellular genome. This enables the 
directed improvement of certain properties of micro-organisms, 
such as the productivity in a target (excretable) metabolite, 
by changing the nature/amount of the encoded cell enzymes, 
which is referred to as Metabolic Engineering [2,4,5,28,96,97]. 
This is potentially a great improvement compared to earlier 
random mutagenesis experimental techniques but requires 
that the targets for modification are known. The complexity of 
pathway interaction and allosteric regulation limits the success 
of intuition-based approaches, which often only take an isolated 
part of the complete system into account. Mathematical models 
are required to evaluate the effects of changed enzyme levels or 
properties on the cell system taken as a whole (WC concept), 
by using the “metabolic control analysis” (MCA) or a dynamic 
sensitivity analysis [1,2,4,5,95,98]. In this context, GERM and 
GRC dynamic models are powerful tools in developing re-design 
strategies of modifying genome and gene expression seeking for 
new properties of the mutant cells in response to external stimuli 
[1,2,4,5]. Examples of such GRC modulated functions include 
toggle-switches, hysteretic GRC behaviour, GRC oscillator, specific 
treatment of external signals, GRC signalling circuits and cell-cell 
communicators [87]. Examples of such GRC modulated functions 
include [1,2,4,5,76,87,99]:

a)	 Toggle-switch, i.e. mutual repression control in two gene 
expression modules, and creation of decision-making branch 
points between on/off states according to the presence of certain 
inducers (Figure 5, with references).

b)	 Hysteretic GRC behavior, that is a bio-device able to 
behave in a history-dependent fashion, in accordance with the 
presence of a certain ‘inducer’ in the environment.

c)	 GRC oscillator produces regular fluctuations in 
network elements and reporter proteins and makes the GRC 
evolve among two or several quasi-steady states [49,100-104]. 
Complex MSDKM structured models including CCM and GRC 
modules can predict conditions for oscillations occurrence for 
various cell processes [10,36,49,83,100-102]. As studied by Yang 
et al. [10], “all biochemical reactions in organisms cannot occur 
simultaneously due to constraints of thermodynamic feasibility 

and resource availability, just as all trains in a country cannot run 
simultaneously. Therefore, oscillations provide overall planning 
and coordination for the inner workings of the cellular system. 
This seems to be contrary to the theoretical basis of GEMs, which 
are based on the steady-state hypothesis and flux balance analysis 
[105], but just as computers will not operate in the same way as 
the human brain, this difference can be understood and accepted, 
so that non-equilibrium theory and the steady-state hypothesis 
have been and will continue to coexist and guide our reasoning 
[12].

d)	 External signals treatment by controlled expression such 
as amplitude filters, noise filters or signal / stimuli amplifiers. 
For instance, the signal (external mercury) amplifier and quick 
induction of the mercury (MER)-operon expression in E. coli 
[5,13,14].

e)	 GRC signalling circuits and cell-cell communicators, 
acting as ‘programmable’ memory units, by adapting the cell 
metabolism to the environmental changes. See, for instance [4,5] 
for the mer-operon, and TRP-operon cases.

f)	 GRC for operon expression. For instance: mercury 
(MER)-operon expression in E. coli [5,13,14]; tryptophan (TRP)-
operon expression [5,15].

As discussed by [1,2,4,5,6,17,74], the classical (default) 
modelling tools of metabolic cell processes are based on the 
’Constant Volume Whole-Cell’ (WCCV) continuous variable 
ODE dynamic models which, do not explicitly consider the cell 
volume exponential increase during the cell growth. As proved 
by [6,8,9], such an approach may lead to biased and distorted 
conclusions on the GERM’s performances, thus making difficult 
the modular constructions of GRC-s by linking individual 
GERM-s. By contrast, the holistic ’whole-cell of variable-volume’ 
(WCVV) modelling framework introduced, extended, and widely 
promoted by [1,2,4,5,6-9, 13,14,74,77,88,89] has been proved to 
be more realistic and robust, by explicitly including in the model 
relationships the cell-volume growth, with preserving the cell-
osmotic pressure (that is the cell membrane integrity). The added 
isotonicity constraint by Maria [1,2,4,5,6-9,74,85] proved to be 
essential for predicting more adequate performance regulatory 
indices (P.I.-s, see the below section) of GERM-s and GRC-s.

GRC comparative modelling using WCVV vs. WCCV 

This section is aiming to exemplify, in a simple and meaningful 
way, the importance of using a WCVV modelling framework 
compared to the classical (default) WCCV models when simulating 
the main regulatory properties of GERM-s or GRC-s, by explicitly 
accounting for the cell-volume growth, and system thermodynamic 
isotonicity (constant osmotic pressure). Exemplification is made 
for the case of the simplest generic GERM model, of [G(P)1] 
type (see GERM nomenclature in the below sections and the 
subsequent references), with characteristics taken form E. coli 
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cells [8,9,74,76,106-108], by mimicking the cell homeostasis 
and its response to dynamic perturbations. The paper subject 
importance is very high, if many cell simulators are developed and 
used for practical applications in the biosynthesis industry, and 
in medicine. The isotonicity constraint is proving to be a natural 
way to preserve the homeostatic properties of the cell system 
[1,2,4,5,6,74,77], instead of imposing other constraints, such as 
“the total enzyme activity” and “total enzyme concentration” 

constraints [109,110]. A comparison of model prediction quality 
in the case of a GERM of [G(P)1] type (Figure 3 & Figure 4) 
modelled under WCCV or WCVV, clearly indicate that WCCV can 
lead to biased and distorted conclusions on GERM regulatory 
performances (under both stationary or as response to dynamic 
pulse-like perturbations), thus making difficult the modular 
construction of GRC-s by linking individual GERM-s (Figure 8 & 
Figure 9) [6,8,9].

Figure 4: The synthesis of a generic protein P. Simplified representations of its generic GERM regulatory module (horizontal arrows indicate 
reactions; vertical arrows indicate catalytic actions; G = gene encoding P; M = mRNA; R = repressor; In = inducer; Met = metabolites). See 
reviews of [1,2,4-6,74,87-89].

Figure 5: Example of linked GERM-s to form GRC-s (genetic switches here, in the left side). See the reviews of [1,2,4-6,74,87-89]. [right-up] 
A cell simulator of Boolean type [124].
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Figure 6: The nano-scale cellular enzymatic process in the immobilized E. coli bacteria: mer-operon expression (5 linked GERM, of [G(PP)1] 
type; see the details of [4,5,12-15]), and the main enzymatic reactions (mercury permeation, and its reduction, after [145-149]). Adapted 
from [12-15]. Notation: mer = mercury ions.

Figure 7: Abstract depiction of cellular physiology. Adapted from [90].
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Figure 8: Comparison of WCCV vs. WCVV modelling approach in the case of a simple [G(P)1] - GERM [4-6,8,9].

Figure 9: Comparison of the WCCV and WCVV modelling approach in the case of a simplest [G(P)1] gene expression regulatory module 
(GERM). [Left-part] The WCCV representation is not able to simulate the cell homeostasis (that is the quasi-steady-state QSS of the cell 
balanced growth). [Right-part] The dynamic regulation is very weak and distorted under a WCCV representation. Adapted after [1,4-6,8,9].
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WCCV modelling framework.

For a system of chemical or biochemical reactions conducted 
in a cellular defined volume ’V’ (assumed an open system of 
uniform content), the classical (default) formulation of the 
corresponding (bio)chemical kinetic models based on continuous 
variables (concentration vector ’C’, or number of moles vector 
’n’) implies writing a set of ordinary differential equations (ODE) 
representing the mass balance of the considered system states 
(biological/chemical species index ’j’, taken individual or lumped), 
in the following WCCV (whole-cell constant-volume) modelling 
formulation (with referring to the whole system volume)[111]:

1
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Where Cj = species “j” concentration; nj = species “j” number of 
moles; νij = the stoichiometric coefficient of the species “j” in the 
reaction “i”; ri = reaction “i” rate. The above formulation assumes a 
homogeneous constant volume with no inner gradients or species 
diffusion resistance into the cell. When continuous variable ODE 
dynamic models are used to model cell enzymatic/metabolic 
processes, the default-modelling framework Eq. (1A-B) is that of 
a constant volume and, implicitly, of a constant osmotic pressure 
(π) in isothermal systems (to ensure the cell membrane integrity), 
according to the assumed fulfilled Pfeffer’s law in diluted solutions 
(i.e. the cytosol system) [74,85]:

1
( ) ( )
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j
j

V t RT n tπ
=

= ∑  (2)

Where: T = absolute temperature, R = universal gas constant, 
V = cell (cytosol) volume; π = osmotic pressure; t = time; nj = 
species “j” number of moles. To overcome this drawback, some 
WCCV models accounts for the cell-growing rate as a pseudo-
‘decay’ rate of key-species (often lumped with the degrading 
rate) in a so-called ‘diluting’ rate denoted here by an average 
Ds [see below eq. (3B) and eq. (4A) for its significance). In fact, 
by ignoring the direct influence of the cell volume increase, the 
WCCV dynamic model cannot ensure the system isotonicity 
constraint fulfilment because the sum of species number of moles 
doubles over the cell cycle. Such a WCCV dynamic model might be 
satisfactory for modelling many cells sub-systems, but not for an 
accurate modelling of cell regulatory / metabolic processes under 
perturbed conditions, or for division of cells [93], distorting the 
prediction quality, as reviewed by [1,2,4-9,74]. Other researchers 
[110] tried to preserve the homeostatic properties of the cell 
system, not by imposing the isotonic constraint Eq. (2), but by 
means of “artificial” cell constraints, such as “the total enzyme 
activity” and “the total enzyme concentration” [109,110].

 WCVV formulation

The WCVV (“whole cell variable cell volume”) modelling 
formulation is based on a couple of hypotheses, presented in this 
section. Life at its simplest level involves two major divisions of 
interacting molecular species called the cell and the environment. 
The environment consists of molecules dissolved in water and 
largely separated from the cell. In their simplest form, cells 
consist of hydrophilic molecules in aqueous volumes (cystosol), 
encapsulated by semi-permeable hydrophobic membranes 
composed of phospholipids and proteins [1,2,4-9,74]. Cellular 
components interact to catalyze the synthesis of more cells from 
environmental components called nutrients. Imported into the 
cell and transformed into metabolites. This auto-catalytic process 
is specified by the following overall auto-catalytic global lumped 
reaction:

CellNutrients Cell Waste→ +

As long as excess nutrients are available, this auto-catalysis 
causes cell populations to increase exponentially. The volume of 
a newborn cell doubles during its cell cycle. Cells contain nucleic 
acids (DNA, RNA, or both) and proteins, interrelated through the 
processes of transcription, translation and DNA replication. Taken 
together, these metabolic processes are mutually autocatalytic, as 
shown in the following overall schemes:

{→





deoxynucleotides
DNA, RNAnucleotides  DNA, RNA, proteins
proteins

amino acids

DNA and protein are co-catalysts for RNA synthesis from Ribo-
nucleotides. In turn, RNA and proteins (enzymes) are co-catalysts 
for the synthesis of proteins from amino acids, of DNA (from the 
monomeric units called deoxyribonucleotides), RNA, and other 
proteins. The substrates for these processes (deoxyribonucleotides, 
nucleotides, amino acids etc.) are metabolites, synthesized from 
imported environmental nutrients through complex metabolic 
pathways [112]. “At this point, it is to strongly emphasize that living 
cells are systems of variable volume. They double their volume 
during the cell cycle. For chemical or biochemical systems of 
variable-volume, another formulation is more appropriate, being 
given by [86] for chemical reacting systems. Such CBE modelling 
tools were translated and promoted in developing structured 
math models of cell processes (that is CCM and GRC-s) by Maria 
[1,2,4-9,74,76,77,85,88,94,113]. Such a novel kinetic modelling 
framework of cell systems by also including the cell isotonicity, 
and the variable cell-volume constraints in the so-called WCVV 
modelling framework (for details, see the last references from 
above). In mathematical terms, the species mass balance Eq. (1) 
should be re-written in the following form:

1 1 ( , , )j j j j j
j j

dc n dn n dnd dv DC h C k t
dt dt V V dt V Vdt V dt

 
= = − = − = 
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( 0) sC t C= =
Where: C = cell species concentration vector; t = time; k = math 

model constants; ’s’ index = at steady-state; h = cell kinetic model 
functions. The variable “D” is the logarithmic growing rate of the 
cell volume, also known as the “cell dilution rate”, is defined by the 
following relationship:

(ln( )d VD
dt

=  (3B)

There are two possibilities to calculate the cell dilution ’D’ 
necessary for solving the model Eq. (3A). The simplest, but not the 
accurate one, is to use a value averaged over the whole cell cycle, 
that is: 	

0
1 , ( ) exp( )s s

dV D leadingtoV t V D t
V dt

= =  (4A)

By accounting the cell double volume at the end of the cell-
cycle, then the constant Ds can be a-priori evaluated by using the 
following relationship (for cells of known cell cycle): 
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The second alternative, and the more rigorous way to evaluate 
the cell dilution ’D’ is to impose a constraint accounting for the cell-
volume growth while preserving a constant osmotic pressure and 
membrane integrity. Thus, by derivation of the Pfeffer’s law Eq. 
(2) in respect to V, and by division to V, one obtains the ’isotonic’ 
dilution rate Di [1,6-9,74]:
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It is to observe in Eq. (5) that the cell content dilution rate 
Di is linked to the whole species (taken individually or lumped) 
reaction rates via the isotonicity constraint. As species reaction 
rates vary during the cell cycle, it clearly results that formulation 
Eq. (5) offers a more accurate estimation of the (variable) cell 
dilution at any time. Such a system isotonicity constraint is more 
’natural’ and eventually includes” the total enzyme activity” and” 
total enzyme concentration” constraints suggested by [110]. In 
the above relationships eqns. (2, 5), the following notations have 
been used: T = absolute temperature, R = universal gas constant, 
V = cell (cytosol) volume. As revealed by Pfeffer’s law eqn. (2) in 
diluted solutions [114], and by the eq. (5), the volume dynamics is 
directly linked to the molecular species dynamics under isotonic 
and isothermal conditions. Consequently, the cell dilution ’D’ 
results as a sum of reacting rates of the all-cell species (individual 
or lumped). The (RT/π) term can be easily deducted in an isotonic 
cell system, from the fulfilment of the following invariance 

relationship derived from eqn. (2):
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The basic hypotheses of the WCVV dynamic models of type 
Eqs. (3-6) are briefly presented in the (Table 1), and in the details 
below. These formulations are valid over ca. 80% of the cell cycle 
representing the balanced cell growth before its division [93]. 
The whole chemical/biochemical cell processes are called ’cell 
metabolism’, defined as: Metabolism is the set of life-sustaining 
chemical transformations within the cells of living organisms. 
The three main purposes of metabolism are the conversion of 
food/fuel to energy to run cellular processes, the conversion of 
food/fuel to building blocks for proteins, lipids, nucleic acids, 
and some carbohydrates, and the elimination of nitrogenous 
wastes. These enzyme-catalyzed reactions allow organisms to 
grow and reproduce, maintain their structures, and respond to 
their environments [111]. The basic equations and hypotheses 
of a deterministic WCVV simplified cell model (with continuous 
variables) presented in this work, also called a “mechanical cell”, 
are presented by [1,2,4-6,74], and summarized in (Table 1). To 
better underline the WCVV models hypotheses, a couple of issues 
should be explained, as followings [4,5]:

i)	 Genes (generically denoted by G), and the encoded 
proteins (generically denoted by P) are in a mutually auto-catalytic 
relationship: the synthesis of P is catalyzed by G, and vice-versa 
(directly or indirectly), in the so-called GERM-s (see the GERM 
library of (Figure 3).

ii)	 During its cell cycle, the cell is pf variable volume, but 
preserving a constant osmotic pressure.

iii)	 The regulatory mechanisms to achieve the gene 
expression modelled by lumped GERM-s, and the internal 
homeostasis are explained in detail by [1,2,4-9,74] and shortly 
reviewed in the below sub-sections.

iv)	 The cell WCVV model assumes an ideal system, that is: 
isothermal and with a uniform content (perfectly mixed case); 
species behave ideally, and present uniform concentrations within 
cell. The cell system is not only homogeneous but also isotonic 
(constant osmotic pressure), with no inner gradients or species 
diffusion resistance.

v)	 The cell is an open system interacting with the 
environment through a semi-permeable membrane. To better 
reproduce the GERM properties interconnected with the rest of 
the cell, the other cell 	 species are lumped together in the 
so-called” cell ballast” [1,2-9,74]. The cell-ballast has an important 
influence on the GERM performance indices (see below) through 
the common cell volume to which all species contribute. 
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vi)	 The inner osmotic pressure (πcyt) is constant, and all 
time equal with the environmental pressure, thus ensuring the 
membrane integrity (πcyt = πenv = constant [1,4]). Even if, in a real 
cell, such equality is approximately fulfilled due to perturbations 
and transport gradients, and despite migrating nutrients from 
environment into the cell, the overall environment concentration 
is considered to remain unchanged. On the other hand, species 
inside the cell transform the nutrients into metabolites and 
react to make more cell components. In turn, increased amounts 
of polymerases are then used to import increasing amounts of 
nutrients. The net result is an exponential increase of cellular 
components in time, which translates, through isotonic osmolarity 
assumption, into an exponential increase in volume with time [V = 
Vo exp(+Ds·t)] [see eqn. (3B,4A,4B,5)]. 

vii)	 Due to the “D” term in eq. (3A, 3B), the cell content reports 
a continuous dilution, that is a species concentration decline due 
to the continuous increase of the denominator of the expression 
Cj = nj(t)/V(t). Despite that, concentrations of key species remain 
constant because the numerator (copy numbers) increases at the 
same rate as the denominator. So, the overall concentration of 
cellular components is time-invariant at the cell homeostasis (i.e. 
quasi-steady-state, or balanced growth). Species concentrations at 
the cell level are usually expressed in nano-moles, being computed 
with the relationship of [74]:

,0

. /

A cyt

no ofCopies cellConcentration
N V

=
×

 (7)

where NA is the Avogadro number. For instance, for an E. coli 
cell with an approximate volume of Vcyt,0 = 1.66 10-15 L [108], 
concentration of one generic gene G copynumber is: [G]s = (1/
(6.022×1023)(1.66×10-15) = 1 nM (that is 10-9 mol/L).

viii)	 Under quasi-stationary growing conditions (QSS), from 
eq. (1A, 3A) it results that species “j” synthesis rates (rj) must 
equal to first-order dilution rates (Ds Cj,s), leading to the time-
invariant (index ’s’) species concentrations Cj,s, i.e. the homeostatic 
conditions (corresponding to a balanced steady-state growth). 
Under QSS cell growing conditions, the ODE model mass balance 
eq. (3A) is leading to the following nonlinear algebraic mass 
balance set:

ix)	
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This QSS mass balance eq. (8) is used to estimate the rate 
constants ’k’ by using the known experimental stationary species 
concentration vector Cs, while also imposing some constraints to 

ensure the optimal properties of the cell system. Some examples 
are given by [1,2,4-8,12,13, 74,76,77,87,99,115].

x)	 It is to observe that, in a continuous variable cell kinetic 
model, species concentrations can present fractional values. When 
treated deterministically, fractional copy numbers must be loosely 
interpreted either as time-invariant average in a population of 
cells, or as a time-dependent average of single cells. For other 
types of cell kinetic models (with stochastic, or Boolean variables, 
topological, etc.) see the review of [1,2,4,5,74].

xi)	 A metabolic kinetic model in a WCVV approach should 
be written in the form eq. (3-6). In such a formulation, all cell 
species should be considered (individually or lumped), because all 
species net reaction rates contribute to the cell volume increase 
[see eq. (6)]. As the cell volume is doubling during the cell cycle, 
this continuous volume variation cannot be neglected.

The simplest representation of the core of such a ’mechanical 
cell’ is shown in (Figure 8-down-right). It exists in an environment 
consisting of two nutrients NutG and NutP. The cell contains one 
gene (lumped genome), and protein (lumped proteome) [12-15] 
in a mutually autocatalytic relationship, two lumped metabolites 
(METG and METP) used in the synthesis of the G/P pair, and 
various regulatory elements promoting internal homeostasis. A 
membrane is presumed to demarcate the cell from its environment 
but is not an explicit component of the system.

Advantages of using the WCVV kinetic modelling framework 
in living cells

As another observation from eqn. (5) it results that the cell 
dilution is a complex function D (C, k) being characteristic to 
each cell and its environmental conditions. Relationships (5-6) 
are important constraints imposed to the WCVV cell model (3A-
B), eventually leading to different simulation results compared to 
the WCCV kinetic models that neglect the cell volume growth and 
isotonic effects. See some examples given by Maria [1,2,4-9,74]. 
On the contrary, application of the default classical WCCV-ODE 
kinetic models of eqns. (1A-B) type with neglecting the isotonicity 
constraints presents many inconveniences, related to ignoring lots 
of cell properties, discussed in detail by Maria [1,2,4-9,74], that is: 

i)	 The influence of the cell ballast in smoothing the 
homeostasis perturbations.

ii)	 The secondary perturbations transmitted via cell volume 
following a primary perturbation.

iii)	 A more realistic evaluation of GERM-s regulatory 
performance indices (P.I.-s, see the below section).

iv)	 The more realistic evaluation of the recovering/transient 
times after perturbations.

v)	 Loss of intrinsic model stability. 

vi)	 Loss of self-regulatory properties after a dynamic 
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perturbation, etc.

” When applied to model GRC-s (see below sections concerning 
P.I.-s, and Some rules to link GERM-s when modelling GRC-s), the 
WCVV modelling hypotheses described in (Table 1) must include 
some constrains referring to the optimality of cell metabolic 
processes, that is: 

a)	 Reaction rates must be maximal, but with rate constants 
limited by the diffusional processes.

b)	 The total enzyme (proteine) content of the cell is limited 
by the isotonicity condition (i.e. constant osmotic pressure under 
Pfeiffers’ law for diluted solutions, eq. 2).

c)	 As a corollary of the above constraint, the species ODE 
differential mass balances must be written under the variable cell 
volume constraint (eq. 3A-B).

d)	 Also, the total cell energy (ATP) and reducing agent 
(NADH) resources are limited (see for instance some HSMDM 
models of Parts 3&4 of this work).

e)	 The levels of the reaction intermediates must be 
minimum.

f)	 The cell model at homeostasis must be stable, that will 
reach the steady state (QSS) after termination of a perturbation 
[1,2,4-6,74,77,109].

g)	 In math terms, for an ODE cell model, in the form of eqn. 
(3A-B), the above cell model stability constraint (f) at homeostasis 
translates in the condition that the real part of all λ (i) must be 
negative, that is: Re (λ (i)) <0 for all ’i’. Here, the eigenvalues λ (i) of 
the Jacobian matrix Jc = (∂h (C, K) / ∂C) s is evaluated at the checked 
quasi-steady state (QSS) of cell species concentrations (Cs). The 
Jacobian matrix elements refers to the WCVV model eq. (3A), 
that is: J (i, k) = ∂h(i) (C, k) / ∂C(k). where h(i) are the right-side 
functions of the ODE cell kinetic model eqn. (3A-B), detailed as:

1
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j
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dn
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V t dt
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s r n V k t h C k t
dt dt

=

=

=
= =

= = =

∑

∑  (9)

where notations are the followings: C(j) = (cell-)species “j” 
concentration; V = system (cell cytosol) volume; n(j) = species 
“j” number of moles; r(j) = jth reaction rate; s(i, j) = stoichiometric 
coefficient of the species “j” (individual or lumped) in the “I”-
th reaction; t = time; k = rate constant vector; i =1,…,nr (no. of 
reactions)

h)	 It is self-understood that, as Max (Re (λ (i))) <0 is smaller 
as this cell QSS is more stable. 

i)	 The key-species concentrations must be constant at QSS 
(homeostasis).

In fact, the cell metabolism optimality derives from the 
requirement to get a maximum growth / quick replication over a 
defined / limited cell cycle, by using minimum resources from the 
environment. These requirements are better illustrated by the 4 
main characteristics of the cell systems, underlined in the (Outline 
1).

Outline 1. The main characteristics of cell systems.

i)	 The dynamic character of species interactions and 
processes [116].

ii)	 The feedback/feedforward character of processes 
ensuring their self-regulation [117].

iii)	 Optimal regulation of cell syntheses with fastest reaction 
rates, smallest amounts of intermediates, and best P.I.-s (see the 
below section) [116], with fulfilling (iv).

iv)	 Consuming minimum of resources (nutrients/
substrates), and cell energy (ATP, NADH, etc.), but with also 
fulfilling (v),

v)	 Ensuring maximum reaction rates [109].

Amazing, but the first pioneers in dynamic modelling of 
biological systems were not the (bio)chemical engineers which 
are better trained in ‘translating’ from the ‘language’ of molecular 
biology to that of mechanistic (bio)chemistry, by preserving the 
structural hierarchy and component functions (Figure 29) and 
using the NSCT concepts/rules. The first dynamic models of some 
cell processes have been reported by electronics [118,119]. Later, 
such ‘electronic circuits-like’ models have been extensively used 
to understand intermediate levels of regulation [1,2,4,5,120,121], 
but they failed to reproduce in detail molecular interactions with 
slow and continuous responses to perturbations and, eventually, 
they have been abandoned. However, the electronics underlined 
the main characteristics of the cell systems given in (Outline 1), 
which must be included in any cell dynamic simulation model. All 
these cell metabolic characteristics will be accounted for in all the 
subsequent cell in-silico WCVV simulators based on extended/
reduced mathematical models. All these characteristics are in fully 
agreement with the Darwin theory “Living organisms have evolved 
to maximize their chances for survival. It explains structures, 
behaviors of living organisms.” [111]. From such very incipient 
efforts to in-silico (math model-based) design of GMO-s, 40 years 
latter pointed-out the tremendous advanced in the systems 
Biology, and in the in-silico simulate the cell metabolism aiming to 
design GMO-s, or even tissues, by means of computational systems 
biology [121-123]. 
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A review of mathematical model types (including the WCVV 
models) used to describe metabolic processes is presented by 
[1,2,4,5,28,74]. Each model type presents advantages but also 
limitations. Roughly, to model the complex metabolic regulatory 
mechanisms at a molecular level, two main approaches have 
been developed over decades: a structure-oriented (topological) 
analysis, and the dynamic (kinetic) models [1,2,4,5,79,124]. 
Each theory presents strengths and shortcomings in providing 
an integrated predictive description of the cellular regulatory 
network, as briefly reviewed by Maria [1,2,4,5, 74], as follows. 
Structure-oriented analyses or topological models ignore some 
mechanistic details and the process kinetics and use the only 
network topology to quantitatively characterize to what extent 
the metabolic reactions determine the fluxes and metabolic 
concentrations [109]. The so-called ‘metabolic control analysis’ 
(MCA) is focus on using various types of sensitivity coefficients (the 
so-called ‘response coefficients’), which are quantitative measures 
of how much a perturbation (an influential variable) affects the 
cell-system states [e.g. reaction rates, metabolic fluxes (stationary 
reaction rates), species concentrations] in a vicinity of the steady-
state (QSS). The systemic response of fluxes or concentrations 
to perturbation parameters (i.e. the ‘control coefficients’), or of 
reaction rates to perturbations (i.e. the ‘elasticity coefficients’) 
must fulfil the ‘summation theorems’, which reflect the network 
structural properties, and the ‘connectivity theorems’ related 
to the holistic (whole-cell, WC) properties of single enzymes in 
connection to the system behaviour. 

MCA methods can efficiently characterize the metabolic 
network robustness and functionality, linked with the cell 
phenotype and gene regulation. MCA allows a rapid evaluation of 
the system response to perturbations (especially of the enzymatic 
activity), possibilities of control and self-regulation for the 
whole path or some subunits. Functional subunits are metabolic 
subsystems, called ‘modules’, such as amino acid or protein 
synthesis, protein degradation, mitochondria metabolic path, 
etc. [79]. Because living cells are self- evolutionary systems, new 
reactions recruited by cells together with enzyme adaptations 
can lead to an increase in the cell biological organization and 
to optimal performance indices. When constructing methods 
to optimize evolutionary metabolic systems, MCA concepts 
and appropriate performance criteria have been used, leading 
to: maximize reaction rates and steady-state fluxes; minimize 
metabolic intermediate concentrations; minimize transient times; 
optimize the reaction stoichiometry (network topology); maximize 
thermodynamic efficiency. All these objectives are subjected to 
various mass balance, thermodynamic, and biological constraints 
[109]. However, by not accounting for the system dynamics, and 
grounding the analysis on the linear system theory, topological 
methods present inherent limitations (see for instance some 
violations of stoichiometric constraints discussed by [125], or the 

use of modified control coefficients [126]. From the mathematical 
point of view, various structured (mechanism-based) dynamic 
models have been proposed to simulate the metabolic processes 
and their regulation, accounting for continuous, discrete, and/
or stochastic variables, in a modular construction, ‘circuit-like’ 
network, or compartmented simulation platforms [1,2,4,5,80,124]. 
Briefly, the math models used by Systems Biology are of the 
following types, briefly described below [1,2,4,5,74].

I.	 Deterministic continuous variable

Dynamic models can perfectly represent the cell response 
to continuous perturbations, and their structure and size can 
be easily adapted based on the available bio-omics information 
[1,2,4,5,28,74,109,124,127]. The deterministic continuous 
variable kinetic models present many advantages, as previously 
mentioned. Besides, it is to underlined the huge advantages 
coming from the used concepts, rules, and algorithms of BCE, and 
of the NSCT, as discussed in the Part-1 of this work, and by [1,2,4-
7,74,88,89], and briefly represented in (Figure 4 & Figure 5) of 
Part-1 of this work), and in the Part-1 of this work. The classical 
approach to developing deterministic dynamic models is inspired 
by the CBE rules, and is based on a hypothetical reaction mechanism, 
kinetic equations, and known stoichiometry. This route meets 
difficulties when the analysis is expanded to large-scale metabolic 
networks of the CCM (Figure 1 & Figure 2) because the necessary 
mechanistic details and the standard/structured kinetic data 
at a cell species level necessary to estimate the MSDKM model 
rate constants are difficult to be obtained. However, advances in 
genomics, transcriptomics, proteomics, and metabolomics, lead 
to a continuous expansion of bioinformatic databases, while 
advanced numerical techniques, non-conventional estimation 
procedures, and massive software platforms reported progresses 
in formulating such reliable cell models. Valuable structured 
dynamic models, based on cell biochemical mechanisms, have 
been developed for simulating various (sub)systems [1,2,4,5,74].

II.	 Boolean (discrete) variable models

Such models work with topological structures of the GRC-s. 
An example is displayed in (Figure 5) [78,124]. Due to the very 
large number of states O (103–104), and O (103) of transcriptional 
factors (TF) involved in the gene expression, such GRC models 
are organized in clusters, modules, of a multi-layer organization 
(Figure 5) [124,128]. In the Boolean/binary modelling approach, 
variables can take only discrete values (usually 0, and 1). Even 
if less realistic, such an approach is computationally tractable, 
involving networks of genes that are either ’on’ (1), or ’off ’ (0) 
(e.g. a gene is either fully expressed or not expressed at all; Figure 
5) according to simple Boolean relationships, in a finite space. 
Such a coarse representation is used to obtain a first model for 
a complex bio-system including many components, until more 
detailed data on process dynamics becomes available. “Electronic 
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circuits” structures (see an example in (Figure 10-right), 
from [120,121]) have been extensively used to understand 
intermediate levels of regulation, but they cannot reproduce in 

detail molecular interactions with slow and continuous responses 
to perturbations, and they offer any information on the process / 
species concentration dynamics.

Figure 10. [left] Example of a cell simulators of stochastic type [146]. [right] Example of an “electric-circuit” type of cell simulator [117,118].

III.	 Stochastic variable models [129-131]

Stochastic models replace the ‘average’ solution of 
continuous-variable (deterministic) ODE kinetics (e.g. species 
concentrations time-trajectories) by a detailed random-based 
simulator accounting for the exact number of molecules present 
in the system. Because the small number of molecules for a 
certain species (present in traces in a cell) is more sensitive to 
stochasticity of a metabolic process than the species present in 
larger amounts, simulation via continuous models sometimes 
can lack of enough accuracy for random process representation 
(as cell signalling, gene mutation, etc.). In such cases, Monte 
Carlo (stochastic) simulators are used to predict individual 
species molecular interactions, while rate equations are replaced 
by individual reaction probabilities, and the model output is 
stochastic in nature. Even if the required computational effort is 
extremely high, stochastic representation can be useful sometime 
to simulate the cell system dynamics by accounting for many 
species of which spatial location is important, or for a large 
distribution of concentrations [129-131] (Figure 10-left).

IV.	 Mixed state-variable models [60,61,124].

 Such cell (kinetic) models try to take advantage of each of the 
model type (I-III) mentioned above. The multiple advantages of 
the WCVV modelling framework are discussed, and exemplified 
by Maria [1,2,4-9,74,87,88]. In short, the novel modelling 
concept/framework WCVV proposed, extrapolated, and widely 
promoted in a large number of applications by Maria [1,2,4-9, 
12-15,74,77,85,88,89] to derive cell kinetic models, in a holistic 
approach, ensures cell processes homeostasis, and the individual/
holistic GRC regulatory properties, by including in a natural way 
constraints related to the cell system isotonicity, and the variable-
volume in relationship to the species reaction rates, and the 
lumped proteome/ genome replication [1,2,4-9,12-15]. Such an 
isotonicity constraint is required to ensure the cell membrane 
integrity, but also to preserve the homeostatic properties of the 
cell system, not by imposing ’the total enzyme activity’, or the ’total 
enzyme concentration’ constraints used by the classical (default) 
constant-volume cell modelling approach (WCCV). As proved 
by [6], compared to the classical WCCV models, the WCVV novel 
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modelling framework is leading to more accurate simulations of 
cell metabolic effects, such as: relationships between the external 
conditions, species net synthesis reactions, osmotic pressure; 
the cell content (ballast) influence on smoothing the continuous 
perturbations in external nutrient concentrations; a more realistic 
representation of GERM regulatory modules and GRC-s, etc. At the 
same time, it is to highlight that the WCVV holistic cell modelling 
framework, which was proposed, deeply analyzed, and widely 
promoted in a large number of applications in bioengineering and 
bioinformatics by Maria [1,2,4-9,12-15,74,76,77,85,89] is proved 
to be more accurate and present a large number of advantages, as 
shortly summarized in (Table 2).

V.	 Lumping MSDKM models

When the WCVV holistic MSDKM cell models are too 

extended to allow a quick use for biological reactor simulations/
optimization, or for in-silico design of GMO, then reduced kinetic 
models of cell CCM-metabolic syntheses, and of GRC-s can be 
obtained from the extended ones by applying specific kinetic 
model reduction/lumping numerical/analytical algorithms 
reviewed by [2,4,77,89,132,133]. The reasons of sometime using 
lumped WCVV holistic MSDKM cell models are given in (Figure 
14). However, it is to mention that, even if computationally very 
convenient, the reduced (with lumped reactions and/or species) 
WCVV holistic MSDKM cell models presents a significant number 
of advantages, but also a couple of inherent disadvantages, 
reviewed in (Figure 12), and [2,4,5,77,89,132,133]. Table 2 Some 
advantages when using the holistic WCVV framework when 
modelling GRC-s [1,2,4-9,74].

Figure 11. Define some of the GERM regulatory performance indices P.I.-s for a stationary (“step-like”) perturbation inside cell (up-blue), or 
for a dynamic (“impulse-like”) perturbation inside cell (bottom-pink)[1,2,4,5].

Modelling individual GERM-s under WCVV formulation

In order not to overly complicate the MSDKM or HSMDM 
models that also include GRC-s, it is necessary to have a “library” 
of kinetic models to represent individual GERM-s, to be used for 
build-up GRC-s of desirable properties (e.g. genetic switches, 
operon expression, genetic amplifiers, etc.; see Part-1 of this work 
[4,5]. As an example, see the case study with the mercury-operon 

expression in Part-4 of this work. Obviously, the selection of the 
most suitable GERM to be included in the GRC chain depends on 
its regulation performances (that is, the so-called self-regulation 
performance indices (P.I., see the below section), related to the 
GERM type. This chapter briefly presents the main GERM-s models 
proposed by Maria [1,2,4,5, 72,92] used in the construction of 
HSMDM-s, in terms of the reduced reaction scheme, kinetic model, 
and their associated P.I.-s. 
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Figure 12. Reasons to use lumped models (of reactions and/or species) when simulate the dynamics of cell metabolic processes with 
MSDKM models [1,2,4,5].

Figure 13. The role of gene expression regulatory modules (GERM) and of the genetic regulatory circuits (GRC) [1,2,4,5].
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Figure 14. Importance of the lumped modular math modelling for the in-silico simulate the dynamics of cell CCM, and of complex GRC-s by 
using HSMDM or MSDKM models [1,2,4,5, 72].

Figure 15. Influence of the GERM’s number of effectors on some of their properties, i.e. (top) the QSS recovering rate, and (bottom) the 
amplitude / species recovering trajectory after a 10% dynamic perturbation in the [P]s [1,2,4,5, 72].
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a)	 The modular approach

As experimentally proved in the literature (reviews 
[1,2,4,5,74]), the GRC-s (or GRN-s) „that control the synthesis of 
all proteins (enzymes) in the cell, present a modular construction, 
every operon (a cluster of genes under the control of a single 
promoter) including a variable number of interacting GERM-s. 
However, it is well-known that one GERM interacts with no more 
than the other 23-25 GERM-s [92], while most GERM structures 
are repeatable. Consequently, when developing the GRC analysis 
and reaction schemes / kinetic model, the modular approach is 
preferred due to several advantages: (i) A separate analysis of the 
constitutive GERM-s in conditions that mimic the stationary or 
perturbed cell growth; (ii) The GERM modules are then in-silico 
linked to construct the target GRC of an optimized regulatory 
efficiency that ensures key-species homeostasis and cell network 
holistic properties (Figure 13,14 & Figure 5). (iii) In-silico 
investigations of GERM-s and GRC-s characteristics focus on the 
tight control of gene expression, the quick dynamic response, the 
high sensitivity to specific inducers, and the GRC robustness (i.e. a 
low sensitivity vs. undesired inducers). Such advanced regulatory 
structures must ensure the homeostasis (quasi-steady-state, QSS) 
of the regulated key-species concentrations, and quick recovery 
(with a trajectory of minimum amplitude) after a dynamic (impulse-
like) or stationary (step-like) perturbation (Figure 11) of one of 
the involved metabolites or nutrients [1,2,4,5,74,94] (Figure 15 & 
Figure 16). To model complex GERM-s, intensive efforts have been 
invested over the last decades, and various types of dynamic models 
have been proposed, both in a deterministic [28,49,51,86,87,96-
98,114], or stochastic approach [77,86,92,106,114]. See also the 
reviews [49,76,107,134] concerning structured deterministic 
models with continuous variables, built-up from time-series 
experiments [105,135]. However, to not complicate the resulted 
simulation model when coupling GERM chains in complex GRC-s, 
simple (lumped) GERM dynamic models have been proposed and 
investigated by various researchers [1,2,4,5,12-15,28,76,82,87,97-
99,107], as displayed in (Figure 4), with Hill-type [77,87,99,119], 
or pseudo-Hill-type activation [1,2,76,87]. See also the reviews 
[1,2,4,5,12-15,76,87,99].

b)	 The GERM library

To make this rule easier, Maria [1,2,4,5,74,94] has elaborated a 
library with reduced representations of GERM types (Figure 3) to 
be used for every case. Of course, these individual GERM modules 
differ as regulatory efficiency, as quantitatively expressed by their 
regulatory performance indices (P.I.) defined in the below section, 
in response to stationary or dynamic perturbations (Figure 11) 
into the cell, transmitted from the environment. These simplified 
deterministic models of lumped GERM and structures have 
been proved to adequately represent complex GRC–s (such as 
genetic-switches in Figure 5, or the mercury operon expression 
in Figure 6). The simplest GERM structure with one regulatory 
element is those denoted by [G(P)1], or one of a better regulatory 
efficiency [G(PP)1], with dimeric TF = PP (Figure 4). The generic 

[G(P)1] regulatory module (schematically represented in (Figure 
17-down-right & Figure 3-the row-up & Figure 8) refers to the 
synthesis of a generic protein P and the simultaneous replication 
of its encoding gene G. The lumped [G(P)1] model includes only 
one regulatory element (a so-called “effector”, that is a fast ’buffer’ 
reversible reaction G + P <===> GP (inactive) (Figure 3), aiming at 
controlling the P synthesis rate and its homeostatic QSS level. The 
following notations have been used: G = active part of the gene 
encoding protein P; GP = inactive part of the gene encoding protein 
P; MetG, MetP = lumped DNA and protein precursor metabolites, 
respectively. The lumped ODE kinetic model of [G(P)1] are 
presented in (Figure 8) in both novel (correct) WCVV, and in the 
default (incorrect) WCCV modelling alternatives.

In such a generic lumped construction, the protein P and its 
encoding gene G mutually catalyses the synthesis of each other 
(that is cross-catalysis). The protein P is the ’control node’ playing 
multiple roles in such a simplified lumped representation. Thus, 
P is a permease facilitating the import of nutrients NutG, NutP 
in the cell, but also a metabolase converting the nutrients into 
precursors MetG and MetP of the G and P synthesis respectively. 
Protein P is also a polymerase catalyzing the gene G replication. 
And, finally, the protein P is also a transcriptional factor (TF) by 
dynamically adjusting the catalytic activity of G by means of a 
very rapid ’buffer’ regulatory reaction [G + P <===> GP (inactive)]. 
When P is produced in excess, it reversibly inactivates more 
amount of G, which, in turn, will slow-down the P synthesis. When 
P is produced in too low amounts, the regulatory process goes 
backwards. 

The module nomenclature used in (Figure 3) for the GERM 
lumped regulatory modules, is those proposed by [74,94,95] is 
those of 1 1 1 ;....;[ ( ) ( ) ]i i iL O n L O n . It includes the assembled regulatory unit

( )i i iL O n  . One unit ’i’ is formed by the component L(i) (e.g. enzymes 
or even genes G, P, M, etc.) at which regulatory element acts, and ni 
=0,1, 2… number of ‘effectors’/TF, generically denoted by species 
O(i) (that is ‘effectors’ like P, PP, PPPP, R, RR, RRRR, etc) binding 
the ‘catalyst’ L. For instance, a [G(P)2] unit of (Figure 3) includes 
two successive binding steps of G with the product P, that is: G + P 
<===> GP + P <===> GPP, all intermediate species GP, GPP, being 
inactive catalytically, while the mass conservation law is all time 
fulfilled, i.e.

2

0
( )] tani

i
G P cons t

=

=∑ Such a representation accounts for 
the protein concentration diminishment due to the cell-growth 
dilution effect but could also include protein degradation by 
proteolysis. It is also to observe that such GERM lumped models 
try to account essential properties of the gene expression, that is 
a highly self- / cross- regulated and mutually catalyzed process 
by means of the produced enzymes / effectors. As depicted in 
(Figure 3 and Figure 8) for the [G(P)1] simplest regulatory module 
case, the protein P synthesis is formally catalysed by its encoding 
gene G. In turn, P protein lump catalyses the G synthesis, but also 
modulates the G catalyst activity via the fast-buffering reaction: G 
+ P <===> GP. Even if such generic [G(P)1], [G(P)2], or [G(PP)1] 
regulatory modules are in reality more complex, by including 
a larger number of reactions and/or species involved in the 
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regulation of the a target gene expression [1,2,4,5,87,99], it was 
proved (see the case study with the mercury operon expression 
in the Part-4 of this work) that such a reduced GERM model can 

satisfactorily reproduce the dynamics of complex GRC-s in MSDKM 
or HSMDM models. 

Figure 16. The effect of the mutual G/P mutual self-catalysis, and of the isotonicity in the case of a simple [G(P)1] gene expression 
regulatory module GERM [1,2,4,5, 8,9,72,92]. Species QSS (homeostasis) recovery after a 10% dynamic (impulse-like) perturbation in [P]s.  
Notations:  = cell osmotic pressure; V = cell volume; T = temperature; G = generic gene; P = the protein encoded by the gene G; C(j) = cell 
species “j” concentration; „s” index = at QSS; „o” index = initial;   = species P recovering time of its QSS [P]s , with 1% precision (i.e. 0.01).

As proved by Maria [1,2,4,5,77,87] these simplified formulations 
of various GERM types in (Figure 3) implicitly ensure an effective 
homeostatic regulation of the gene expression and G/P mutual 
autocatalysis of their synthesis. Cells are regulated such that their 
components are maintained at relatively invariant concentrations 
despite the presence of inherent external/internal perturbations. 
Recently, the effectiveness of various simplistic regulatory 
mechanisms in maintaining protein homeostasis in the presence 
of perturbations have been evaluated by [1,2,4,5,85,87,95,136]. 
Some of these representative GERM mechanisms, representatives 
of which are shown in (Figure 18), reflect the regulation of the 
synthesis (transcription and translation) and decay of a generic 
protein P. Both processes are required to maintain the protein [P] 
concentration at a nominal steady-state [P]ns (ns = nominal steady-
state, QSS). It is self-understood that synthesis of a protein involves 
many species (components), but in such lumped representation of 
GERM mechanisms, all except for the generic key-gene G encoding 
P (and in some cases the corresponding mRNA) are ignored and 
assumed to be present at constant concentrations and included 
in the model species lumps. In the ’control’ mechanism, denoted 
by [G(P)0], P is synthesized in a single reaction catalyzed by G 
(Figure 18, mechanism no. 1). In a default constant-volume WCCV 
(incorrect) model [94,136] considered a P degradation reaction 
of a first order in P. In real cells, proteins are generally stable, and 

so these fictitious decay terms reflect the cell dilution (’D’) caused 
by volume expansion as cells grow, as correctly modelled by the 
WCVV approach, that is eq. (3a-b), eq.(4a-b), eq. (5).

Other GERM models include negative feedback regulatory 
elements in various combinations. For instance, in the [G(P)1] 
model, one P binds G reversibly (Figure 18, mechanism no. 2). The 
resulting GP form is catalytically inactive, and so this relationship 
serves to regulate the protein synthesis. The dissociation 
equilibrium constant is set to equal [P]ns, ensuring that [G]ns = 
[GP]ns at [P]ns. Thus, when [P] > [P]ns, then P tends to bind more 
G and to «attenuate» the protein synthesis. Conversely, when [P] 
< [P]ns, then P tends to dissociate from GP, thereby increasing the 
rate of protein synthesis. This reaction mechanism, even lumped, 
leads to a satisfactory regulatory effectiveness of the GERM. Other 
more effective GERM mechanisms, like [G(P)1; M(P)1] distinguish 
between transcription and translation (Figure 18, mechanism no. 
3), being closer to reality. In it, G catalyzes the synthesis of M (i.e. 
mRNA), and M catalyzes the synthesis of P. Also included is the 
reversible binding of P to M, stimulating the degradation of M to 
form M’. In the mechanism [G(PP)2], two copies of a PP dimer 
(playing the role of a TF) reversibly bind G (Figure 18, mechanism 
no. 4), mimicking the multiple binding of transcription factors 
which often bind promoters as oligomers and in multiple copies. 
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As revealed by (Figure 19), the efficiency of all these four (no. 1-4) 
GERMS mechanisms is very good when coping with a dynamic 
perturbation, that is a 10% negative perturbation (impulse-like) 
of [P] from [P]ns = 1000 nM, to [P]ns = 900 nM. It is to remark 

that the species recovering trajectories are as faster as the GERM 
efficiency schema is « better » (in terms of P.I.-s), that is in the 
relative order:

[G(PP)2] > [G(P)1; M(P)1] > [G(P)1] > [G(P)0]

Figure 17. Several „simplified representations of an individual GERM [1,2,4,5, 72,92]. Adapted from [72,85] with the courtesy of CABEQ Jl.
[Down-right]. Simplified reaction scheme of a generic gene G expression, by using a regulatory module of [G(P)1] type. The model was 
used to exemplify the synthesis of a generic P protein (encoded by G) in the E. coli cell by [72,92]. To improve the system homeostasis 
stability, that is quasi-invariance of key species concentrations (enzymes, proteins, metabolites), despite of perturbations in nutrients Nut*, 
and metabolites Met*, or of other internal cell changes, a very rapid buffering reaction [G(active) + P <===> GP(inactive)] has been added. 
Horizontal arrows indicate reactions; vertical arrows indicate catalytic actions; G = active part of the gene encoding protein P; GP = inactive 
part of the gene G; MetG, MetP = lumped DNA and protein precursor metabolites, respectively.”

Figure 18. Protein homeostatic regulatory mechanisms no. 1-4, of type [G(P)0], [G(P)1], [G(P)1;M(P)1], and [G(PP)2]. Horizontal arrows 
indicate reactions. Vertical arrows indicate that the component catalyzes the designated reaction. Components above horizontal arrows 
indicate substrates. Adapted after [1,2,4,5,  72].
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Figure 19.  [A-C]: Steady-State trajectories of P, G, MetG and MetP vs. environmental  = NutG/NutP for the following GERM representations 
of (Figure 18): (1)- [G(P)0]; (2)- [G(P)1]; (3)- [G(P)1;M(P)1]; and (4)- [G(PP)2]. See the nomenclature in (Figure 3).
[D-E]: Dynamic Trajectories (2-5) of P and G after a 10% negative perturbation in [P] from [P]ns = 1000 nM, for GERM-s of type no. (1-4). 
At [G(P)1] curve no.1, [G] was set to 1 nM at the moment of perturbation. Nominal QSS concentrations before P-perturbation at an arbitrary 
t=100 min, are [MetG]ns = [MetP]ns = 10,000 nM, [P]ns = 1000 nM, [G]ns = [GP]ns = 1/2 nM, [M]ns = [MP]ns = 1/2 nM.. Adapted after 
[1,2,4,5,  72,92].

In other words, as the number of A more detailed discussion 
on this subject is offered by Maria [1,2,4,5, 8,9,92], by highlighting 
the role of the number of effectors on the GERM P.I.-s (Figure 15, 
and the below section).”

c)	 Rate constant estimation in WCVV models of GERM-s 
and GRC-s

In the WCVV ODE differential models of GERM-s or GRC-s, due 
to the lack of standard/structured kinetic data, the large numbers 
of rate constants are estimated by a more elaborated numerical 
rule. If the estimation problem can be splitted between those 
referring the MSDKM ODE model concerning the CCM, and those 
referring the attached GRC, then, one can proceed first to the 
estimation of GRC- ODE kinetic models, and then those related to 
the CCM (see an example in the case of the bioreactor simulation/
optimization for the tryptophan (TRP) production, in the Part-3 of 
this work). For a given GERM or a GRC, ODE kinetic model, if the 
stationary cell species concentration vector Cs is known from the 
experimental data (for the all individual or lumped components 
considered in the kinetic model), then the rate constant vector k 
(and even unknown Cs) of the kinetic model eq. (3A-B) results by 
solving the nonlinear algebraic set eq. (8), by using the effective 
MMA procedure of Maria [94,131,137-139], with imposing several 
physical significance constraints. The solving rule also includes the 
built-in procedures of the MapleTm symbolic computing platform. 

As the (RT/π) term is known from the initial condition eq. (6), 
and the number of model parameters is usually higher than the 
number of observed cell species, supplementary optimization 
rules can be applied to determine some rate constants, by 
imposing optimum regulatory criteria of GERM-s (see below 
P.I.-s section, [1,2,4,5,8,9]), such as the minimum recovering time 
of the stationary concentrations (homeostasis) after a dynamic 
(‘impulse’-like) perturbation in a key-species (Figure 11) & Figure 
16), and eqn. (10) [74]. Of course, the use of an effective NLP 
(nonlinear programming) solver plays an essential role in this 
model parameter estimation process [131,137-139].

[ , ] arg ( ),s pk C Min τ
∧ ∧
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With the following notations: superscript ’^’ = estimated 
value; pτ = the recovering time of [P]s with a tolerance of 1%[P]
s after applying a 10%[P]s impulse perturbation of its stationary 
value [P]s ; component Li (e.g. enzymes or even genes G, P, M, etc.) 
in a GERM is those species at which the regulatory element O, TF, 
R acts (see [1,4,74,76,77,]). To estimate, [ , ]sk C

∧ ∧
 other regulatory 

global properties can also be used together with the NLP 
estimation problem constraints eqns. (6,8,10) [74,75,131,139]. 
The reverse reaction rate constants in the rapid buffer reactions 
of GERM-s, of type G+P <-------> GP, are adopted at values five to 
seven orders of magnitude higher than D in eq. (3A-B) (see the 
proof of Maria [87]). That is because fast buffering reactions are 
close to equilibrium and have little effect on metabolic control 
coefficients. Consequently, rate constants of such rapid reactions 
are much higher than those of the core synthesis and dilution rates.” 
Besides, additional constraints should be imposed to the GERM-s 
kinetic modules to ensure a quick dynamic regulatory efficiency 
(effective P.I.-s) based on effective transcriptional factors (TF-s, of 
P, or P -polymer types, e.g. PP. PPPP, etc.) [1,2,4,8,9,15,74]. Because 
the problem of estimating reaction rate constants for such MSDKM 

hybrid structured kinetic models with continuous variables [of 
mixed ODE-algebraic type, eq.(3A-B); eq.(4A-B), eq.(5) ] in the 
presence of constraints is one of NLP (nonlinear programming) 
type [131], with a convex search field and a function multi-modal 
objective, its solution is difficult to be obtained, even if high-
performance numerical optimization algorithms (included in 
commercial mathematical software, e.g. MatlabTM) are used in this 
respect. Therefore, the feasible global solution for such estimation 
problems was found by applying only very efficient numerical 
solvers, such as MMA optimization procedure of Maria [137,138].

Once the GERM/GRC kinetic model rate constants (and, if 
necessary, the stationary values of some metabolic intermediates 
concentration) have been estimated, estimation of the whole 
CCM modular kinetic model MSDKM can be easier performed by 
adjusting (if necessary) some rate constants of the GRC included 
in the CCM model. See the example of E. coli CCM MSDKM model 
estimation together with the adjustment of the TRP (tryptophan)-
operon kinetic model in Part-3 of this work. A similar example 
presented in Part-4 of this work concerns the HSMDM model for 
the mercury uptake in cloned E. coli cells. 

Figure 20: Influence of the number of effectors (“n”), and of the dimeric PP playing the role of a TF-s in a GERM on their regulatory 
performance indices P.I.-s [1,2,4,5].
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GERM-s regulatory performance indices (P.I.) under WCVV 
formulation

”As proved in previous works [1,2,4,5,8,9,74,76,77,94], 
the performances indices (P.I.-s) of GERM–s of [G(P)n] type in 
(Figure 3), are as better as the number ’n’ of buffer reactions 
increases (Figure 15 & Figures 18,19), the right GERM choice 
when constructing a GRC being case dependent (see [10-12] as 
an example). Also, Maria [1,2,4,5,] proved that, when the a generic 
protein P is also acting as a TF (directly, or indirectly, by influencing 
the TF synthesis), its efficiency is better if it is present in a dimeric 
form (PP), in GERM-s of [G(PP)n] type in (Figure 3-middle 
row, Figure 15 , Figure 20), acting at both G and M levels of the 
expression (middle and down-rows of Figure 3), thus developing 
a cascade control scheme of the expression where transcription 
and translation regulatory steps are separately considered, that 
is GERM-s of [G(PP)n; M(PP)n’] type. Perturbations of the species 
steady-state (QSS, homeostatic) concentrations are caused by 

changes in the cell environment. In a GERM case, these processes 
tend to increase or decrease the key-protein stationary level [P]
s. These processes occur in addition to those of the ‘‘core’ system 
focus on the genome (and all G/P pairs) replication over the cell 
cycle. GERM or GRC regulatory performance indices P.I.-s are of 
two types [1,2,4,5, 8,9,74,76,77,94]: stationary and dynamic, 
according to the perturbation type (Figure 11 and Figure 16). 
Briefly the P.I.-s are presented in the (Table 3), together with the 
associated optimization objective (goal), for a general nonlinear 
dynamic cell model described by eq. (3A-B). 

See also an intuitive display in (Figure 11 & Figure 21) Detailed 
information is given by Maria [1,2,4,5,74,94]. The monodromy 
matrix A, necessary to express the species QSS-level stability 
’strength’ is evaluated together with the cell process ODE model 
eqn. (3A-B), by using the following ODE differential set:

 	
/ ( , ); (0) ; / ; (0) ; ( ( , ) / )s c c sdC dt h C k C C dA dt J A A I J h C k C= = = = = ∂ ∂  (11)

Figure 21. Seeking for modelling the GRC regulatory properties (performance indices, P.I.–s) [1,2,4,5, 72,92].

Detailed explanations of P.I.-s presented in (Table 3) are given 
by [1,2,4,5, 8,9,74,77,94]. In short, P.I.-s are the followings:

A)	 Stationary P.I.-s are defined as response to a 
stationary perturbation (Figure 11), that is transition from a QSS 
concentration to another QSS following a ’step’-like perturbation 
of one cell component concentration. These stationary P.I.-s are 

expressed in the following ways: 

i.	 Transition time necessary for each GERM component 
to return to their stationary concentration (QSS) after a step-
like perturbation in one component of the regulatory module 
(individual or lumped component.
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ii.	 Responsiveness to exo/endogeneous signaling species 
of the analysed GERM or GRC can be represented by the small 
transient times necessary for a species ’j’ QSS-level to reach a 
new QSS (with a certain tolerance, usually 1-5%) after applying a 
stationary external stimulus [99]. Consequently, the P.I. measure 
of the GERM efficiency to move fast to a new QSS is given by the 
duration of the transition time Pτ  (in the case of P-species in 
Figure 11) necessary to a certain component to reach the new 
steady-state concentration.

iii.	 Stationary efficiency. This stationary P.I. is related to 
the small sensitivities S(C(i); NutP(j)) of the key-species levels C(i) 
vs. changes in the external nutrient levels NutP(j) and is simply 
denoted by j

t
NutPS . These sensitivities are computed from solving 

a sensitivity nonlinear algebraic set obtained by assuming QSS 
conditions eqn. (8) of the ODE kinetic model eqn. (3A-B), and 
known nominal species stationary concentrations Cs. Then, 
differentiation of the steady-state conditions eqn. (8) leads to the 
evaluation of the state sensitivity vs. nutrient levels, that is S(C(i); 
Nut(j)) = ∂Ci / ∂Nut(j). See the details of Maria [1,2,4,5, 74,94].

iv.	 The steady-state Cs stability strength. This GERM 
property is related to the strong capacity of the regulatory 
systems to ‘resist’ to large external / internal perturbations, thus 
maintaining the system steady-state Cs, and then determining 
very quick recovering paths. As with all other P.I.-s, this regulatory 
property is related to the GERM system characteristics (structure, 
properties). Basically, as Max (Re (λ (i))) <0 is smaller as a Cs 
(QSS) is more stable. Here, the eigenvalues λ (i) of the Jacobian 
matrix ( ( , ) / )c sJ h C k C= ∂ ∂  (see its definition before eqn. (9)) 
are evaluated at a checked QSS of the species concentration 
vector (Cs). In a more systematic approach, the steady-state 
Cs stability strength. can also be associated to an index against 
periodic oscillations of the key-species synthesis. This index can 
be evaluated from the linearized form of the system ODE model, 
by calculating the monodromy matrix A(T) after a checked period 
’T’ of time [92], by using eq. (11). For a stable Cs, i.e., | | 1

iAλ < as | |
iAλ

are smaller, as the stability of the Cs state is stronger, and that 
QSS recovers faster after a small dynamic perturbation. Here, 

iAλ
denotes the eigenvalues of the A(T) matrix, while I = the identity 
matrix. In other words, QSS stability strength involves: Min (Max 
(Re (λ (i))), with Re (λ (i)) < 0 for all ’i’, and Min.

B)	  Dynamic P.I: s is defined in relation to the GERM/
GRC response to a dynamic perturbation (Figure 11), that is the 
recovery of the QSS following an ’impulse’-like perturbation in the 
stationary concentration of one of the cell components. Dynamic 
perturbations refer to instantaneous changes in the concentration 
of one or more cell components that arise from a process lasting an 
infinitesimal time (impulse-like perturbation). After perturbation, 
the system recovers and returns to its stable nominal state QSS 
(see Figure 11 & Figure 16 for a generic P-protein synthesis in the 
case of the simplest [G(P)1] regulatory module. The computed 

recovering time τ(rec, j) necessary to each component ’j’ to reach-
back their stationary concentration (with a tolerance of 1-5% 
proposed by Maria [74]) may differ from one species to another 
depending on how effective their GRC are where it is involved.

In fact, the recovery rates of the species QSS (homeostasis) are 
holistic properties of the cell GRC-s, by involving all interactions 
within the cell-system, rather than of the individual elements 
thereof [109]. In terms of the evolution and stability of species QSS 
concentrations included in a dynamic cell system expressed by an 
ODE model eq. (1A-B), or eq. (3A-B), and eq. (4A-B), eq. (5), these 
properties can be evaluated from the analysis of the eigenvalues 
λ(i) ( i = no. of species) of the linearized ODE kinetic model Jacobian 
matrix ( ( , ) / )c sJ h C k C= ∂ ∂  , of elements J (i, k) = ∂ h(i)(C,k) / ∂ C(k) 
defined before eqn. (9). If small perturbations of a steady state Cs 
are considered then, this steady state is asymptotically stable if 
the real parts of the Jacobian eigenvalues are all negative, that is 
Re (λ (i)) <0, for all ’i’ [109,140,141]. If the system is stable then, 
it reaches the same QSS after cessation of a dynamic impulse-
like perturbation, or it reaches another QSS after cessation of a 
stationary step-like (stationary) perturbation (Figure 11). Here it 
is to mention the works of Maria [1,2,4,5,74,94], and of Sewell et al. 
[136], proving that the optimum concentrations in the ‘buffering’ 
reactions of GERM-s involving the active and inactive forms of the 
’catalyst’ ensuring the maximum regulation dynamic efficiency vs. 
perturbations are those of [G] = [GP], [Gi]=[GiPjPj], of [M] = [MP], 
[Mi]=[MiPjPj], etc. (for the GERM-s types displayed in Figure 3). 
The main dynamic P.I.-s discussed by [1,2,4,5, Maria, 2003; Maria, 
2005B; Maria and Scoban, 2017; Maria and Scoban, 2018] are the 
followings (Figure 11): 

a)	 Recovering time (t(rec,j), or simply t(j)) necessary 
to each GERM’s component to return to their stationary 
concentration (QSS) after an impulse-like perturbation in one 
component (see Figure 11, and Figure 16 for a generic P-protein 
synthesis in the case of the simplest [G(P)1] regulatory module). In 
other words, this P.I. refers to the GERM efficiency to fast recover 
the key-species stationary Cs, that is a short time t(j) necessary to 
the species ’j’ to recover its steady-state concentration (with an 
assumed tolerance of 1%, as proposed by [74]). As an example, in 
(Figure 16 & Figure 22) is proved how a simple generic GERM of 
[G(P)1] type presents a better dynamic efficiency compared to the 
simplest [G(P)]0 gene-expression module. Thus, the stationary [P]

s and [G]s is recovered faster after an impulse perturbation in the 
[P]s, that is a -10% decline of [P]s at an arbitrary time t=0 [8,9]. 
As another example, in (Figure 23) is presented how the dynamic 
regulatory efficiency (that is the recovering time of the key lumped 
species G/P to reach their QSS) depends on the GERM’s structure, 
and its number of effectors (TF-s). Thus, the regulatory efficiency 
increases in the order: 

[G(P)]0 (’1’) < [G(P)1] (‘2’) < [G(P)1; M(P)1] (’3’) < [G(PP)2] (’4’)
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Figure 22. The effect of a buffer reaction effector (G+P GP) on the GERM dynamic efficiency of a [G(P)1] type compared to a [G(P)0] with 
any buffer reaction [8,9,97].

Figure 23: GERM model complexity reflected on its dynamic regulation efficiency. The best alternative [G(PP)2] includes 2 buffering 
reactions, and a dimeric PP transcription factor (TF) [1,2,4,5, 8,9,74].
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b)	 Recovering rate RD (Table 3) is those necessary to each 
GERM component to return to its stationary concentration (QSS) 
after cessation of an impulse-like perturbation in one component. 
As an example, in (Figure 15) is presented how RD depends on 
the GERM structure, and its number of effectors (TF) (see their 
nomenclature in Figure 3). The recovering rate RD reflects the 
recovering properties of the regulated key-P synthesis by the GERM 
modular system. In a simpler way, the species ’j’ recovering times τ 
(j) ~ 1/RD and trajectories Cj(t) can be obtained by simulation , that 
is by simulating the GERM system dynamics [with using the GERM 
ODE model eqn. (3A-B, 4A-B, 5), or eqn. (8) ] after applying a small 
impulse perturbation of the species steady-state of +/-10% Cj,s 
and determining the recovering time until the steady-state Cj,s is 
reached with a 1% tolerance [1,2,4,5, 8,9,74]. Species recovering 
trajectory and amplitude are both very important (Figure 15 
& Figure 23). As proved by Maria [1,94], GERM-s display very 
different recovering trajectories and amplitudes according to their 
reaction parhway structure (Figure 15). The most effective are the 

GERM types ensuring the smallest amplitude of the recovering 
pathway, thus not disturbing the other cell metabolic processes. 
As underlined by Maria [1,94], the recovering trajectories in the 
G/P phase plane are more ’linear’-like for the efficient GERM-s, 
by presenting a lower amplitude, thus not disturbing other cell 
reactions and regulatory circuits.

c)	 Regulatory robustness. The regulatory robustness of a 
GERM dynamic model is defined by Maria [1,4,8,9,74] as being the 
property to realize (Min) /DR k∂ ∂  , where RD denotes the key-
species recovering rates of their QSS, after cessation of a dynamic 
perturbation, while ’k’ is the vector of the rate constants of the 
GERM model (depending on the micro-organism type). This P.I. 
can be considered a systemic regulatory property if GERM species 
levels are able to modify the apparent reaction rates. In fact, the 
cell metabolic network robustness and functionality are linked 
to the cell phenotype and gene regulation scheme (depending on 
each individual expression).

Table 1: The concepts and the basic hypotheses of WCVV dynamic modelling framework in living cells of variable volume (adapted from [72]). See no-
tations of [1,2,4,5, 72,74,75].

Mass Balance and State Equations Remarks

1 ( , )j j
j j

dc dn
DC g C K

dt V dt
= − = continuous variable dynamic model representing the cell growing 

phase (ca. 80% of the cell cycle)
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∑ D = cell content dilution rate =cell volume logarithmic growing rate
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= = =

= = =

∑ ∑ ∑ constant osmotic pressure (π) constraint
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all all
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   

=   
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   

∑ ∑ Derived from the isotonic osmolarity constraint

Hypothesis:
a. Negligible inner-cell gradients.

b. open cell system of uniform content.

c. Semi-permable membrane, of negligible volume and resistance to nutrient diffusion, following the cell growing dynamics.

d. Constant osmotic pressure (the same in cytosol “cyt” and environment “env”), ensuring the membrane integrity (πcyt = πenv = constant)

e. Nutrient and overall environment species concentration remain unchanged over a cell cycle te.

f. Logarithmic growing rate of averaqge Ds = ln(2)/te ; volume growth of; V = Vo
D,t ; te = duration of the cell cycle.

g. Homeostatic stationary growth of (dCj / dt)s = gj(Cs, k) = 0.

h. Perturbations in cell volume are induced by variations in species copy numbers under the isotonic osmolarity constraing: 

( ) ( )/ /perturb j jperturb
V V n n= ∑ ∑

Notations: T = absolute temperature; R = universal gas constant; V = cell (cytosol) volume; π= osmotic pressure; Cj – cell species j concentration; nj = 
species j number of moles; rj = j-th reaction rate; t = time; k = rate constant vector; “s” index indicates the stationary state.
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d)	 Species interconnectivity in a GERM modular 
regulatory schema of reactions can be viewed as a degree to 
which they ‘assist’ each other, and ‘cooperate’ during the GERM 
system regulation to realize their optimal regulatory P.I.-s. Cell 
species connections appear due to common reactions, or common 
intermediates participating to the chain of reactions, or from the 
common cell volume to which all cell species contribute (under 
constant osmotic pressure, eq. (3A-B, 4A-B, 5, 6), and WCVV model 
hypotheses of (Table 2). Vance et al. [142] reviewed and proposed 
several quick experimental/computational rules to check a 
reaction schema via species inter-connectivity’s. By inducing 
experimental perturbations to a (bio)chemical system, by means 
of concentration tracers, or by fluctuating the inputs of the system, 
one can measure the perturbation propagation through the 

consecutive/parallel reaction pathway. Then, various techniques 
can determine the ’distance’ among observed species and then, 
specific rules can be used to include this information in elaborating 
a reaction schema [8,9,12-15,74,76,77,87,99]. In this respect, 
Maria [74,76,77,87,99] proposed an approximate measure of 
species interconnectivity related to the species recovering-times 
after a dynamic perturbation, that is: AVG (t(j)) and STD (t(j)), i.e. 
the average and the standard deviation of the species individual 
recovering times t(j), respectively. As AVG and STD are larger, the 
cell GERM/GRC dynamic regulatory effectiveness is lower, species 
less interconnected, and components recover more disparately 
(scattered recover times). The higher the number of effectors and 
buffering reactions, the better these dynamic regulatory indices of 
the GERM are [1,2,4-9,12-15,49,74,76,77,87,94,99].

Table 2: Some advantages when using the holistic WCVV framework when modelling GRC-s [1,2,4,5, 8,9,72].

a. The role of the high cell-ballast in “smoothing” the perturbations of the cell homeostasis.

b. The secondary perturbations transmitted via the cell volume.

c. The system isotonicity constraint reveals that every inner primary perturbation in a key-species level (following a perturbation from the environ-
ment) is followed by a secondary one transmitted to the whole-cell via cell volume.

d. Allows comparing the regulatory efficiency of various types of GERM-s.

e. Allows a more realistic evaluation of GERM performance indices I6] (see the below section).

f. Allows studying the recovering/transient intervals between steady states (homeostasis) after stationary perturbations (Figure 11).

g. Allows studying conditions when the system homeostasis intrinsic stability is lost.

h. Allows studying the self-regulatory properties after a dynamic/stationary perturbation, etc. (Figure 11).

i. Allows in-silco studying the plasmid-level effectws in cloned GMO cells. Allows in-silico easy evauation of cell metabolic fluxes leading to a rapid 
design of GMO alternative cells of desired characteristics (“motifs”).

e)	 Cell sub-system QSS stability (and of a GERM) 
refers to the cell system’s capacity to recover a QSS (that is the 
homeostasis of a balanced cell growth) after cessation of any 
dynamic perturbation. Such a property can be better pointed-out 
by analysing the QSS and eqn. (8) derived from the dynamic GERM 
ODE model eqn. (3A-B). The stability property can be evaluated 
from the analysis of the eigenvalues λ (i) (i = no. of species) of 
the linearized model Jacobian matrix of elements J(i,k) = ∂h(i)
(C,k) /∂C(k) defined before eqn. (9). The QSS is asymptotically 
stable if the real parts of the Jacobian eigenvalues λ (i) are all 
negative, that is Re (λ (i)) <0 for all ’i’ [109,140,141,143]. If the 
system is stable then, it reaches the same QSS after cessation of 
a dynamic impulse-like perturbation, or it reaches another QSS 
after cessation of a stationary step-like perturbation. Here it is to 
mention two important observations:

i)	 A characteristic of the WCVV models including the 
Pfeiffers’constraint eq. (2), translated in eqn. (3A-B, 4A-B, 5, 6), is 
that they are always stable (intrinsic stability), because, as proved 
by Morgan et al. [93], always Max (Re(λ (i))) = -D [ see eq. (3A-B, 
5)].

ii)	 By contrast, one fundamental deficiency of the classical/
default WCCV model (incorrect) formulation is the lack of the 
intrinsic stability of the cell system ODE dynamic model, because 
the WCCV models do not include neither the Pfeiffers’constraint 
eq. (2), nor an equivalent constraint to ensure the cell isotonicity 
and, consequently, its membrane integrity. It follows that, 
working under a classical WCCV modelling framework, the GERM 
regulatory mechanism for recovering the system homeostasis 
(illustrated in Figure 3, Figure 16 & Figure 23), is no longer 
working, and the dynamic ODE model becomes invalid, ineffective, 
and not applicable.

Some rules to link GERM-s when modelling GRC-s

When modelling a GRC consisting of a network of GERM-s, 
„there are two problems to be considered: (i). what types of 
GERM-s must be chosen from the library of (Figure 4-7) to match 
the individual gene expression characteristics, and (ii). what 
rules are to be applied for linking GERM-s to obtain the holistic 
regulatory properties of the GRC in the context of the cell balanced 
growth. A successful example of a HSMDM model is given in Part-
4 of this work, that is the case study referring to modelling the 
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mercury-operon expression induced by the presence of mercury 
ions in the E. coli cell environment. The complex GRC was obtained 
by linking 7 individual GERM-s [1,2,4,5,12-15]. For this case study, 
the GRC-operon model including GERM-s of [G(PP)1] type, and 
their arrangement in a cascade control with feedforwards, and 
feed-back loops have been found to be the best ODE structured 
dynamic model able to adequately reproduce the experimental 
data. In fact, when developing a math (kinetic) cell structured 
ODE model linking a couple of GERM-s to construct a certain GRC 
to reproduce/simulate certain regulatory functions concerning 
the cell metabolism, there are several trends used in the in-silico 
analysis:

a)	 On one hand is the natural approach of using simple 
(lumped) GERM structures (see the GERM library of Figure 3) to 
reduce the large computational effort required to estimate the rate 
constants of the corresponding HSMDM model (that incorporate 
the GRC model), and for its quick simulation.

b)	 On the other hand, it is important to use effective 
and flexible GERM-s able to reproduce the individual enzyme-
synthesis, but also the holistic properties (P.I.-s) of the GRC 
mentioned in Table 3). Some examples are provided by Maria 
[4,5]). To ensure the optimal efficiency of a resulted GRC, and 

their functions into the cell, Maria [1,2,4,5,74] elaborated a couple 
of rules to be followed, and accounted for, when linking GERM-s 
to form a GRC. This sub-chapter aims to briefly review the main 
linking rules.

i)	 Rule 1: The effect of the no. of regulatory effectors 
(n)

By definition, GERM models (see Figure 3, and the nomenclature 
given in section “The GERM library”) include an adjustable number 
of ’regulatory effectors’, that is: ’n’ for the [G(P)n] type, or [G(PP)
n] series; ’n’ and ’n1’ for the [G(P)n; M(P)n1] series. As proved 
by Maria [74,77,94], and others [95], a quasi-linear relationship 
of the GERM module P.I.-s function of no. of regulatory effectors 
’n’ can be derived for every GERM type, of the form  
(Notations: a(o), a(i) denotes the correlation constants related to 
a certain P.I., and module type). Here, P.I. denotes the regulatory 
performance index (chap. 2.3.5), such as RD, AVG (τ(j)), STD (τ 
(j)), stability strength, etc. Also, n(i) = number of effectors (P, PP, O, 
etc.) acting in the ’i-th’ allosteric regulatory unit [Li (Oi)n(i)]. This 
rule is maybe the most important, the above linear dependence 
being observed in the examples displayed in (Figure 20 & Figure 
15). In short, Maria [4,5,74,76,77,87] proved the following GERM-s 
properties (see also Figure 20, Figure 15):

Table 3: The regulatory efficiency performance indices P.I.-s proposed to evaluate the perturbation treatment efficiency by a generic GERM of (Figure 3 
& Figure 4) type, following the definitions of Maria [72]. Abbreviations: Min = to be minimized; Max = to be maximized. Note: k(syn) and k(decline) refer 
to the à P à overall reaction. Notations: ’n’= nominal value; ’s’ = stationary value; (*) see eq. (11) and [92] for the monodromy matrix A calculation; λ (i) = 

i-th eigenvalues of the Jacobian matrix ( ( , ) / )c sJ h C k C= ∂ ∂ defined before eq. (9); A = monodromy matrix, defined by eq. (11); τ(j)= species ’j’ recovering 
time of its QSS-level, with an accepted tolerance (usually 1-5%); Nut= nutrient; Re(l) = real part of ’l’; AVG = average; STD = standard deviation (st. dev.); 
Cj = species ’j’ concentration; RD = dynamic regulatory (recovering) index (equivalent with the recovering rate of a species steady-state Cjs (QSS), after a 

dynamic perturbation); QSS = quasi-steady-state; P denotes a generic key-protein expressed by its encoding gene G in the analysed generic GERM; t
NutPjS

= the sensitivity of NutP(j) vs. concentration C(i) of species ’i’. Adapted after [1,2,4,5].

Index Suitable objective Expression

stationary regulation Min ([ ]) [ ] ) / [ ]ss s ns nsR P P P= −

stationary regulation Max unsync syn declineA k k= ×

stationary regulation Min ( ) ( )/ / /
j j js

i
Nutp i is Nut Nut

s
S C C C C = ∂ ∂ 

stationary regulation Min ( ) ( )/ / /
j

i
k i is j j s

S C C k k = ∂ ∂ 

dynamic regulation Min (Re( )),Re( ) 0D i iR Max λ λ= <

dynamic regulation Min ;j pτ τ

regulatory robustness Min ( )/D kR∂ ∂

species interconnectivity Min ( ) ( )j jAVG averageτ τ=

species interconnectivity Min ( ) ( ). .j jSTD st devτ τ=

QSS stability strength Min ( )( ) ( )Re ,Re 0i iMax λ λ <

QSS stability strength Min | | 1Aλ <
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a)	 P.I. improves ca. 1.3-2 times (or even more) for every 
added regulatory unit to a GERM model of (Figure 3). Multiple 
regulatory units lead to an average recovering time AVG (τ(j)) of 
all GERM species much lower than the cell cycle duration ’tc’, under 
a constant logarithmic volume growing rate, D = ln (2)/tc. (see eqn. 
4B)

b)	 Combinations of GERM regulatory schemes (with 
different effectors) can improve the regulatory P.I.-s.

c)	 Certain GERM regulatory modules reported an increased 
flexibility, due to ‘adjustable’ intermediate species levels. This is 
the case, for instance, of adjusting [M]s in the GERM modules of 
type [G(P)n; M(P)n1], or of adjusting [PP]s in modules [G(PP)n] of 
(Figure 3, Figure 15, Figure 20 & Figures 18-19). Optimal levels of 
these species can be set according to various optimization criteria, 
rendering complex regulatory modules to be more flexible in 
reproducing certain desired cell-synthesis regulatory properties 
(see the example given by Maria [99]).

ii)	 Rule 2: Ranging the number of transcription factors 
TF and buffering reactions

To select the suitable GERM structure that fits the available 
experimental (kinetic) data of the cell metabolism, the first 
problem to be solved is related to the number of buffering 
reactions of type:

G + P <===> GP, or M + P <===> MP

necessary to be included in the model to obtain the desired 
optimal P.I.-s (Figure 3, Figure 23 & Figure 24) [87,99]. Evaluation 
of P.I.-s for a large number of GERM types (Figure 3) [1,2,4,5,12-
15,74,76,77,87,88,99,115] indicated that the dynamic regulatory 
efficiency of [G(P)n], or of [G(PP)n] modules is nearly linearly 
increasing with the number ’n’ of buffering reactions (following 
the above correlation given at the rule no. 1). Moreover, the plots 
of (Figure 15) reveal that P.I.-s increase is more pronounced in 
the case of GERM-s of [G(PP)n] model types, that use dimeric 
TF-s (that is PP instead of simple P). Also, GERM-s of type [G(P)
n; M(P)n1] models that use a control scheme in cascade of the 
gene expression reported superior regulatory P.I.-s. Such a GERM 
module efficiency ranking according to the number of effectors 
concerns not only its dynamic regulatory efficiency, but also most 
of P.I.-s, as discussed in the previous section, such as (Table 3): 

a)	 The stationary regulatory effectiveness.

b)	 The low QSS sensitivity vs. stationary perturbations. 

c)	 Stability strength of the homeostatic QSS. 

d)	 The shorter species recover trajectories in the G/P phase 
plane, and of a lower amplitude.

iii)	 Rule 3: The effect of the mutual catalysis in the G/P 
synthesis

One essential aspect of the [G(P)n], [G(PP)n], and [G(P)n; M(P)

n1] kinetic models of GERM--s is the mutual catalysis of G and its 
encoding protein P synthesis. If one adds the WCVV modelling 
constraints eqn. (3A-B, 4A-B, 6, 8), and the requirement of getting 
a maximum dynamic responsiveness and efficiency by keeping 
[G]s = [G(P)]s = [G(PP)]s = …= [G(P)n]s, as discussed by Maria 
[1,2,4,5,74,76,77,94]. This direct and indirect link (via GP, GPP, etc., 
and the cell volume/osmotic pressure) of G and P syntheses ensures 
a quick recovering of both stationary [G]s and [P]s after any small 
perturbation of their QSS (stationary, homeostatic) concentration. 
To prove this in a simple way, one considers the synthesis of a 
generic G/P pair in a GERM of [G(P)1] type (denoted by ’2’), or 
a [G(P)0] type (denoted by ’1’) in (Figure 3 & Figure 23). After 
estimating the rate constants from solving the stationary model 
equations by using the homeostatic concentrations of (Figure 25, 
high ballast cell case), one determines the dynamic efficiency for 
each GERM by applying a negative 10% impulse perturbation in the 
[P]s = 1000 nM at an arbitrary time t=0. The obtained recovering 
trajectories of P and G obtained by model simulations are plotted 
in (Figure 16 & Figure 23). The plots reveal a satisfactory good 
regulatory efficiency of the [G(P)1] type of GERM, both G, and P 
species presenting relatively short recovering rates, and negligible 
for the other species. These plots reveal, in a simple way, the self-
regulation of the G/P pair synthesis: after an impulse perturbation 
leading to the decline of [P]s from 1000 nM to 900 nM, the very 
fast buffering reaction G + P <===> GP leads to restore the active G, 
whose concentration quickly increases from 0.5 nM to [G] = 1.027 
nM. Therefore, the synthesis rate of P increases leading to a fast P 
recovering rate which, in turn, contributes to the recovering of the 
G-lump steady-state. For comparison, as revealed by the results 
displayed in the (Figure 22), the dynamic efficiency of the module 
[G(P)0] is much lower, species recovering their QSS over longer 
transient times. Also, the species connectivity is better in the 
[G(P)1] case compared to [G(P)0], due to the reported smaller STD 
(τ (j)) (Table 3). Consequently, removal of the buffering reaction 
that automatically adjusts the ’catalytic activity’ of G, will: 

a)	 Decrease the species inter-connectivity (by increasing 
the standard deviation of their recovering times). 

b)	 Will increase the species recovering times.

c)	 Will increase the sensitivities of the species steady state 
vs. external nutrients (see sensitivity coefficients vs. NutG in 
Figure 22). 

As expected, the P.I.-s of the GERM–s depend not only on (a) 
the no. of effectors (buffering reactions), but also on (b) the TF 
types (P, or PP), and even more (c) on the used control scheme 
(i.e. simple buffer reaction of G-activity, or in a cascade of buffer 
reactions, like the [G(P)n; M(P)n1] reaction schemes). To better 
exemplify these issues, one considers the same generic G/P gene 
expression example with the species homeostatic stationary 
concentrations given by of (Figure 25, high ballast cell case). For 
comparison, one considers GERM model types, of structures given 
in the (Figure 23), that is [G(P)0] without mutual catalysis, [G(P)1] 
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with mutual catalysis and one buffering reaction, or [G(PP)2] with 
dimeric TF=PP, or even [G(P)1;M(P)1] with mutual catalysis and 
a cascade control via buffering reactions at both G and M levels. 
The rate constants have been estimated by solving the stationary 
form of the GERM model with the stationary concentrations (eq. 
(8)). Additionally, the requirement of getting a maximum dynamic 
responsiveness and efficiency, as discussed by Maria [1,2,4,5, 
74,94], leads to adopt [M]s = [M(P)] s = 0.5 nM, and [G]s = [G(PP)] 
s = [G(PPPP)]s = 1/3 nM. The resulted recovering trajectories of 
the G and P species after a –10% impulse perturbation in the [P]s 
= 1000 nM at an arbitrary t=0, are comparatively presented in the 
(Figure 23). It is to remark that the incomplete [G(P)0] module 
reports the worst dynamic efficiency, with a very slow recovering 

rate after a dynamic perturbation in [P]s, as depicted in (Figure 
23). Better performances are reported by the [G(P)1] module type. 
Even if a better regulatory efficiency is reported by the cascade 
control of separately considered transcription and translation of 
the [G(P)1;M(P)1] module, the best QSS recovering efficiency is 
reported by the [G(PP)2] module that uses two buffering reactions 
and a dimeric PP as TF, quickly synthesized in a small amount (of 
optimal level [PP]s = 0.01 nM determined together with the model 
rate constants to ensure an optimal P.I.). Due to such reasons, 
GERM-s modules of type [G(PP)2] will be preferred when build-
up the GRC for the mercury-operon expression in one of the case 
studies of the Part-4 of this work.

Figure 24. Effect of the GERM model complexity on its stationary regulatory performances (P.I.) of Table 3. Each GRC includes 2 linked 
(through P1) gene expression regulatory modules (GERM).  The (structure ”1”) is of type [G1(P1)1] + [G2(P2)1]. The (structure „”2”) is of 
type [G1(P1)1; M1(P1)1] + [G2(P2)1; M2(P2)1]. The GRC of structure no.”2” is of a higher complexity, and reported better stationary and 
dynamic P.I.-s [1,4,75].

All the above analyzed GERM-s have been modelled in a WCVV 
framework (eq. 3a-b, 4a-b, 5-8). For such WCVV kinetic models, it 
is to remark the way by which the variable cell-volume plays an 
important role to species inter-connectivity (direct or indirect via 
the cell volume to which all cell components contribute), within a 
certain GERM regulatory module or among linked modules. Even 
if species connectivity can be expressed in several ways [49,142], 
this index is directly dependent on how species in a GERM or in 
a GRC recover independently after perturbation. As the species 
connectivity increases, as they recover at a more comparable 

rate (or equivalently, over the same time), by ‘assisting’ each 
other to cope with a perturbation (see the comparison of species 
recovering times in Figure 22). By contrary, when the species are 
more disconnected, they recover in a more disparate way, and the 
GERM presents weaker P.I.-s. [reporting not only larger species 
recovering times τ (rec)(j), but also larger state sensitivities to 
external nutrients, see Table 3]. Thus, the mutual autocatalysis 
G/P appears to interconnect the GERM key-components such that 
they are regulated more as a unit than would otherwise be the 
case.

http://dx.doi.org/10.19080/ARR.2024.10.555790


How to cite this article:  Gheorghe M. Application of (bio)chemical engineering concepts and tools to model GRCs, and some essential CCM pathways in 
living cells. Part 2. Mathematical modelling framework. Ann Rev Resear. 2024; 10(3): 555790.  DOI:10.19080/ARR.2024.10.5557900033

Annals of Reviews and Research

iv)	 Rule 4: The effect of cell system isotonicity

The positive effect of the isotonicity constraint eqn. (2, 3a-
b, 4a-b, 5-8) of a WCVV cell model was proved by Maria [1,2,4,5, 
74]. By simulating the GERM species dynamics of a [G(P)1] model 
type, the effect of applying a –10% impulse perturbation in the 
key-protein homeostatic level [P]s = 1000 nM at an arbitrary time 
t=0, on the key-species (G, P) can be observed in (Figure 16), while 
species recovering times are given in (Figure 22). By contrast, in a 
classic (default) WCCV cell model formulation, when the isotonicity 
constraint is missing from the ODE dynamic model, the key-species 
do not recover after a dynamic perturbation (!). By contrast, as 
revealed by the performed simulations with the a [G(P)1] module, 
the system isotonicity imposes relatively short recovering rates for 
the key-species, and negligible for the other GERM species present 
in a large amount (that is the lumped nutrients and metabolites). 
By contrast, as proved by Maria [1,2,4,5,8,9,74], the WCVV models, 
with including the ’cell ballast’ effect, and the G/P mutual cross- 
and auto- catalysis, are more flexible and adaptable, thus better 
representing the cell adaptation to the environment changes.

v)	 Rule 5: The importance of the adjustable regulatory 
TF-s in a GERM

As proved by the example of (Figure 23), and those of [74,94], 
the use of dimeric TF-s, such as PP in [G(PP)n], instead of simple 
P in [G(P)n], is advantageous, as revealed by the following 
simulation results:

a)	  The dynamic regulatory efficiency increases in the order: 
[G(P)0] (no buffering reaction) < [G(P)1] (one buffering reaction) 
< [G(P)1; M(P)1] (cascade control and a buffering reaction at the 
M level) < [G(PP)2] (two buffering reactions, with dimeric TF= PP, 
in a small quantity). Some GERM modules reported an increased 
P.I. flexibility, due to ‘adjustable’ intermediate TF species levels. 
This is the case, for instance, of adjusting [M]s in the module [G(P)
n; M(P)n1], or of [PP]s in the modules [G(PP)n]. Optimal levels 
of these intermediate species can be determined from matching 
various optimization criteria, rendering complex GRC-s to be more 
flexible in optimally reproducing certain desired cell-synthesis 
regulatory properties [1,4,5,8,9,99].

b)	  The dynamic regulatory efficiency (defined in Table 3, 
and in the section 2.3.5) decreases in the following order [1,2,4,5, 
74,94]: 

Min (τ (rec)P): [G(PP)2] > [G(P)1; M(P)1] > [G(P)1] > [G(P)0]

Min (STD):[G(PP)2] > [G(P)1; M(P)1] > [G(P)1] > [G(P)0],

c)	 The stationary regulatory efficiency of [P]s (Table 3) 
decreases in the same order, that is (where S (y; x) = ∂y/∂x): Min 
S([P]; [NutG] ): 	 [G(PP)2] > [G(P)1;M(P)1] > [G(P)1] > [G(P)0]

vi)	 Rule 6: The effect of the cell ballast on the GERM 
efficiency

When constructing simplified cell models of GERM-s/GRC-s 
by using the WCVV approach, it is important to know what the 

minimum level of simplification is to not essentially affect the 
holistic properties of the cell, and their key-functions (Outline 1). 
This paragraph proves why it is essential for a WCVV cell modelling 
approach to include all cell species, all forming the so-called ’cell 
ballast’, that is the sum of all species concentrations, even if they 
are explicitly or not accounted in the ODE mass balance of the GRC 
model. Basically, the isotonic constraint imposes that all species 
(individually, or lumped) to be accounted in the cell model, because 
species concentrations and rates are linked through the common 
cell volume eq. (2, 4A, 6). As proved by Maria [1,4,5,8,9,85], and 
(Figure 25), in such WCVV cell model constructions, the recovery 
rates are properties of all interactions within the cell system rather 
than of the individual elements thereof [109]. However, another 
important question related to the cell ballast and the isotonicity 
constraint refers to the degree of importance of the cell content 
(ballast) concerning the cell reactions, and their species QSS-levels 
’resistance’ to dynamic/stationary perturbations (Figure 11). 

In other words, the P.I.-s of a GERM, or of a GRC, are the same 
in a ’rich’ cell of high cell content (ballast), compared to those 
from a ’poor’ cell of low cell content (ballast)? The answer is no! 
To prove that in a simple way, one considers a GERM of a generic 
[G(P)1] type placed in an E. coli cell with two different nominal 
conditions given in (Table 4) for a high-ballast cell, and a low-
ballast cell. To not complicate these models, lumped gene and 
protein metabolites have been considered. Being present in a large 
amount (that is lumped [MetG] = 3E+6 nM and lumped [MetP]= 
3e+8 nM), these components also play the role of cell ballast, their 
concentrations being set to values much larger than those of the 
other cell species. Simulations of Maria and Scoban [8,9], allowed 
obtaining the species trajectories, and their recovering times after 
a –10% impulse perturbation in the key-protein [P]s of 1000 nM 
applied at an arbitrary time t=0. These recovering trajectories 
are displayed in (Figure 25). The species recovering times are 
presented in (Table 5) for the [G(P)1] model comparatively to the 
[G(P)0] model, both derived by using the WCVV approach. These 
results clearly indicate the regulatory superiority of the [G(P)1] 
model vs. [G(P)0] model of the GERM. for both low/high ballast 
cells.

Selection of appropriate lumped [MetG] and lumped [MetP] 
will lead to understanding their effect on the cell self-regulatory 
properties. Low concentrations relative to the total number of 
other molecules in the cell afforded shorter recovering times τ 
(rec)(P) for the key-protein P. For instance, in the [G(P)1] module 
case, and low ballast case, with lumped [MetG] =2000 nM, and 
lumped [MetP] = 3000 nM, and all [Cj] = 12001 nM, the resulted 
recovering times of the key-species G/P are τ (rec)(P) = 103 min, 
and τ (rec)(G) =223 min after a –10% impulse perturbation in 
the [P]s of 1000 nM at an arbitrary t = 0 (Figure 25). Whereas 
for a high-ballast cell case with lumped [MetG] = 3e+6 nM, and 
lumped [MetP] = 3e+8 nM, and all [Cj] = 6.06e+8 nM, the resulted 
recovering times are τ (rec)(P) = 127 min, and τ (rec)(G) = 118 
min after a –10% impulse perturbation in the [P]s of 1000 nM at 
an arbitrary t=0 (Table 5 & Figure 25).
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Table 4: The nominal (homeostatic QSS) E. coli cell conditions, and the recovering rates of a [G(P)1] gene expression regulatory module after a –10% 
impulse perturbation in the [P]s of 1000 nM at an arbitrary t=0. Cell initial volume of the considered E. coli cell, is of Vcyt,0 = 1.66´10-15 L. Adapted from 
[72] by the courtesy of CABEQ Jl.

Species
Low ballast cell (nM) High ballast cell (nM)

QSS conc. (nM) Recovery time (min). QSS conce. (nM) Recovery time 
(min).

NutPC 3000 NG 3x108 NG

NutGC 3000 NG 3x106 NG

,Met j sLump jC G∑ ~2000 NG ~ 3x106 NG

,Met j sLump jC P∑ 3000 NG 3x108 NG

, [ ]p s sC P= 1000 103 1000 133

, [ ]G s sC G= 0.5 223 0.5 93

,GP sC 0.5 246 0.5 93

j j
SUM C∑ 12001 ~6.06x108

Footnotes: The lump j jSum C∑  results from the isotonic constraint: ;
t

t

Cell Cell

j MetG NutG NutP j j
j MetG j MetGj

C C C C C
≠ ≠

= + −∑ ∑ ∑ . The cell life cycle considered is of tc = 100 min. The 
cell-volume logarithmic growing rate is D = Ln (2)/tc. The Max (Re(λ(j))) < 0 indicates a stable QSS homeostasis of the cell, where λ(j) is (3A-B, 8). The 
Jacobian Jc elements are defined before eqn. (9). The rate constants of a generic [G(P)1] model of WCVV type (Figure 8) results from solving the sta-
tionary model (eqn. 8) with known stationary species concentrations displayed in the above table. The only G+ P ⇔ GP buffer reaction was considered 
with the reverse reaction rate constant of 105 1/min [77]. Notations: NutP and NutG are substrates used in the synthesis of metabolites MetP and MetG, 
respectively. These metabolites are used for the synthesis of P and G, respectively; G= the generic gene (DNA); P = the protein encoded by G; M = RNA; 
GP = the inactive complex of G with P; Cj= species ’j’ concentration; cyt = cytosol; ’o’ = initial; ’s’ index refers to the QSS (stationary homeostasis); NG = 
negligible.

Figure 25. Exemplification of the cell content ballast effect on the species recovering times to homeostasis, in the case of a [G(P)1] 
gene expression regulatory module. Gene G (top-right) and its encoding protein P (down-left) recovery trajectories after a –10% impulse 
perturbation in the [P]s = 1000 nM at t=0. Solid line trajectories correspond to a high ballast cell, while the dash line trajectories to a low 
ballast cell. The species concentrations in nM are given in the Table 2 of [8,9].
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Table 5: Comparison of the species recovering rates for a GERM simulated with a [G(P)1] dynamic model type compared to those of a [G(P)0] model. 
The nominal conditions are those of Table 4 for the high ballast cell case, but with [G]s = 1 nM. NG = negligible. Notations: NutP and NutG are substrates 
used in the synthesis of metabolites MetP and MetG, respectively. These metabolites are then used for P and G synthesis, respectively. G= a generic gene 
(DNA); P = the protein encoded by G; M = RNA; GP = the inactive complex of G with P; Cj = species ’j’ concentration; cyt = cytosol; ’o’ = initial; ’s’ index 
refers to the QSS; Adapted from [8,9].

GERM type Species Cj ∂ Cjs/ ∂ Nut G, s ∂ tn Cjs/ ∂ tn Nut G, s Recovery time trec(min)

G(P)0

P -4.53 -0.452 156.5

G 4.76*10-4 0.047 NG

MetG 52.43 0.524 NG

Metp -47.89 -0.478 NG

AVG 39.12

STD 78.25

G(P)1

P -3.7 -0.365 127.1

G 1.2x10-3 0.229 118.1

GP -6.8x10-4 -0.125 69.5

MetG 52.43 0.524 NG

MetP -48.76 -0.487 NG

AVG 62.94

STD 61.49

We refer to this as the ’Inertial Effect’. In an in-silico 
model estimation/simulation, it arises because the invariance 
relationships described in the above section for the WCVV 
approach require that larger rate constants for P and G synthesis 
be used to counter-balance lower [MetP] and [MetG] content 
into the cell, and these constants are determinants for the key-
species recovering rates (τ (rec)(j)) after a dynamic perturbation. 
On the other hand, when metabolite concentrations were low 
(low-ballast cell case), perturbation of the cell volume (by the [P]
s-perturbation) was greater than those when the cell-ballast was 
high (the volume dynamics plots not presented here; see [8,9,85]. 
The attenuation of the perturbation-induced volume changes by 
large metabolite concentrations is called the ’Ballast Effect’. Cell 
ballast diminishes the indirect perturbations, otherwise seen in 
concentrations of all cellular components. Thus, [G] was perturbed 
far less, because of an impulse perturbation in [P], for the cells 
containing higher metabolite concentrations than for those 
containing lower metabolite concentrations (Table 5 & Figure 25). 
Thus, metabolites’ higher concentrations attenuate the impact of 
perturbations on all cellular components but negatively influences 
their recovery times.

In fact, the so-called ‘ballast effect’ shows how all components 
of the cell are interconnected via volume changes. It represents 
another holistic property of cells, and it is pointed out and correctly 
represented, by using only the WCVV modelling framework. Its 
importance is related to the magnitude of perturbations and 
the total number of species in a cell. For a single perturbation 
in real cells, the ’Ballast effect’ will be insignificant due to the 

large number of intracellular species. However, the sum of all 
perturbations experienced during a cell cycle might be significant.

vii)	 Rule 7: The effect of GERM complexity on the 
resulting GRC efficiency, when linking GERM-s

One important issue to be solved when linking GERM-s to 
construct a GRC is the degree of detail of the adopted GERM-s to 
accurately reproduce the GRC regulatory properties. The examples 
briefly reviewed below and those Maria [1,2,4,5,74,77] revealed 
that more important than the number of considered species in 
the regulatory loops is the selected GERM regulatory scheme 
type able to adequately simulate the GRC holistic synchronized 
response to the environmental dynamic/stationary perturbations. 
Consequently, when developing a WCVV kinetic model of a GRC, 
it is important to adopt the suitable reduced model GERM-s 
network structure by means of an acceptable trade-off model 
simplification-vs.-model quality (adequacy). Adoption of too 
complex reaction pathways is not desirable when developing cell 
simulators, these structures being difficult to be modelled by using 
ODE kinetic models with continuous (or stochastic) variables, 
and difficult to be estimated, due to the very large number of 
unknown parameters (rate constants, diffusion coefficients, etc.), 
and unknown steady-state concentrations. Besides, cell GRC 
model constructions including too complex GERM-s modules lead 
to inoperable large models very difficult, if not impossible, to be 
used for in-silico GMO cell design purposes. The alternative is to 
use reduced ODE models with several lumped species and enough 
reactions (see the above section “Lumping MSDKM models”) 
to fairly reproduce the experimental data, but simple enough to 
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make possible a quick dynamic analysis of the cell key-metabolic 
processes and of its regulation properties.

To exemplify how a suitable trade-off between GRC model 
simplicity and its capabilities can be obtained, one considers 
the problem of adequately and efficient linking of two GERM-s 
(related to the expression of G1/P1 and G2/P2 pairs) such that 
the resulted GRC to present optimal P.I.-s. To solve this problem, 
Maria [77] compared two GERM-s linking alternatives (Figure 24 
& Figure 26):

Alternative A: 	 [G1(P1)1] + [G2(P2)1] (10 individual 
and lumped species). 

Alternative B: 	 [G1(P1)1; M1(P1)1] + [G2(P2)1; 

M2(P2)1] (14 individual and lumped species).

Alternative A. 	 This GERM mutual linking works 
as follows: the expressed P1 in [G1(P1)1] is the metabolase that 
converts NutG in MetG2 and NutP in MetP2 in the [G2(P2)1]. 
In turn, the expressed P2 in [G2(P2)1] is the polymerase that 
converts MetG1 in G1 in the modules [G1(P1)1] + [G2(P2)1]. 

Alternative B. 	 This GERM mutual linking works as 
follows: the expressed P1 in [G1(P1)1; M1(P1)1] is the metabolase 
that converts NutG in MetG2 and NutP in MetP2 in the [G2(P2)1; 
M2(P2)1]. In turn, the expressed P2 in [G2(P2)1; M2(P2)1] is the 
polymerase that converts MetG1 in G1 in the module [G1(P1)1; 
M1(P1)1].

Figure 26: Effect of the GERM model complexity on the GRC dynamic performances (P.I.). This GRC includes 2 linked (through protein P1) 
gene expression modules, i.e. (structure”1”) [G1(P1)1] + [G2(P2)1], vs. [G1(P1)1; M1(P1)1] + [G2(P2)1; M2(P2)1] (structure „”2”). The GRC 
structure no.”2”, of a higher complexity, reported better P.I.-s. Adapted after [77].

Simulations revealed that alternative B is superior, by 
presenting better stationary P.I.–s (Figure 24), and dynamic P.I.-s 
(Figure 26). The ’cost’ in increasing complexity is minimum, the 
GRC including 14 species into the model (alternative B) compared 
with only 10 species of the (alternative A). To conclude, despite 
a slightly more complex structure (14 vs. 10 individual and 
lumped components, and two more buffering reactions), the GRC 

of alternative B presents much better P.I.-s, that is (values not 
presented here): 

(i)	 Key-species shorter recovering times after an impulse 
perturbation.

(ii)	 Lower AVG and STD species connectivity indices.
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(iii)	 Species QSS concentrations lower sensitivity vs. 
environmental perturbations. 

Thus, the right choice of the GERM structures in a GRC is an 
essential modelling step. This example proves how, with the 
expense of a little increase in the model complexity (4 additional 
species and 2 buffering reactions), the cascade control in a GERM 
of [G(P)n; M(P)n1] type (Figure 3) presents superior regulatory 
properties suitable for designing robust GRC-s, with easily 
adjustable properties via model parameters, including a better 
species synchronization when coping with perturbations (i.e. low 
AVG, and STD indices). The same positive conclusions also concern 
the GERM structures of [G(PP)n] type (Figure 3), as proved by 
(Figures 15, 18-20 & 23).

viii)	 Rule 8: Cooperative vs. concurrent linking of GERM-s 
in GRC and species interconnectivity.

When coupling two or more GERM modules in a GRC of a 
certain living cell, the lumped nutrients, and metabolites involved 
in the G/P syntheses are roughly of the same type (Figure 8). 
The modelling problem is what alternative should be chosen 

(see Figure 27)??? A competitive scheme (due to the common 
substrate, i.e. MetG1,2 and MetP1,2), or a cooperative scheme, the 
two GERM-s mutually supporting their regulatory efficiency??? 
For exemplification, one considers the problem of adequate and 
efficient linking of two GERM-s, related to the expression of the 
G1/P1 and G2/P2 pairs. By using simple [G(P)0], or [G(P)1] 
module types, there are tested three alternatives of coupling 
GERM-s in a GRC, as illustrated in (Figure 27), that is:

a)	 Alternative A: Competitive expression (competition on 
using the common metabolites) of the type [G1(P1)0] + [G2(P2)0]

b)	 Alternative B: Simple cooperative expression of 
[G1(P1)0] + [G2(P2)0] modules. P1 is permease and metabolism 
for both GERM-s; P2 is polymerase for replication of both G1 and 
G2 genes.

c)	 Alternative C: cooperative expression (identical to 
alternative B) but adding buffer reversible regulatory reactions 
to modulate the G1, and G2 catalytic activity in the modules 
[G1(P1)1] + [G2(P2)1], respectively.

Figure 27. Effect of the GERM inter-connectivity, and of individual species functions into the cell on the GRC efficiency. Adapted after [75].
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In-silico tests were performed by using the WCVV modelling 
framework, and the nominal high-ballast cell condition of (Table 
4). Simulations lead to very interesting conclusions, as followings 
[72]:

a)	 In Alternative A, one links two modules [G1(P1)0] + 
[G2(P2)0], both ensuring regulation of the two proteins (P1, P2) 
synthesis, in a concurential disconnected way (Figure 27). For this 
hypothetic system, synthesis of P1/G1 and P2/G2 from metabolites 
is realized with any interference between modules {the simulated 
case study in Figure 27 corresponds to the following steady state: 
[P1] s = 1000 nM, [P2] s = 100 nM, [G1] s = 1 nM, [G2] s = 1 nM}. The 
only connection between the two GERMs is due to the common cell 
volume to which both protein syntheses contribute. If one checks 
the system stability, by applying a +/-10% impulse perturbation 
in [P1] s, it results an unstable system, evolving toward the decline 
and disappearance of one of the proteins (i.e. those presenting the 
lowest synthesis rate). Consequently, the homeostasis condition 
is not fulfilled, the cell functions cannot be maintained, and the 

disconnected protein synthesis results as an unfeasible and less 
plausible GERM linking alternative, see the details of [74].

b)	 In the Alternative B, the simple cooperative linking of 
[G1(P1)0] + [G2(P2)0] modules in (Figure 27, and Figure 28) 
ensures specific individual functions of each protein, i.e. P1 lump 
plays both permease and metabolase functions, while P2 is a 
polymerase. 

c)	 In the Alternative C, the simple cooperative linking 
of [G1(P1)0] + [G2(P2)0] system of the Alternative B has been 
consolidated by adding simple effectors for the gene activity 
control, thus resulting the consolidated cooperative system 
[G1(P1)1] + [G2(P2)1], of (Figure 27, and Figure 28), where the 
effectors P1 and P2 act in two buffering reactions, G1+P1 <==> 
G1P1, and G2+P2 <==> G2P2, respectively, with the stationary 
states [G1]s = [G1P1]s = 1/2 nM, and [G2]s = [G2P2]s =1/2 nM, 
thus ensuring maximum dynamic P.I.-s. The species steady-state 
(QSS) concentrations are given in (Table 4).

Figure 28. (continued from Figure 27) Effect of the GERM inter-connectivity, and of individual species functions into the cell on the GRC 
efficiency [75].

The same cooperative linking rule of GERM-s can be 
repeatedly applied, by using the same strategy. Of course, other 
GERM types can be used as well. For instance, when [G(PP)n] 
modules are used, the more effective effectors are the dimmers PP, 

acting in ’n’ buffering reactions of the type, G+PP<==>GPP<==>…
..<==>GPn, with the stationary states [G]s = [GP1]s = [GP2]s = …= 
[GPn]s = 1/(n+1) nM. The WCVV model rate constants should be 
estimated from the species stationary concentration vector Cs, 
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and by imposing regulatory optimal characteristics discussed by 
Maria [1,2,4,5,7-9,74], and shortly exemplified by eq. (10). From 
the same reasons, stationary levels of active and inactive forms of 
catalyst should be adopted, [L]s = [TF1] s = [TF2] s = …= [TFn]s = 
1/(n+1). Besides, the dissociation constant of the (L: TFn) complex 
in the buffering reactions has been adopted at values k(diss) >> 
D, e.g. k(diss) » (1e+5 to 1e+7) D, being much higher than other 
rate constants of the GERM reactions [72]. In subsequent works, 
Maria [1,2,4-9,12-15,49,74,76,77,87,99,115] also proved that 
optimization of the GERM’s P.I.-s with the multi-objective criteria 
summarized by Maria [1,74,99] (eqn. (10)) leads to small values 
for the intermediate [PP]s (the active parts of dimeric TF-s). 

The stability and the dynamic regulatory characteristics of the 
all three GRC above defined systems (A-C) have been determined 
by studying their QSS-recover after a +/-10%[P1] s dynamic 
(impulse-like) perturbation. The results, presented by Maria 
[8,9,72,92], reveal the following aspects concerning the alternative 
GRC systems [A, B, C]:

a)	 All three systems [A, B, C] are stable, that is Max (Re (λ 
(j))) = - D < 0 (where λ (j) are the eigenvalues of the ODE model 
Jacobian matrix JC, defined above eqn. (9). The GRC systems [B] and 
[C] recover faster after a dynamic perturbation in [P1] s. It results 
that the cooperative module linking is superior to the competitive 
GERM-s linking alternative [A], being only one viable linking 
alternative that ensures the system homeostasis and a balanced 
cell metabolism. The [B] and [C] GERM’s linking alternatives are 
superior because they preserve specific functions of each protein 
inside the cell. The GERM’s linking alternative [C] presents the 
best P.I.-s from all three checked linking alternatives due to the 
additional regulatory effectors of type G+P <==> GP.

b)	 The GRC system is as better regulated as the effector is 
more effective (e.g. the use of multiple buffering reactions, with 
dimeric TF-s, and a cascade control of the expression, of type 
[G(PP)n; M(PP)n] (not detailed here).

c)	 The use of efficient effectors and multiple regulation 
units can improve very much the dynamic P.I., in the following 
relative order: [G(P)n] < [G(PP)n] < [G(P)n; M(P)n1] < [G(PP)n; 
M(PP)n1].

d)	 Dynamic perturbations affect species present in small 
amounts inside the cell, while recovering times for the other species 
(e.g. lumped metabolites MetP, MetG of large concentrations) are 
negligible.

The design procedure of a regulatory network GRC can be 
continued in the same way, by accounting for the expression of 
additional genes and their suitable GERM-s, according to the 
experimental information about their regulation dynamics. 
For instance, in the simplified representation of Maria [74], a 
3rd GERM for the P3 synthesis can be added to the Alternative 
[C], by allocating specific but different functions to the P1, P2, 
and P3 lumped proteins, as follows: P1 and P3 are permease 
and metabolase enzymes, which ensure nutrient import inside 

the cell, and their transformation in gene-metabolites (MetG1-
MetG2-MetG3) and protein-metabolites (MetP1-MetP2-MetP3) 
respectively. Protein P2 lumps polymerases able to catalyze the 
genes G1, G2, and G3 production. If one considers the simplest 
effector case, the resulted GRC includes the following three 
modules [G1(P1)1] + [G2(P2)1] + [G3(P3)1], which regulate the 
synthesis of P1, P2 and P3, in a cooperatively interconnected way, 
which preserves the protein functions.

ix)	 Rule 9: The optimal value of TF. 

It is self-understood that, in a realistic WCVV model, the 
holistic properties of the whole cell and implicitly those of the 
each GRC should be preserved and modulated via ODE model 
structure and parameters. One of the cells modelling principles 
postulates that the concentration of intermediates used in the 
GRC-s should be maintained at a minimum level to not exhaust the 
cell resources but, at the same time, at optimal values to maximize 
the GRC P.I.-s. Such optimal [TF]s are obtained by solving a multi-
objective optimization problem [1,2,4,5, 8,9,74,99], see eqn. (10). 
An example was provided by Maria [99] in the case of a genetic 
switch (GS) in E. coli cells, modelled under the WCVV approach. 

x)	 Rule 10: Additional aspects to be considered when 
linking GERM-s. 

a)	 The linking reactions between GERM-s are set to be 
relatively slow compared with the module core reactions. In such 
a manner, individual modules remain fully regulated, while the 
assembly efficiency is adjusted by means of linking reactions and 
intermediate species, and TF levels. To preserve the individual 
regulatory capacity, the strength of linking reactions among 
modules would have to decline as the number of linked modules 
increases.

b)	 When linking GERM-s, the main questions arise on the 
connectivity mechanism and on the cooperative vs. uncooperative 
way by which proteins interact over the parallel/consecutive 
metabolic pathways inside or between GERM-s [36,57,58,74,94]. 
Despite an apparent ‘competition’ for nutrient consumption, 
protein synthesis is a closely cooperative process, due to the 
specific role and function of each protein inside the cell (see the 
above ’rule no. 8’). In a cooperative linking, common species (or 
reactions) are used for a cross-control (or cross-catalysis) of the 
synthesis reactions. Thus, the system stability is strengthened, 
while species inter-connectivity is increased leading to a better 
treatment of internal/external perturbations.

c)	 Protein (enzyme) interactions are very complex, being 
part of the cell metabolism and distributed over the GRN nodes. 
There are many nodes with few connections among proteins and 
a small, but still significant, number of functional nodes with 
many protein interactions. These highly connected nodes tend to 
be essential to an organism and to evolve relatively slowly. At a 
higher level, protein interactions can be organized in ‘functional 
modules’, which reflect sets of highly interconnected proteins 
ensuring certain cell functions (Figure 7 & Figure 29). Specific 
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proteins are involved in nutrient permeation (permeases), in 
metabolite synthesis (metabolases), or in the gene production 
(polymerases). In general, experimental techniques can point-out 
molecular functions of many proteins and can identify functional 
partners over the metabolic pathways [1,4,5,]. Moreover, protein 
associations can ensure supplementary cell functions. For 

instance, enzyme associations (like dimeric or tetrameric TF-s) 
lead to the well-known ‘metabolic channelling’ (or tunnelling) 
process, that ensures an efficient intermediate transfer and 
metabolite consecutive transformation without any release into 
the cell bulk phase, thus avoiding the slower diffusional processes 
[1,2,4,5,74].

Figure 29. The hierarchical organization of a living cells [1,2,4,5].

d)	 By applying the former rule, it results that, when building-
up a kinetic model of a GRC, comprising a couple of GERM-s, an 
effective module linking strategy must ensure the cell-functions of 
individual proteins and of protein associations over the metabolic 
synthesis network. As a general observation, even if some GERM 
modules do not include reactions in common, the modules are 
anyway linked through the cell volume [to which all cell species 
contribute, eqns. (2,6)] and due to some intermediates controlling 
module interactions in the GRC. Only the WCVV modelling 
framework can account for such cell regulatory characteristics. 

e)	 A natural strategy for building complex and realistic cell 
dynamic models is to analyse independent functional reaction 
pathway modules or groups of closely interacting cellular 
components, and then link them. The WCVV approach may 
facilitate this strategy. Each module (such as GERM-s, GRC-s, or 

parts of the CCM) could be modelled as a separate ’entity’ growing 
at the actual rate of the target cell (see the mercury-operon 
expression example in the Part-4 of this work). The volume of the 
newborn cell and the environment characteristics could match 
those of the target cell. To allow this, and to reproduce the ’cell 
ballast effect’, lumped molecular species could be defined into 
each cell where a GERM is tested, in amounts equal to those of the 
target cell minus those due to the components of the investigated 
module. In such a way, each tested cell carrying a certain defined 
GERM, or GRC would grow at the same observed rate. As a result, 
linking GERM-s would be a seamless process requiring only 
that the ballast level be kept at its experimental level. This is an 
important WCVV approach advantage, allowing to independently 
simulate some cell reaction pathway modules, by placing them 
into a ’virtual cell’ of which characteristics and properties are 
reproduced by a lumped dynamic model.
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f)	 Application of the WCVV modelling approach 
demonstrates that each cell component affects, and is affected 
by, all other cellular components [1,2,4,5,74,76,77]. Indirect 
inter-connectivities among species / reactions arise because all 
components in a cell contribute to cell volume [eqn. (2, 6)], and 
cell volume influences component concentrations [eqn. (3A-B)]. 
Thus, perturbations in one component reverberate throughout 
the all-cell species. The importance of these indirect relationships 
will vary with the diversity and complexity of cellular components. 
Increasing numbers and concentrations add ’ballast’ to the cell, 
strengthening these indirect relationships, while increasing 
diversity allows individual metabolites to be present at lower 
concentrations, thus improving the dynamic responses of 
GERM-s and of GRC-s to perturbations. Another issue, thus far 
unexamined, is how specific types of interconnectivities affect the 
regulatory behaviour of cells. This could be probed by using the 
experimental methods developed by Vance et al. [142] to deduce 
connectivity’s in biochemical pathways from the effects of an 
impulse perturbations in the dynamics of the target (analyzed) 
species.

g)	 When modelling complex operon structures [see the 
examples of mercury-operon, and of tryptophan (TRP)-operon 
expression in the Part-3 of this work], simple, but effective GERM 
structures (also in agreement to the experimental observations on 
the cell processes dynamics) should be adopted to not complicate 
too much the WCVV kinetic model. The default GERM is the 
[G(P)1]. But, according to the experimental data and interactions 
among genes and proteins, more complicated, and effective GERM 
constructions, such as [G(PP)1] can be elaborated. 

xi)	 Rule 11: The effect of cascade control on the GERM 
efficiency. 

Among GERM-s reviewed and tested under a WCVV modelling 
framework, the most significant are those of [G(P)n] type, whose 
effectiveness nearly linearly increases with the number (n) of 
buffering reactions (Figure 20 & Figure 15). Due to their simple 
structure such GERM-s are the most suitable to construct very 
complex GRC-s. On the next place, the [G(PP)n] are also favorites, 
by presenting a more pronounced regulatory efficiency due to 
the used dimeric TF-s (that is PP) in an optimized small amount. 
As previously discussed when applying the rules 1, 2, 3, 5, and 7, 
the most effective are the GERM-s with a cascade control of the 
expression, by means of buffering reactions applied at both key 
gene G, and mRNA (M) catalyst level, that is of type [G(P)n;M(P)n1] 
(Figure 3). By using extended simulations Maria [1,2,4,5,74,77,94] 
in-silico proved the superiority of GERM-s modelled by using the 
[G(P)n; M(P)n1] model types. The conclusions are the followings: 

a)	  The very rapid buffering reactions, such as:

G + P <===> GP+ P <===> GPP ……<===> GPn

M + P <===> MP+ P <===> MPP ……<===> MPn

have been proved to be very effective regulatory elements, 
by quickly adjusting the active/inactive species level ratios in the 
buffering chains of G/GP/GPP/GPn or M/MP/MPP/MPn types, 
thus efficiently coping with all types of perturbations.

b)	  Numerical simulations revealed that the P.I.-s of some 
simple GERM-s increase in the approximate order:

[G(P)0] (0 regulatory element) < [G(P)1] (1 regulatory 
element) < 

[G(P)1; M(P)1] (2 regulatory elements) < 

[G(PP)2] (3 regulatory elements) <….

[G(P)n;M(P)m] (n+m regulatory elements).

Roughly, the obtained improvement of P.I.–s (Table 3) 
per regulatory element is of ca. 1.3 (under WCVV modelling 
framework), while the same improvement is of ca. 2.5 under the 
classical (inadequate, and unlikely, over-rated) WCCV modelling 
framework [1,2,4,5, 8,9,74,76,77,87,99]. It clearly appears that the 
WCVV modelling framework is more realistic, the default WCCV 
approach tending to over-rate the P.I.-s, and to distort the GERM-s 
regulatory properties (see sections 5.3 and 5.3.3, and Figure 8 & 
Figure 9). For additional information about the presented linking 
rules of GERM-s when constructing GRC-s kinetic models, the 
reader is referred to [1,2,4,5, 8,9,74].
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