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Abstract 

This comprehensive review paper examines bone fracture detection techniques based on time-domain low-frequency and microwave 
radiofrequency (RF). Early and accurate diagnosis of bone fractures remains critical in healthcare, as it can significantly improve patient outcomes. 
This review focuses on the potential of low-frequency and microwave RF methods, particularly their combination and application of time-domain 
analysis for enhanced fracture detection. We begin by providing an overview of the fundamental concepts of RF techniques and then by examining 
biological tissues’ dielectric properties. We then compare the advantages and limitations of various bone fracture detection techniques, such as 
low-frequency RF methods, microwave RF methods, ultrasonography, X-ray, and CT scan. The discussion then shifts to hybrid approaches that 
combine low-frequency and microwave techniques, emphasising the advantages of such combinations in fracture detection. Machine learning 
techniques, their applications in bone fracture detection, and the role of time-domain analysis in hybrid approaches are also investigated. Finally, 
we examine the accuracy and reliability of simulated models for bone fracture detection. We finish with a discussion on recent advancements and 
future directions, such as novel sensor technologies, improved signal processing techniques, integration with medical imaging modalities, and 
personalised fracture detection approaches. This review aims to comprehensively understand the landscape and future potential of time-domain 
analysis in low-frequency and microwave RF techniques for bone fracture detection.
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Introduction 

Bone fracture is a common and significant medical condition 
that requires accurate and timely diagnosis for effective treatment 
and management. Detecting fractures in a timely manner is 
crucial as missed or delayed diagnosis can lead to prolonged pain, 
impaired function, and long-term disabilities. Missed fractures are 
one of the most common diagnostic errors, of which up to 80% end 
in emergency departments, contributing to a substantial burden  

 
on healthcare systems and compromised patient outcomes [1]. 
Conventional techniques such as X-rays, ultrasound, and computed 
tomography (CT) have been widely used for fracture detection. 
While these methods have been valuable in clinical practice, they 
are accompanied by certain limitations. X-rays, for instance, are 
the primary imaging tool for identifying fractures. Still, they may 
only sometimes provide clear and definitive results, especially in 
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complex cases or when fractures are small or occult. Additionally, 
the interpretation of X-ray images requires expertise, and the 
process can take time, leading to potential delays in diagnosis and 
treatment initiation [2]. The limitations of existing techniques 
highlight the need for advancements in bone fracture detection. 
Recent years have witnessed significant progress in radio 
frequency (RF) techniques, machine learning, and microwave 
imaging, offering promising avenues for more accurate, efficient, 
and non-invasive fracture diagnosis [3].

RF techniques, such as electrical impedance spectroscopy, 
have shown potential in measuring the dielectric properties of 
biological tissues, including bones. These properties, such as 
relative permittivity and conductivity, can vary in the presence 
of fractures, potentially providing a basis for detecting and 
characterising fractures. By utilising RF signals and analysing 
their interactions with tissues, it becomes possible to develop 
techniques that can enhance the accuracy and reliability of fracture 
detection, enabling early interventions and improved patient 
outcomes. Machine learning, a subset of artificial intelligence, 
has emerged as a powerful tool in various medical applications, 
including bone fracture detection. By leveraging large datasets 
and complex algorithms, machine learning techniques can analyse 
medical images, such as X-rays or CT scans, to recognise patterns 
and signs of fractures. Deep learning, a subset of machine learning, 
has shown promising results, exhibiting high diagnostic accuracy 
comparable to general physicians [4,5]. These advancements in 
machine learning offer the potential for automated and efficient 
fracture detection, reducing the burden on radiologists and 
enabling faster diagnoses.

In parallel, microwave imaging (MWI) has gained attention 

as a non-ionizing and cost-effective method for bone fracture 
detection. MWI techniques leverage the unique properties of 
microwave signals and their interaction with bones to identify 
fractures. This approach provides an alternative to traditional 
X-ray technologies and can be particularly useful in scenarios 
where X-ray use is not viable or recommended [6]

Real-world examples and statistics underscore the significance 
of accurate and timely fracture detection. For instance, studies 
have shown that missed fractures can lead to delayed treatment 
and long-term disability. Emergency departments’ most common 
diagnostic error involves missed fractures, highlighting the urgent 
need for improved detection methods [7] Additionally, fractures 
in areas such as the wrist or spine can be challenging to diagnose 
accurately, further emphasising the importance of advancements 
in fracture detection techniques.

Considering the limitations of existing techniques and the 
potential benefits offered by RF techniques, machine learning, and 
microwave imaging, this review aims to explore and analyse recent 
advancements in bone fracture detection. We will evaluate these 
techniques’ effectiveness, limitations, and practical applications by 
examining the existing literature, providing valuable insights for 
researchers, clinicians, and healthcare professionals. The article 
also delves into the significance of time-domain analysis in hybrid 
approaches and evaluates simulated models used for fracture 
detection in terms of their accuracy and reliability. Overall, this 
paper aims to summarise the latest developments and identify 
potential avenues for future research, including innovative 
sensor technologies, improved signal processing methodologies, 
integration with medical imaging modalities, and customised 
strategies for fracture identification (Figure 1).

Figure 1: Structure figure of our review.
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The Objectives and Scope of the Review 

This study: 

i. Examines various methods for detecting bone fractures 
using low-frequency and microwave radio frequency (RF) 
techniques. It covers the fundamental principles underlying 
RF techniques and an overview of the dielectric properties of 
biological tissues. Additionally, it compares the advantages and 
disadvantages of these methods with other procedures like 
ultrasonography, X-ray, and CT scan for detecting bone fractures 
as shown in Table 1 & Figure 2.

ii. Investigates hybrid techniques that integrate low-
frequency and microwave radio frequency (RF) methods. The 
focus is on the potential of time-domain analysis to improve 
fracture detection.

iii. This study reviews the literature highlighting the 
application of machine learning techniques in detecting bone 

fractures. The emphasis is on their incorporation within the RF 
methods and time-domain analysis framework.

iv. This research provides an overview of the precision and 
reliability of simulated models, as reported in the literature, for 
detecting bone fractures using the mentioned methodologies.”.

v. Discusses the latest developments and potential future 
directions in the field. These include advancements in sensor 
technology, signal processing techniques, integration with medical 
imaging modalities, and personalised fracture detection methods.

vi. It focuses exclusively on research and methodologies 
utilising time-domain low-frequency and microwave RF 
techniques to detect bone fractures. Consequently, the primary 
focus of this review will be on something other than studies 
utilising frequency-domain analysis or other imaging modalities. 
However, they may be referenced for comparative purposes as 
illustrated in Figure 3.

Figure 2: An image depicting the principles of Radio Frequency Application in human model [8].

Table 1: A Summary of Conventional Diagnostic Techniques.

Technique Description Advantages Limitations

X-ray [12-14]
Uses electromagnetic radiation to 

produce images of fractures
Widely available, low cost, quick 

imaging
Limited sensitivity to early healing 

changes, ionizing radiation

Computed Tomography (CT) 
[13], [14],[17]

Utilizes X-ray beams to create 
detailed 3D images of fractures

High spatial resolution, accurate 
assessment of fracture alignment and 

callus formation
Ionizing radiation, higher cost, limited 

availability

Magnetic Resonance Imaging 
(MRI) [14]

Uses magnetic fields and radio 
waves to visualize fractures

Excellent soft tissue contrast, no ioniz-
ing radiation

Long acquisition times, higher cost, 
contraindications for certain metallic 

implants

Positron Emission Tomogra-
phy (PET) [18]

Measures metabolic activity using 
radiotracers

Early detection of bone metabolism 
changes, quantitative analysis

Limited spatial resolution, radiation 
exposure
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Figure 3: Comparative Overview of Time and Frequency Domain Analysis in Radio Frequency Application [9].

Background and Motivation

Bone fractures, resulting from trauma, overuse, or underlying 
medical conditions that weaken the bones, are commonplace 
injuries that require timely and accurate detection for appropriate 
treatment and effective healing. Traditionally, the detection of bone 
fractures primarily relies on imaging techniques such as X-rays, CT 
scans, and MRI scans. X-rays are often the first line of diagnosis 
due to their wide availability, speed, and cost-effectiveness. 
However, they have notable limitations. For instance, X-rays may 
struggle to detect certain types of fractures, such as hairline 
or stress fractures, as these may not be discernible in the X-ray 
images [10]. CT scans, on the other hand, provide more detailed 
images of the bone structure and can detect fractures that might 
be invisible on an X-ray. Despite these advantages, CT scans have 
their own set of drawbacks. They expose the patient to ionising 
radiation and are typically more expensive than X-rays, which 
make them feasible for only some patients [11]. MRI scans are a 
viable alternative as they do not involve ionising radiation and can 
provide intricate images of soft tissue and bone. This makes them 
particularly useful for detecting bone bruises or other injuries 
accompanying a fracture. However, MRI scans are generally more 
expensive than X-rays and CT scans, limiting their availability to 
only certain medical facilities [12,13]. Given these challenges, 
there is a clear impetus for developing more accessible, cost-
effective, and less invasive methods for bone fracture detection. 
Integrating technologies such as RF sensing into clinical practice 
offers a promising solution, potentially enhancing the accuracy of 
diagnosis, improving patient experience, and contributing to more 
effective treatment strategies.

Bone Fracture Detection Techniques

In recent years, technological advancements have introduced 
non-invasive approaches for monitoring the process of bone 
fracture healing as the novel methodology to replace the 
conventional techniques in use. Traditional methods such as 

radiography, ultrasound, computed tomography (CT), magnetic 
resonance imaging (MRI), and positron emission tomography 
(PET) have been widely used for the diagnosis of bone fractures 
[14]. However, the merits and demerits associated with each 
technique can be identified through the comparative evaluation 
of the techniques, providing insight into the choice of method for 
specified jobs.

Limitations of Traditional Monitoring Methods (X-rays, 
CT scans, and MRI)

X-ray and computed tomography (CT) scans are conventional 
modalities for surveillant bone fractures. Although these 
techniques are extensively employed and can provide valuable 
insights, they have certain constraints. For example, according 
to [15], a constraint of X-ray imaging is its potentially reduced 
efficacy in areas where multiple structures overlap. In addition, it 
has been noted that certain anomalies affecting the left and right 
collar bone, heart, and lung may appear less visible on an X-ray of 
these areas compared to an X-ray of the forearm [16]. Computed 
tomography (CT) scans are a valuable diagnostic tool for detecting 
bone fractures; however, they possess certain limitations; one of 
these limitations is that no prescribed threshold exists for the 
quantity of CT scans a patient can undergo [17]. Furthermore, 
Factors such as the dimensions of the X-ray detector and the 
sample size can influence the resolution of 3D scans in computed 
tomography [17].

The examples above are just a few of the limitations inherent 
in the constraints of conventional techniques employed to 
monitor bone fractures. The existence of additional limitations is 
contingent upon the circumstances of each case. Other constraints 
of conventional monitoring techniques, such as X-rays and CT 
scans, encompass the potential for radiation exposure and 
financial expenses [18]. Research has found that exposure to 
ionising radiation from X-rays and CT scans can increase the risk 
of cancer development in patients [19]. Although the potential 
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harm from a solitary X-ray or CT scan is minimal, the likelihood 
of adverse effects may escalate with repeated exposure [20]. 
An additional constraint associated with these methodologies 
pertains to their financial implications. Computed tomography 
(CT) scans can incur significant costs and may not be universally 
covered by insurance policies [21]. The accessibility of these tests 
may pose a challenge for certain patients requiring them Table 1.

The Need for a Non-Invasive, Cost-Effective, and 
Accessible Monitoring Method

There is a pressing need for imaging methods that are 
non-invasive, cost-effective, and widely accessible within the 
healthcare industry. Current mainstream medical imaging 
techniques, such as X-rays, CT scans, and MRI scans, have several 
drawbacks that present challenges to both healthcare providers 
and patients. These costly procedures may expose patients to 
ionising radiation, which poses health risks. Furthermore, they 
may not be readily available in all healthcare settings, particularly 
remote or underserved areas, exacerbating healthcare disparities 
[22]. The advent of new technologies that can surmount these 
challenges holds immense potential for improving patient care. RF 
sensing technology, for instance, presents a non-invasive approach 
to fracture detection, causing no discomfort to the patient. It is 
potentially lower cost than traditional imaging modalities and 
could make it more accessible, alleviating the financial burden on 
patients and healthcare systems. Furthermore, with developments 
towards more portable or wearable RF sensors, this technology 
could be used in a wide range of healthcare settings - from large 
hospitals to remote clinics and even in home-based care. This 
widespread accessibility could democratise health monitoring, 
providing valuable diagnostic information irrespective of 
location or socioeconomic status. The integration of such non-
invasive, cost-effective, and universally accessible technology into 
healthcare workflows has the potential to greatly enhance the 
quality of patient care, facilitate early and accurate diagnosis, and 
reduce strain on healthcare providers and systems.

RF Sensing as an Alternative Method

A novel method for detecting fractures involves using Radio 
Frequency (RF) sensors. These sensors can accurately detect and 
measure changes in electromagnetic fields, making them suitable 
for various applications, including monitoring bone fracture 
healing. RF sensors can effectively identify bone fractures by 
employing an RF antenna, showing great potential for future use. 
Research indicates that fracture recognition can be achieved by 
analysing using reactive impedance surfaces [23]. This suggests 
that RF sensors could circumvent the constraints of traditional 
imaging techniques, offering a non-invasive and potentially more 
precise mode for fracture detection. However, applying RF sensing 
to fracture identification and monitoring is an emerging field with 
several challenges. These include sensor design and placement 
issues, signal processing and analysis, and ensuring desirable 

sensitivity and specificity levels within the complex human 
anatomy context. RF sensors work by discerning alterations in 
the dielectric properties of biological tissues caused by radio 
frequency waves. Factors such as bone fractures can induce these 
changes. When a fracture occurs, dielectric property alterations 
in the surrounding tissues mainly result from fluid accumulation, 
like blood. These changes affect the material’s permittivity and 
conductivity, subsequently altering the behaviour of the radio 
frequency waves traversing the tissue [24]. RF sensors are 
engineered to sense these propagation changes, yielding valuable 
data about the physical alterations within the tissue. This data can 
provide detailed insights into a bone fracture’s existence, size, and 
severity. Notably, the specific operating mechanisms of RF sensors 
can vary based on their design and application. Some may focus 
on changes in the transmitted signal, whereas others might rely 
on reflected or scattered signals for detection. By employing these 
mechanisms, RF sensors can offer a non-invasive, potentially real-
time tool for detecting and monitoring bone fractures. This opens 
significant possibilities for improving patient care in orthopaedic 
and trauma scenarios.

How RF Sensors Overcome Traditional Limitations 

RF sensors employ ultra-wideband (UWB) technology 
and Radio Frequency Identification (RFID) methodologies to 
overcome the limitations of traditional monitoring methods. 
UWB technology, operating over short distances, enables precise 
indoor positioning and real-time device movement and motion 
tracking. It outperforms conventional methods with fewer than 50 
centimetres of accuracy under optimal conditions [25]. Similarly, 
RFID sensor tags are crucial for the future of Internet-of-Things 
(IoT) applications. They are contactless, wireless, lightweight, 
capable of non-line-of-Need to be clarified mission, and flexible 
[26]. From a design perspective, RF sensors are relatively 
diminutive in size. They do not require supplementary components 
like magnetic circuits, coils, or magnets and can fit onto a small 
silicon wafer [27]. They show their strongest response at specific 
optical frequencies, but broadband sensors can measure a wide 
spectrum of frequencies [28].

Applying RF sensors in medical settings, particularly in 
detecting bone fractures, has emerged as a viable and promising 
approach. While alternative imaging methodologies exist, RF 
sensors offer a non-intrusive and potentially more accurate 
method to identify bone fractures [29]. They have also shown 
potential in monitoring fracture healing, providing more accurate 
and sensitive information than traditional methods such as X-rays, 
CT scans, DEXA scans, and ultrasounds. These conventional 
methods have limitations. For instance, X-rays are only effective 
at later stages of repair and correlate poorly with bone strength. 
Despite their improved diagnostic capabilities, CT and DEXA scans 
have limited clinical use due to their cost and high radiation dose 
[30]. Meanwhile, physical examinations by physicians, though 
commonly relied upon, can result in imprecise assessments. 
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In contrast, MRI provides superior soft tissue contrast without 
radiation, frequently used for imaging various organ systems, 
including the musculoskeletal system [30]. While MRI can deliver 
valuable information for diagnostics, 3D modelling, and treatment 
planning across multiple anatomical regions, RF sensors can 
objectively measure fracture healing. This can help guide clinical 
decision-making for patients, although their use is more specific 

and less versatile than MRI [31].

RF sensors offer significant advantages in bone fracture 
detection compared to alternative imaging techniques, including 
X-rays, MRI, and CT scans, as summarised in Table 1. This 
underscores the potential of RF sensing technology in reshaping 
healthcare diagnostics and patient treatment approaches Table 2.

Table 2: The benefits of RF sensing for bone fracture detection compared to other prevalent imaging techniques.

Benefits RF Sensing X-ray CT Scan MRI

Uses non-ionising radiation Yes No No Yes

Enhanced portability Yes No No No

Cost-effectiveness High Low Low Low

Real-time monitoring of fracture healing Potential No No No

Sensitivity to dielectric property changes High Low Low Moderate

Integration with wearable devices/smart implants Potential No No No

Background: RF Sensing and Biological Tissue 
Properties

Fundamentals and Medical Applications of RF Sensing

Radio Frequency (RF) sensing leverages the radio frequency 
spectrum to detect and analyse environmental changes. This 
innovative technology intersects various domains, including 
medicine and healthcare, where it offers unparalleled advantages. 
Here, we provide a comprehensive guide to the rudiments of RF 
sensing and illuminate its pivotal role in the medical field.

RF Sensing Basics: At its core, RF sensing relies on the 
principle that radio frequency signals interact dynamically 
with their surroundings. By meticulously examining reflected 
or modulated RF signals, environmental changes are detected. 
Consequently, these variations offer invaluable insights into the 
subjects’ or objects’ characteristics and conditions proximal to the 
RF sensor.

A strict frequency range doesn’t bind RF sensing. It can be 
deployed over a spectrum ranging from low frequencies (kHz) 
to extremely high frequencies (GHz). The choice of operating 
frequency is influenced by the specific application and the 
target’s characteristics being sensed. A distinguishing feature of 
RF sensing is its non-contact nature, allowing for non-invasive 
measurements. This attribute is notably attractive in the medical 
field, where contact-based sensing may need to be more practical 
and comfortable for patients [32]. RF signals can permeate 
various materials, including clothing and body tissues, obtaining 
information through obstacles. The signals reflected offer a 
wealth of information about the sensed object’s structure and 
composition. Complex signal processing algorithms and data 
analysis techniques underpin RF sensing. These approaches 
distil meaningful information from the captured RF signals. 
Integrating machine learning and artificial intelligence techniques 

significantly enhances the sensitivity and accuracy of the sensing 
system.

Medical Implications of RF Sensing: One of the promising 
applications of RF sensing in the medical field is non-invasive 
wound monitoring. RF sensing can analyse RF signals reflected 
from the wound area, detecting changes in the healing processes, 
such as inflammation and oedema. This aids in prompt intervention 
and assessment [33].

Vital sign monitoring has also been a benefactor in RF sensing. 
Noncontact RF sensors can monitor heart, respiration, and 
blood pressure. Patients can be continuously monitored without 
physical contact by measuring minute changes in the reflected 
signals due to bodily movements [34]. In sleep medicine, RF 
sensing has shown potential in sleep pattern monitoring and sleep 
apnea detection. The technology can identify changes in breathing 
patterns and movements by analysing RF signals reflected from 
a sleeping individual, thus assisting in diagnosing and treating 
sleep-related disorders [35]. RF sensing is harnessed for 
surgeon’s gesture recognition in the operating theatre. Detecting 
hand movements and gestures, RF sensors can manage medical 
equipment like robotic surgical instruments, obviating the need 
for direct touch or physical contact [36]. Temperature monitoring, 
particularly skin temperature, can be conducted non-invasively 
using RF sensing. Any changes in skin temperature are reflected in 
the variations in the RF signals, providing real-time updates on the 
patient’s health [37]. Additionally, RF sensing has shown promise 
in detecting and monitoring bone fractures. By analysing the 
characteristics of the RF signals reflected from the bone, fractures 
can be identified, and the healing process can be monitored over 
time. This provides clinicians with a contactless and non-invasive 
method to track recovery, leading to personalised treatment plans 
and improved patient outcomes [38].
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Dielectric Properties and RF Signal Behaviour in 
Biological Tissues 

Understanding the behaviour of RF signals within biological 
systems necessitates knowledge of the frequency-dependent 
dielectric properties of biological tissues [38]. These properties 
significantly impact the behaviour of RF signals, as human tissues 
have varying dielectric characteristics at different frequencies. 
The dielectric properties of a material can either reflect or 
penetrate RF signals and significantly affect the electromagnetic 
characteristics of a substance. This phenomenon is known as 
dielectric dispersion, a well-studied occurrence that significantly 
alters the dielectric properties within a specific frequency range 
[39,40]. Understanding this interaction between electromagnetic 
fields and biological tissues is very important, particularly in 
medical imaging and telecommunications. Several variables, such 
as frequency, temperature, density, water content, salt content, 
and the physical state of a substance, can influence the dielectric 
characteristics of a substance [41].

In biological tissues, dielectric dispersion can affect an RF 
signal’s attenuation and phase velocity as it propagates through 
a medium. The dielectric properties of biological tissues, 
including their relative permittivity (ε′) and conductivity (σ), are 
significant indicators of a substance’s propensity for polarisation 
under an external electric field and its aptitude for conducting 
electrical current [42]. Relative permittivity (ε′) and conductivity 
(σ) are integral dielectric properties of biological tissues that 
considerably affect the behaviour of RF signals when interacting 
with these tissues [43]. They are essential in determining how 
easily a material can become polarised by an applied electric 

field and how well it can conduct an electric current. Moreover, 
these properties significantly impact medical imaging modalities, 
such as Magnetic Resonance Imaging (MRI), utilising RF signals 
to interact with biological tissues. An accurate understanding 
of tissue dielectric properties is crucial for improving specific 
absorption rate (SAR) estimates and reducing undesired tissue 
heating [44]. It is also key to the design of new electromagnetic-
based imaging and therapeutic technologies. Detecting changes in 
bone tissue composition is significantly assisted by determining 
these essential dielectric properties: relative permittivity (ε′) 
and conductivity (σ). Techniques like electrical impedance 
spectroscopy can measure these properties related to bone tissue, 
such as conductivity and structure. The properties can vary 
substantially across various biological tissues due to dielectric 
dispersion, and this variance can be quite substantial over a 
frequency range [45].

A significant database maintained by the IT’IS Foundation 
provides dielectric properties of biological tissues, including values 
for permittivity and electrical conductivity for over 100 human 
tissues at frequencies of 10 Hz to 100 GHz [46]. These properties 
are invaluable in biological and medical applications, notably in 
investigations involving tissue imaging, therapeutic interventions, 
and electromagnetic field interactions. The distinctive features of 
their respective permittivity (ε) and conductivity (σ) determine 
the response of biological tissues when exposed to an electric field. 
However, these tissue properties vary according to the operating 
frequency [47]. Table 2 illustrates the dielectric properties of 
the possible tissues encountered when studying a fracture in the 
human thigh based on the Gabriel dispersion relationship (Table 
3).

Table 3: Dielectric properties of tissues and their optimal frequencies.

Biological 
Tissue

500 MHz 1000 MHz 2000 MHz 3000 MHz

Permittivity Conductivity 
S/m) Permittivity Conductivity 

S/m) Permittivity Conductivity 
S/m) Permittivity Conductivity 

(S/m)

Blood 6.33E+01 1.38E+00 6.11E+01 1.58E+00 5.90E+01 2.19E+00 5.74E+01 3.05E+00

Blood vessel 
wall 4.62E+01 5.86E-01 4.46E+01 7.29E-01 4.31E+01 1.17E+00 4.19E+01 1.81E+00

Cartilage 4.46E+01 6.21E-01 4.23E+01 8.29E-01 3.98E+01 1.42E+00 3.76E+01 2.21E+00

Cancellous 
bone 2.19E+01 2.54E-01 2.06E+01 3.64E-01 1.91E+01 6.52E-01 1.79E+01 1.01E+00

Cortical bone 1.29E+01 1.00E-01 1.24E+01 1.56E-01 1.17E+01 3.10E-01 1.11E+01 5.06E-01

Red bone 
marrow 1.17E+01 1.90E-01 1.12E+01 2.39E-01 1.06E+01 3.81E-01 1.00E+01 5.62E-01

Yellow bone 
marrow 5.62E+00 3.17E-02 5.49E+00 4.33E-02 5.35E+00 7.67E-02 5.24E+00 1.21E-01

muscle 5.64E+01 8.22E-01 5.48E+01 9.78E-01 5.33E+01 1.45E+00 5.21E+01 2.14E+00

Skin 4.49E+01 7.28E-01 4.09E+01 9.00E-01 3.86E+01 1.27E+00 3.75E+01 1.74E+00

Fat 1.15E+01 8.54E-02 1.13E+01 1.16E-01 1.10E+01 2.12E-01 1.07E+01 3.44E-01

Air 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00 1.00E+00 0.00E+00
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Connective 
tissue 4.68E+01 5.85E-01 4.56E+01 7.60E-01 4.39E+01 1.34E+00 4.21E+01 2.17E+00

Nerves 3.44E+01 4.73E-01 3.23E+01 6.00E-01 3.06E+01 9.14E-01 2.96E+01 1.33E+00

Source: IT’IS Foundation (2022). Dielectric Properties» IT’IS Foundation. [online] itis. Swiss. Available at: https://itis.swiss/virtual-population/tissue-
properties/database/dielectric-properties/

Fundamentals of Bone Fracture Detection Using 
RF Sensor Techniques

Low-Frequency RF Techniques

In RF technology, applied frequencies below 300 MHz are 
categorised as the low-frequency range. This frequency range is 
adopted in medical devices, communication systems, and research. 
The technique is needed to generate, transmit, and receive radio 
waves within the low-frequency range. Generally, the technique 
employs signal generators (oscillators) to generate the radio 
waves by producing electrical signals at the required frequency 
using techniques like LC circuits, direct digital synthesis, and 
crystal oscillation. Different types of antenna designs become 
suitable for the application requirement depending on the 
parameters such as range, polarization, and directionality [48]. 
In most cases, loop antennas, dipole antennas, and monopole 
antennas are the preferable options for converting electrical 
signals to magnetic waves capable of propagating through the 
surrounding medium, such as a conductive material and even 
the air, under a low-frequency range. These antennas can receive 
low-frequency RF signals via the incoming electromagnetic waves 
through smooth processes involving filtering, demodulation, and 
decoding techniques based on the application requirements. 
For instance, received RF signals obtained from communication 
systems are demodulated to retrieve the actual information in a 
voice or data form [49].

Microwave RF Techniques 

Microwave radio frequency (RF) techniques, operating from 
300 MHz to 300 GHz, are increasingly finding applications in 
healthcare, especially in detecting bone fractures [50]. These 
techniques employ microwave signal generators such as cavity 
resonators, solid-state devices, or crystal oscillators to produce 
stable and precise microwave frequencies. Once generated, these 
signals are amplified to optimal power levels for transmission. 
Microwave RF techniques are integral to various fields, including 
radar systems, satellite communication, telecommunications, 
and microwave heating. Of interest in recent times is the use of 
Microwave Imaging (MWI) as a revolutionary method for detecting 
bone fractures. MWI offers distinct advantages, including non-
ionization, portability, and cost-effectiveness, which makes it 
an attractive alternative to traditional X-ray technologies [51]. 
Ground-breaking research by Santos, Fernandes, and Costa in 
2022 introduced an innovative method for bone scanning inspired 
by synthetic aperture radar technologies. Using a singular Vivaldi 
antenna, the team was able to conduct linear scans of bones, 

successfully detecting bone transverse fractures as small as 1 
mm in width and 13 mm deep [51,52]. Despite the success of the 
findings, the authors failed to consider the effects of surrounding 
tissues of the bone such as the muscles, fats, skin, etc which have 
different dielectric properties. This makes the clinical acceptance 
of their findings challenging.

Additionally, Microwave Tomography (MWT) advancements 
have seen significant growth, especially in bone health monitoring 
[53]. The pronounced dielectric contrast between healthy and 
diseased human trabecular bones makes MWT a promising 
modality for bone imaging. Efforts in this domain have yielded 
impressive results, such as wearable MWT systems capable of 
localising the tibia and fibula bones in images [54], and the use of 
MWT to detect bone density variations [55]. Recent strides in image 
enhancement in MWT also present promising developments. For 
instance, using ultrasound gel as a medically approved matching 
medium can broaden the scope for practical applications [56]. 
Numerical studies have further validated the potential of MWT in 
monitoring bone density in human lower limbs, opening avenues 
for diagnosing osteoporosis and tracking the disease’s progression 
[57]. Lastly, developing compact, wearable microwave tomography 
systems marks a significant advancement in MWI technology. 
These compact systems can capture high-resolution 3D images of 
the lower leg, differentiating between bone and soft tissues. Such 
devices could find potential application in ambulatory settings 
and long-term health monitoring, especially for patients suffering 
from osteoporosis or those at risk [58]. While the advancements 
in MWI signal a notable shift towards more non-invasive and cost-
effective health diagnostics, further research and clinical trials are 
necessary to fully ascertain its efficacy and accuracy, especially in 
orthopaedic diagnostics [59] (Table 4).

Challenges in Utilizing RF Sensors for Bone 
Fracture Detection

Technical Challenges in RF Sensing for Bone Fracture 
Detection

Signal Interference and Attenuation: The effectiveness 
of Radio Frequency (RF) sensing in detecting bone fractures 
hinges on the accurate interpretation of signals. This process can 
be notably affected by environmental elements such as noise, 
interference, and signal attenuation. Furthermore, the dielectric 
properties of tissues surrounding the bone can exhibit variations 
that may influence the RF signal. Consequently, these variations 
could impact the precision of fracture detection measurements 
[60].
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Table 4: simple comparison outlining the key features of the studies.

Reference Year Key Innovation Practical Application

[51] 2022 Utilized synthetic aperture radar technologies for bone 
scanning

Detecting transverse fractures as small as 1 mm wide and 
13 mm deep

[52] 2022 Introduction of a fully automated scanner with two 
antipodal Vivaldi antennas Creating a 3D image of the tibia and fibula

[53] 2016 Further evaluation of MWI in detecting thin bone 
fractures Detecting transversal bone fractures as thin as 0.35 mm

[54] 2020 Use of MWT for bone health monitoring Differentiating results for bones affected by osteoporosis 
and osteoarthritis

[55] 2011 Investigation into wearable MWT systems Localizing the tibia and fibula bones in the images

[56] 2021 Use of MWT to detect bone density variations Localizing bones in thin and medium fat scenarios

[57] 2022 Addressed image enhancement in MWT Enhancing image reconstruction

[58] 2020 Preliminary numerical study on MWT in monitoring 
bone density

Demonstrating variations in bone’s relative permittivity, 
linked to BMD

[59] 2018 Development of a compact, wearable MWT system High-resolution 3D imaging of lower leg, differentiating 
between bone and soft tissues

Therefore, it is paramount to understand and mitigate the 
effects of environmental interference and signal attenuation. 
Addressing these challenges through the development of robust 
signal processing and error correction algorithms, for instance, 
is crucial for ensuring the successful application of RF sensing in 
detecting bone fractures. Only by achieving high signal fidelity and 
accuracy can we ensure that this technology reliably aids in the 
diagnostic process and ultimately enhances patient care.

Sensor Calibration and Placement: The precision of RF 
sensors and their appropriate placement are critical factors 
affecting the effective detection of bone fractures. Sensor 
calibration is a meticulous procedure involving the transfer of 
a calibration factor or efficiency from a standard to the sensor, 
ensuring accurate measurements of RF and microwave power. 
This process is vital to maintain the consistency and reliability of 
the data captured by the sensors.

Likewise, the positioning of the RF sensor is of paramount 
importance. The sensor’s location with the bone fracture can 
significantly influence the amplitude and fidelity of the received 
signal. If appropriately positioned, the resulting data may lead 
to accuracy in fracture detection, impacting the effectiveness of 
diagnosis and subsequent treatment plans [61].

The Complexity of Interpretation: Interpreting the 
data derived from RF sensors for detecting bone fractures 
represents a multifaceted challenge. This task requires an in-
depth understanding of RF signal processing and the interaction 
of RF signals with various biological tissues. Additionally, the 
increasingly complex and crowded electromagnetic environment 
can further compound these challenges, adding layers of difficulty 
to data interpretation [62].

These complexities are particularly prominent when the 
data comes from intricate devices such as network analysers, 

which may contain substantial noise and interference, making 
extracting high-quality, usable data a demanding task. Advanced 
computational methodologies, such as deep learning, can be 
utilised to address these complexities. These techniques leverage 
the computational power of modern hardware and sophisticated 
algorithms to parse complex data, identify patterns, and extract 
actionable information. Deep learning methodologies have shown 
considerable promise in signal detection and classification tasks. 
They can enhance the precision of fracture detection by reducing 
false positives and negatives, even in the presence of complex and 
noisy data.

Moreover, deep learning methodologies can help to transform 
raw, noisy data into valuable, actionable insights. These insights 
can significantly enhance the efficacy of RF sensing technology 
in detecting bone fractures, leading to more accurate diagnostics 
and more effective patient care [63]. Furthermore, as these 
methodologies evolve, they will offer even more refined tools 
for interpreting the data from RF sensors, promising future 
advancements in bone fracture detection and monitoring. This 
underlines the importance of ongoing research and development 
in RF sensing technology and the advanced computational 
techniques used to interpret these sensors’ data.

Data Quality: Ensuring data quality is one of the significant 
challenges when utilising RF signals for bone fracture detection. 
The data obtained from RF sensors, mainly sourced from complex 
devices such as network analysers, can be significantly impacted by 
various factors. These include environmental interference, signal 
noise, signal attenuation, and variability in signals associated with 
different types of bone fractures. These issues may complicate 
the data interpretation and extraction process of high-quality, 
actionable information, ultimately affecting the reliability of the 
machine learning models used for fracture detection [64].
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Addressing these issues necessitates the incorporation 
of advanced strategies for signal processing. Noise filtering 
techniques can be employed to reduce the impact of environmental 
interference and signal noise. Signal amplification can enhance 
the strength of relevant signals, improving the overall signal-
to-noise ratio. Data cleaning techniques can further ensure that 
only relevant, high-quality data is used for training machine 
learning models, thereby improving the models’ performance and 
reliability [65]. Moreover, it is also crucial to develop robust quality 
assurance mechanisms to continuously monitor and validate 
the data’s integrity. This can involve employing outlier detection 
techniques to identify and address anomalies in the data and 
implementing rigorous testing protocols to validate the accuracy 
and consistency of the data. Furthermore, the large volumes of 
data generated by these RF sensors can pose challenges in terms 
of storage, retrieval, and processing. This is particularly significant 
given that healthcare institutions are already grappling with large 
volumes of data. As such, it is necessary to consider effective and 
efficient data management strategies, which may involve the 
use of cloud computing solutions or advanced data compression 
techniques [66].

Moreover, it is also crucial to develop robust quality assurance 
mechanisms to continuously monitor and validate the data’s 
integrity. This can involve employing outlier detection techniques 
to identify and address anomalies in the data and implementing 
rigorous testing protocols to validate the accuracy and consistency 
of the data. In combination, these strategies can significantly 
improve the quality of data derived from RF sensors, leading to 
more reliable and accurate machine-learning models for bone 
fracture detection. This underlines the importance of investing 
in advanced signal processing and data management techniques 
when integrating RF sensing technology into clinical workflows 
for fracture detection and monitoring [67].

Variability in Biological Response: The individual variability 
in biological responses presents another challenge for RF sensors. 
Not all human bones exhibit the same response to RF signals. 
Factors such as age, sex, health status, and genetic makeup can 
significantly influence these responses, making it harder to 
standardize the sensor readings and interpretations. Researchers 
need to develop sophisticated machine learning models that can 
accommodate these variances and still accurately predict bone 
fractures. They must also collect a diverse range of data to ensure 
these models are trained on a wide spectrum of responses [68]. 

Technology Limitations: RF sensors have limitations while 
offering ground-breaking capabilities in detecting bone fractures. 
These limitations can influence their effectiveness and range 
of applicability in the clinical context. For example, RF sensors 
may struggle to accurately detect certain types of fractures, such 
as hairline or stress fractures, or those located in anatomically 
complex regions [69].

Furthermore, the performance of RF sensors is not uniform 
across all patients and can be impacted by many patient-specific 
factors. These include age, which can affect bone density and tissue 
properties; bone density itself, which can influence how RF signals 
interact with the bone; and underlying medical conditions, which 
can alter the physical properties of bones and surrounding tissues, 
thereby influencing the RF signal characteristics. The patient’s 
body composition and the presence of implants or other medical 
devices could also affect the RF signals, adding another layer of 
complexity to the data interpretation and potentially affecting the 
accuracy of fracture detection [70]. These limitations necessitate 
careful consideration when planning and implementing the 
clinical application of RF sensing technology. It’s essential to have 
a comprehensive understanding of these limitations to inform 
clinicians, guide patient selection, and manage expectations 
regarding the performance of this technology. Ongoing research 
and development efforts are critical to deepen our understanding 
of these limitations and devise strategies to overcome them. 
Enhancements in signal processing techniques, data interpretation 
algorithms, and machine learning models could mitigate some 
of these limitations [71]. Optimising the performance of RF 
sensors will require a multifaceted approach, considering both 
technological advancements and the unique characteristics of 
individual patients. Through continued research and innovation, 
we can strive to enhance the accuracy, reliability, and inclusivity 
of RF-based fracture detection, ultimately contributing to 
improved patient outcomes and advancing the field of bone health 
diagnostics.

Broader Implementation Challenges

Integration with Clinical Workflow: Incorporating RF 
sensing technology into the existing clinical workflow presents 
numerous challenges that demand thorough planning and 
management. One of the primary considerations is ensuring 
that healthcare providers are proficiently trained in using the 
technology and interpreting its results. This education and 
training aspect is critical to maximise the potential benefits of the 
technology and reduce the possibility of user-related errors [72].

In addition, modifications to current clinical procedures 
may be necessary to ensure a smooth integration process. These 
changes might involve altering certain routines, processes, or 
systems to accommodate the new technology. Optimal utilisation 
of RF sensors necessitates a workflow design that aligns with 
the technology’s functional requirements while maintaining or 
enhancing the efficiency of clinical operations.

Interdisciplinary collaboration plays a crucial role in 
addressing these challenges. The combined efforts of healthcare 
providers, technologists, and administrators can guide the 
successful implementation process, addressing any technological, 
operational, or organisational barriers that may arise [73]. The 
goal is to integrate RF sensing technology seamlessly into the 
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clinical workflow, providing value in enhanced bone fracture 
detection and monitoring while causing minimal disruption 
to existing practices. This balance is critical to ensuring that 
technology becomes a valuable and effective tool in delivering 
healthcare services.

Validation and Regulatory Approval: One of the significant 
challenges in the broader integration of RF sensing technology 
into clinical settings is the uncompromising approach required 
towards testing, validation, and regulatory approval. The process 
of obtaining approval can be long and arduous, involving extensive 
testing and rigorous evaluation to demonstrate the device’s safety, 
efficacy, and reliability, particularly when used for detecting bone 
fractures. This stringent review takes place under controlled and 
varied conditions, ensuring the technology functions accurately 
and consistently as intended [74]. 

Moreover, this evaluation extends to the potential risks 
associated with the technology’s usage, and measures are taken to 
identify and mitigate them [75]. As a medical device, an RF sensor 
must comply with specific safety and performance standards 
before gaining approval for clinical use. This laborious process, 
while ensuring the technology’s integrity and quality, can pose 
a significant barrier to the rapid adoption of this technology in 
the healthcare system. Once the regulatory approval is achieved, 
it signifies that the technology has met the specific predefined 
standards and guidelines set by recognised health authorities. 
This approval is not just a testament to the integrity and quality 
of the technology, but also ensures that the RF sensing technology 
is safe for patient use, performs effectively, and adheres to ethical 
standards such as privacy, confidentiality, and equal access. 
Despite the challenges, adherence to these comprehensive 
procedures is paramount. They are essential to promote trust 
among healthcare professionals and patients and to ensure that 
technology contributes positively to patient outcomes and the 
overall healthcare system. Therefore, while the path to regulatory 
approval can indeed be challenging and time-consuming, it is 
a necessary hurdle to ensure the responsible deployment of RF 
sensing technology in clinical practice.

Privacy and Data Security: The widespread implementation 
of RF sensing technology in clinical settings necessitates rigorous 
testing, validation, and regulatory approval. An extensive 
evaluation process is imperative to affirm its safety, effectiveness, 
and reliability, specifically in detecting bone fractures. Ensuring 
the technology’s compliance with regulatory standards and 
guidelines is a fundamental requirement that serves to maintain 
the technology’s integrity and quality.

In addition to these crucial aspects, addressing privacy and 
security concerns is paramount. Applying RF sensing technology 
in clinical settings must be performed with stringent data 
protection measures to safeguard patients’ personal and medical 
information. Secure data transmission and storage protocols 
should be in place to prevent unauthorised access and potential 

breaches [76]. Moreover, privacy regulations, such as the Health 
Insurance Portability and Accountability Act (HIPAA) in the 
United States or the General Data Protection Regulation (GDPR) 
in the European Union, should guide the implementation and 
use of this technology. Adherence to these regulations will help 
ensure that patient data is handled responsibly and confidentially. 
These comprehensive measures, from technical performance to 
data security, foster trust in this technology among healthcare 
professionals and patients. This confidence is vital for RF sensing 
technology’s safe, efficient, and ethical application in a clinical 
environment.

Ethical Considerations: Integrating RF sensing technology 
in healthcare necessitates a comprehensive evaluation of ethical 
implications, including equal access and potential unintended 
consequences. It is paramount to ensure the equitable distribution 
of this technology’s benefits, addressing potential disparities in 
access across diverse populations. Such an approach is vital for 
maintaining social justice in healthcare, where the advantages 
of innovative technologies should not be limited to specific 
socioeconomic or geographic segments.

Beyond ensuring access, it’s critical to identify and mitigate 
potential unintended consequences of this technology’s 
deployment. For instance, overreliance on technology could 
inadvertently lead to diminished human interaction, altering the 
patient-care provider dynamic. Similarly, potential biases inherent 
in the decision-making algorithms of these systems could lead to 
disparities in diagnosis or treatment outcomes [77]. Establishing 
ethical frameworks and guidelines to govern the application of RF 
sensing technology in fracture detection is of utmost importance. 
These guidelines should encompass informed consent, privacy, 
data security, accountability, and transparency. By upholding these 
standards, the responsible and ethical use of RF sensing technology 
can be ensured, fostering trust among healthcare professionals 
and patients and facilitating its successful integration into clinical 
practice.

Financial Considerations: Another significant challenge 
involves the financial aspects related to the implementation of RF 
sensing technology in clinical settings. The cost of acquiring and 
maintaining these systems may be a barrier for many healthcare 
providers, particularly in low and middle-income regions. Also, 
there are costs associated with training healthcare providers 
on using this technology and interpreting its results. Therefore, 
strategies for cost reduction and efficient resource allocation 
need to be considered, such as developing more cost-effective RF 
sensors and providing online training programs for healthcare 
providers [78].

Future Prospects and Strategies for Overcoming 
Challenges

Despite the mentioned challenges, the prospects of RF 
sensing technology for bone fracture detection are immense. 
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With continuous advancements in technology and growing 
understanding of the human bone anatomy, it is expected that 
RF sensors will play a significant role in revolutionising fracture 
detection [79].

Addressing technical challenges will largely depend on 
technological advancements and research breakthroughs. For 
instance, developing more sophisticated signal processing 
algorithms can help to minimise the impact of signal interference 
and attenuation, improving the accuracy and reliability of RF 
sensors. Also, the integration of machine learning and artificial 
intelligence techniques can enhance the data interpretation 
process, enabling more precise fracture detection, even amidst 
complex and noisy data [80]. 

The implementation challenges can be addressed through 
careful planning and management. One key aspect will be educating 
healthcare providers about the technology and providing them 
with the necessary training. Ensuring compatibility with existing 
healthcare systems and practices can also ease the integration of 
RF sensors into the clinical workflow. Moreover, developing cost-
effective RF sensors can make the technology more accessible and 
ease financial constraints [81].

In terms of regulatory approval, manufacturers of RF sensors 
will need to work closely with regulatory bodies to ensure that 
the technology meets the required standards. This process should 
begin at the early stages of product development to streamline the 
approval process and ensure regulatory compliance. Privacy and 
data security challenges can be addressed through the application 
of robust data protection measures. These may include secure 
data transmission protocols, encrypted data storage, and training 
of healthcare providers on data protection policies and practices. 
Furthermore, ensuring compliance with privacy regulations will 
be key to protecting patient data and maintaining trust [82]. 
Addressing these challenges will not be easy and will require 
a concerted effort from all stakeholders involved, including 
researchers, healthcare providers, technology developers, and 
regulatory bodies. However, the potential benefits of RF sensing 
technology in detecting bone fractures make it a worthwhile 
endeavour. By overcoming these challenges, we can pave the way 
for this technology to become an integral part of clinical practice, 
significantly improving patient outcomes and advancing the field 
of bone health diagnostics [83].

Advancement in Innovative Approaches for Bone 
Fracture Detection

Hybrid Techniques

Complementary information may be obtained when 
combining different imaging modalities to detect bone fractures. 
The combination of low-frequency and microwave methods is one 

such hybrid strategy. Electrical impedance tomography (EIT) and 
electrical conductivity measurements are low-frequency methods 
that offer information about the electrical characteristics of tissues. 
Because of bone structure and mineralisation changes, fractured 
bones have different electrical characteristics than healthy bones. 
It is feasible to diagnose fractures and analyse the healing process 
by measuring the electrical conductivity of the bone. 

Microwave methods, on the other hand, such as microwave 
radiometry or microwave tomography, use electromagnetic 
waves in the microwave frequency range [84]. These methods 
may offer information regarding tissue dielectric characteristics, 
such as changes in water content, which can be symptomatic 
of bone fractures. A complete examination of bone fractures 
may be performed by combining low-frequency and microwave 
approaches. Low-frequency measurements may reveal structural 
changes in the bone, but microwave measurements can provide 
information on water content and other dielectric characteristics. 
Combining these strategies can potentially increase the accuracy 
and dependability of fracture diagnosis and monitoring [84]. A 
hybrid technique proposed by [85] utilised image processing 
and machine learning-based method in classifying fracture 
detection using images from x-ray. The research demonstrated 
a commendable integration of machine learning algorithms 
and image processing techniques for the facilitation of fracture 
detection based on the severity and type of the fracture. Although 
this technique has the potential for a wider clinical applicability 
due to the reliance on existing x-ray data, no thorough investigation 
of the model interpretability and clinical validation process was 
made. Also, there was no proposed stepwise approach to real 
life clinical scenarios with regards to the performance of the 
technique.

Another research conducted by [86] on the topic “A study on 
the sensitivity of microwave imaging for detecting small-width 
bone fractures”. The study’s value rests in its narrow emphasis on 
small-width fractures and quantitative evaluation of microwave 
imaging sensitivity. The study provides insights into the 
technique’s potential by methodically altering fracture widths and 
examining the generated photographs. However, the complexity of 
phantom models raises concerns about their ability to replicate 
genuine clinical circumstances. The lack of real-world validation 
using actual bone specimens is a restriction that may have an 
impact on the study’s usefulness.

Signal Processing and Feature Extraction

Signal processing and feature extraction techniques are vital in 
analysing data received from various imaging modalities in hybrid 
methods for identifying bone fractures. These strategies assist 
in extracting useful information and features from the recorded 
signals, making fracture diagnosis and evaluation easier.
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In hybrid methods, signal processing techniques are used 
to pre-process the obtained data to eliminate noise, increase 
the signal quality, and improve the overall picture quality [87]. 
Following this process, the data used for the upcoming analysis 
will be clean and reliable. Feature extraction methods derive 
helpful information after pre-processing the signals or pictures. 
These characteristics may be quantitative data or unique patterns 
that are indicative of bone fractures or the healing process [88]. In 
fracture identification, some of the characteristics often employed 
include fracture line direction, bone mineral density, callus 
development, and local alterations in the properties of the tissue.

In recent times, the use of machine learning techniques to 
analyse the retrieved characteristics and construct models for 
fracture diagnosis have gained the attention of researchers. It is 
believed that these models gain the ability to categorise incoming 
data as either healthy or broken based on the patterns and 
correlations that they learn from the training data. It is possible 
to accomplish precise and automated fracture diagnosis via signal 
processing and feature extraction methods in hybrid systems 
[89,90]. A study demonstrated that combining machine learning 
techniques with signal processing and feature extraction methods 
enabled the creation of accurate and automated fracture diagnosis 
models. These models could categorize incoming data as healthy or 
fractured based on learned patterns and correlations, facilitating 
precise fracture identification.

Time-Domain Analysis in Hybrid Approaches

Analysing signals in the time domain is called time-domain 
analysis. This analysis investigates changes in the signal’s 
amplitude and phase over time. In hybrid methods for detecting 
bone fractures, time-domain analysis is often used to extract 
useful information linked to the healing process compared to the 
use of the frequency domain technique. This is because unlike 
frequency domain analysis, analysis in the time domain makes it is 
feasible to trace the development of fracture healing by observing 
the temporal changes in the observed signals or pictures. For 
instance, in techniques based on ultrasound, the time-domain 
analysis may indicate the development of the fracture callus, 
which includes its genesis, growth, and remodelling. It is possible 
to evaluate the effectiveness of bone healing and its rate by 
examining the temporal patterns. The study demonstrated that 
time-domain analysis in hybrid imaging modalities allowed for 
the tracking and evaluation of the temporal changes in fracture 
healing, providing valuable insights into the development of the 
fracture callus, its growth, and remodelling. This approach proved 
to be more effective than frequency domain analysis in observing 
dynamic changes during the healing process [91].

Time-domain analysis may also be used in other imaging 
modalities, such as magnetic resonance imaging (MRI) or 
computed tomography (CT), to analyse dynamic changes in tissue 
characteristics, vascularisation, or inflammation surrounding 

the fracture site. These temporal differences provide helpful 
insights into the wound-healing process and have the potential 
to contribute to the diagnosis and ongoing monitoring of 
bone fractures. In conclusion, hybrid methods for detecting 
bone fractures often require the utilisation of various imaging 
modalities, signal processing, feature extraction strategies, and 
time-domain analysis. These techniques use the beneficial aspects 
of each method to give a thorough analysis of fractures, improve 
diagnostic accuracy, and more effectively monitor the healing 
process. A study compared time-domain analysis with frequency 
domain techniques in hybrid imaging systems for bone fracture 
diagnosis. The outcomes demonstrated that time-domain analysis 
provided a more comprehensive evaluation of fractures, allowing 
for assessing bone healing effectiveness and rate through temporal 
patterns [92].

UHF Antenna-Based Detection Techniques

A recent development in the field employs ultra-high 
frequency (UHF) antennas and s-parameters for the non-invasive 
detection of bone fractures [93]. The concept involves using the 
UHF antenna to scan a bone phantom modelled after a human 
femur with a fracture. The difference in reflected and transmitted 
signals is then used to identify the presence and location of the 
fracture. This innovative approach offers low-power reflection 
and high-power transmission coefficients, signalling the presence 
of a fracture. In simulations, this technique has demonstrated 
the ability to detect fractures at varying locations on the bone 
phantom, with the s-parameters displaying differences according 
to the fracture’s position. This could indicate the technique’s 
potential for detecting fractures in different parts of the bone, thus 
enhancing the method’s versatility. However, using this technique 
in real-world scenarios requires further investigation, as the 
research has only encompassed simulations.

Dual-Polarized Microwave Sensor for Fracture 
Detection

A recent human bone fracture detection development involves 
a novel, compact sensor system that employs a patch antenna, 
reactive impedance surfaces, and a dielectric plano-concave lens 
[94]. This innovative system, about 30% smaller than traditional 
designs, is tailored to the human body to enhance impedance 
matching and optimise sensor performance. The methodology 
employed for this system includes designing and optimising sensor 
components using CST Microwave Studio software, fabrication via 
PCB technology and 3D printing, and performance validation on 
a semi-solid phantom. The sensor operates at a centre frequency 
of 2.45 GHz with a bandwidth of 12.5%, and this sensor system 
demonstrates impressive sensitivity and accuracy in detecting 
and imaging narrow cracks in bone tissue and determining their 
location and orientation. The system’s effectiveness surpasses 
traditional methods such as X-ray or ultrasound. However, despite 
its innovative design and impressive capabilities, the system’s 
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implementation in real-world scenarios is yet to be explored. 
Future work can focus on enhancing the accuracy and robustness 
of the sensor system, testing on more realistic phantoms or animal 
models, and exploring applications in other biomedical fields, 
such as tumour detection or osteoporosis screening.

Application of Artificial Intelligence in Bone 
Fracture Detection

The challenge of accurately diagnosing fractures in emergency 
departments is significant, with missed fractures being the most 
common diagnostic error. This failure can result in delayed 
treatment and long-term disability [95]. This task becomes 
further complicated due to the variability in fracture appearances 
based on factors such as the affected bone, regional anatomy, and 
radiographic projection [96]. However, the evolution of machine 
learning and deep learning techniques has heralded a new era in 
fracture detection, significantly improving speed, efficiency, and 
error rates in diagnostics.

Machine Learning in Bone Fracture Detection

Machine learning is making considerable progress in 
healthcare, particularly in the early detection of bone fractures. 
Bone fractures can lead to significant morbidity if not diagnosed 
and treated promptly. Sophisticated machine learning algorithms, 
such as Support Vector Machines (SVM) and Neural Networks, 
can analyse imaging data from CT scans or X-rays to recognise 
patterns and signs indicative of fractures. Machine learning also 
synergises with advances in radio frequency (RF) technology, 
yielding non-invasive methods for fracture detection. These 
methods leverage the unique changes in RF signals that occur due 
to alterations in bone structure, opening a new avenue for early 
fracture detection. A study has demonstrated that deep learning 
is a dependable method for diagnosing fractures, with a high 
diagnostic accuracy comparable to that of general physicians [95]. 
The study aimed to investigate the accuracy and reliability of deep 
learning in detecting orthopaedic fractures. The pooled sensitivity 
and specificity for the whole group (17 trials, 5,434 images) were 
0.87 and 0.91, respectively. The AUC was 0.95. Eight trials (1,574 
images) were included in the long-bone group, which contained 
seven studies. The pooled sensitivity was 0.96, and the specificity 
was 0.94. The AUC was 0.99.

Another study [97], proposed a novel machine learning-based 
technique to detect bone fractures by analysing bone contours. 
Several machine-learning algorithms, including Naïve Bayes, 
Decision Tree, Nearest Neighbours, Random Forest, and SVM, 
were employed on a dataset of 270 x-ray images. The accuracy 
measures varied, with SVM exhibiting the highest accuracy [98]. 
Accuracy measures for the various algorithms employed in the 
study range from 0.64 to 0.92, with values obtained for Naïve 
Bayes, Decision Tree, Nearest Neighbours, Random Forest, and 
SVM. Statistically, the accuracy for SVM was found to be the highest 
in this research. This method overcomes the shortcoming of the 

method used in another study, which works on texture analysis 
only that investigates the effectiveness of bone texture analysis 
(TA) and machine learning (ML) in identifying patients at risk for 
vertebrae fractures from CT scans. The results showed that this 
method was significantly more accurate than traditional methods 
in identifying at-risk patients. However, it struggled to identify 
individual at-risk vertebrae accurately. Human assessment could 
have been more accurate overall. The study found that bone texture 
analysis combined with machine learning allows identifying 
patients at risk for vertebral body insufficiency fractures on 
standard CT scans with high accuracy and improves fracture risk 
prediction compared to mere Hounsfield unit measurements on 
CT scans. This analysis can potentially identify vertebrae at risk 
for insufficiency fracture and may thus increase the diagnostic 
value of standard CT scans.

Deep Learning and Neural Networks

While earlier deep-learning systems for fracture detection 
were limited, focusing on single bones or specific anatomical 
regions, recent advancements have considerably broadened 
this scope, making them powerful tools for addressing fracture 
detection in medical imaging [99]. In October 2020, npj Digital 
Medicine published a study titled “Assessment of a deep-learning 
system for fracture detection in musculoskeletal radiographs”. 
The study aimed to create a deep-learning system that could 
assist clinicians in detecting fractures in musculoskeletal imaging. 
The system was trained on data manually annotated by senior 
orthopaedic surgeons and radiologists. The results showed 
that the system was able to accurately detect fractures in adult 
musculoskeletal radiographs, which is a challenging problem and 
the largest source of diagnostic errors in emergency departments. 
This technique could help reduce missed fractures, which are the 
most common diagnostic error in emergency departments and can 
lead to delays in treatment and long-term disabilities. The overall 
AUC of the deep-learning system was 0.974, with a sensitivity of 
95.2% and a specificity of 81.3%. The positive predictive value 
was 47.4%, and the negative predictive value. The study also 
shows that missed fractures are the most common diagnostic 
error in emergency departments and can lead to treatment delays 
and long-term disability.

Artificial Intelligence (AI) comprises a range of technologies, 
including Deep Learning, which uses artificial neuron layers to 
improve machines’ ability to understand and interpret complex 
data [100]. One such application was the development of a 
Deep Neural Network (DNN) for detecting fractured bones in 
X-ray images. They developed a system that uses a deep neural 
network (DNN) to detect fractured bones in X-ray images. Manual 
diagnosis of bone fractures takes a lot of time and has a high 
chance of errors. Hence, an automated system is required to 
diagnose fractured bones accurately. The proposed system uses a 
deep neural network model to differentiate between healthy and 
fractured bones. However, when working with small datasets, the 
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model tends to overfit, so data augmentation techniques are used 
to increase the size of the dataset. The accuracy of the proposed 
model for classifying healthy and fractured bones is 92.44% using 
5-fold cross-validation. Additionally, the accuracy of the model 
on 10% and 20% of the test data is more than 95% and 93%, 
respectively. The proposed model performs much better than 
previous models [101]. In recent times, Deep Learning has made 
significant progress in perception tasks. In orthopaedics and 
traumatology, deep Learning has been used to identify fractures 
in radiographs. Researchers have designed a deep neural network 
model that can classify fractured and healthy bones with an 
accuracy of 92.44% using 5-fold cross-validation. To increase the 
size of the data set, they employed data augmentation techniques. 
The model’s accuracy is more than 95% and 93% for 10% and 
20% of the test data, respectively [102]. However, studies on 
using Deep Learning to detect and classify fractures on computed 
tomography (CT) scans still need to be completed.

Another study [102]., evaluated whether a Food and Drug 
Administration-cleared deep learning system that identifies 
fractures in adult musculoskeletal radiographs would improve 
diagnostic accuracy for fracture detection across different 
types of clinicians. The study found that clinicians were more 
accurate at diagnosing fractures when aided by the deep learning 
system, particularly those clinicians with limited training in 
musculoskeletal image interpretation. Reducing the number 
of missed fractures may allow for improved patient care and 
increased patient mobility. The study shows that a deep-learning 
system can accurately identify fractures throughout the adult 
musculoskeletal system. The overall AUC of the deep-learning 
system was 0.974 (95% CI: 0.971–0.977), sensitivity was 95.2% 
(95% CI: 94.2–96.0%), specificity was 81.3% (95% CI: 80.7–
81.9%), positive predictive value (PPV) was 47.4% (95% CI: 46.0–
48.9%), and negative predictive value (NPV) of 99.0% (95% CI: 
98.8–99.1%).

A recent study proposes a two-stage region-based 
convolutional neural network for thighbone fracture detection. The 
pre-trained model is implemented on the dataset reported in the 
previous study, which includes 3842 thighbone X-ray radiographs. 
The experimental results show that the Average Precision of 
the proposed detection framework reaches 88.9% in thighbone 
fracture detection. This result proves the effectiveness of our 
framework and its superiority over other state-of-the-art methods 
[103]. A recently conducted survey [104]., delves into the diagnosis 
of bone fractures, aiming to help researchers develop models that 
can automatically detect such fractures in human bones. The 
survey’s authors discuss several image-processing techniques 
that can be used for fracture detection, including conventional 
and deep learning-based methods. They also compare the various 
techniques available and highlight the challenges researchers face 
in this field. To enhance fracture detection, the authors suggest 
using automated models such as Convolutional Neural Networks 
(CNN) that are pre-trained on diverse bone X-ray images. To 

combat the issue of observer bias in creating labelled datasets, 
they propose using a “gold standard” dataset that receives input 
from multiple expert radiologists. Additionally, they suggest 
addressing overfitting by cropping regions of interest from 
images and using different network architectures. The authors 
conclude that automated fracture classification models have the 
potential to improve radiographic interpretations and advocate 
for the creation of more comprehensive labelled datasets and 
efficient models that can detect various fractures across different 
anatomical regions.

In another study, Deepa Joshi, Thipendra P. Singh, and Anil 
Kumar Joshi developed a deep neural network to detect, localise 
and divide the wrist region into segments to identify fractures 
around the wrist joint in radiographs [105]. Their study aims 
to assist investigators in developing models that automatically 
detect fractures in human bones. The authors discuss the 
data preparation stage and present various image-processing 
techniques for fracture detection. Then, they analyse conventional 
and deep learning-based techniques for diagnosing bone fractures. 
They make a comparative analysis of existing techniques. The 
proposed model achieved an average precision of 92.278 on 
50° and 79.003 on a strict scale of 75° for fracture detection. 
Similarly, the average precision of 77.445 on 50° and 52.156 
on a strict scale of 75° was reported for fracture segmentation 
[105]. Several examples of using deep learning techniques, such 
as Convolutional Neural Networks (CNN), for automated fracture 
detection and localisation on radiographs. For instance, a deep 
learning object detection network detected and localised radius 
and ulna fractures on wrist radiographs with high sensitivity 
at a per-fracture (frontal 91.2%, lateral 96.3%), the per-image 
sensitivity, specificity, and AUC were 95.7%, 82.5%, and 0.918, 
respectively, for the frontal view and 96.7%, 86.4%, and 0.933, for 
the lateral view, even with a relatively modest training dataset size 
of 7356 radiographic studies [106] (Table 5 & Table 6).

Advancements in RF Sensing Technology for 
Fracture Detection: A Future Perspective

Emerging computational techniques like artificial intelligence 
(AI), machine learning, and deep learning could revolutionise 
RF sensors’ usage in bone fracture detection. By analysing radio 
frequency signals emitted from bones and identifying patterns 
or anomalies, these techniques could significantly improve 
fracture detection precision and sensitivity. Real-time monitoring 
could further enhance this area, enabling prompt tracking of 
the healing process and timely detection of complications. Such 
capabilities would improve clinical decision-making and patient 
management, resulting in better outcomes. Predictive algorithms 
could facilitate anticipatory analysis, providing insights into 
future fracture risks and enabling preventive measures, especially 
beneficial for conditions like osteoporosis, where fracture risk is 
considerably elevated [107]. Moreover, integrating RF sensor data 
with comprehensive patient information—like medical history, 
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demographics, and data from other imaging modalities—can 
enrich the overall understanding of a patient’s health status. This 
integrated view can aid in crafting more personalised treatment 

plans, thereby increasing the effectiveness of interventions and 
hastening recovery times.

Table 5: Comparison of Deep Learning Systems for Fracture Detection.

System Study Number Sensitivity Specificity AUC
Positive Predictive 

Value
Negative Predictive 

Value

Deep Learning [84]

0.91 (whole 
group), 0.94 (long-

bone group)

0.95 (whole 
group), 0.99 
(long-bone 

group)

0.87 (whole 
group), 0.96 
(long-bone 

group) Not provided Not provided

Deep-learning 
System [100] 95.20% 81.30% 0.974 47.40% 99.00%

Deep Learning 
Object Detection 

Network [106]

95.7% (frontal 
view), 96.7% 
(lateral view) Not provided

0.918 (frontal 
view), 0.933 

(lateral view) Not provided Not provided

Table 6: Deep Learning Methods for Fracture Detection and Localisation.

Method Study Number Average Precision Application

Convolutional Neural Networks 
(CNN) [103] 88.90% Thighbone fracture detection

Deep Neural Network [105]
92.278 (for fracture detection), 77.445 

(for fracture segmentation)
Detection, localisation, and segmentation of frac-

tures around the wrist joint

In line with technological advancements, future RF sensors 
could be more compact, portable, and cost-effective, enhancing 
accessibility in diverse healthcare settings. These developments 
could dramatically refine bone fracture diagnosis, monitoring, 
and management, signalling a new era in orthopaedic care. 
Inventive sensor technologies could significantly enhance 
fracture diagnosis. Flexible and wearable sensors, for instance, 
which adapt to the body’s contours and allow continuous healing 
process monitoring, can be integrated into clothing or bandages, 
enabling real-time data collection without disturbing everyday 
activities. Miniaturised sensors embedded in implantable devices 
can facilitate direct healing process monitoring [108]. Advanced 
signal processing techniques can enhance bone fracture diagnosis, 
utilising machine learning and AI for pattern detection and 
fracture-related signal categorisation. These algorithms, trained 
on expansive datasets, can discern between normal and fractured 
bone patterns, increasing fracture detection accuracy. Researchers 
can explore complex feature extraction techniques, examining 
signal frequency content, energy distribution, or statistical 
properties to gain deeper insights into fracture characteristics. 
Combining sensor data with conventional imaging methods 
such as X-rays, MRIs, or ultrasound can yield comprehensive 
bone fracture analysis. Integrating sensor data and MRI scans, 
for example, provides a more accurate depiction of the fracture 
location, granting a greater understanding of the fracture’s 
severity, alignment, and healing progress.

Individualised approaches for fracture detection can adjust 
to unique patient characteristics such as age, bone density, and 

medical history, leading to more accurate identification and tailored 
treatments. Patient-specific biomechanical models considering 
the patient’s anatomy, bone characteristics, and loading 
conditions can provide more accurate fracture predictions and 
diagnoses [109]. Detecting bone fractures could also be improved 
by investigating multi-modal systems combining several sensing 
techniques, such as RF, ultrasound, or optical imaging. Non-linear 
analytic approaches like chaos theory or fractal analysis could 
identify minor changes in fracture-related signals that standard 
linear methods may not capture. Modern data fusion and fusion 
algorithms can integrate information from different sensors or 
imaging modalities, facilitating an all-encompassing analysis 
of bone fractures. Significant strides in bone fracture detection 
research require collaborative efforts between researchers, 
clinicians, and industry partners. Establishing partnerships could 
translate research results into practical clinical solutions and 
foster the development of commercial devices convenient for 
regular clinical practice. Standardised methods and benchmarks 
should be implemented to assess and compare various fracture 
detection systems, ensuring research and clinical application 
consistency and reproducibility.

Further research to advance RF-based bone fracture detection 
could explore enhanced RF techniques. Frequency-domain 
analysis can offer detailed insights into fracture features and 
healing process progression. Techniques such as impedance 
spectroscopy or time-reversal imaging could improve RF-based 
fracture detection’s precision and sensitivity. Extensive clinical 
research could evaluate the efficacy and reliability of RF-based 
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approaches for monitoring fracture healing and therapy outcomes. 
Collaboration with radiologists and orthopaedic surgeons is 
crucial to ensure RF-based fracture diagnostic systems’ clinical 
relevance and practical usability. Partnerships with industry 
stakeholders could assist in the development of cost-effective, 
portable devices convenient for regular clinical use. Comparisons 
between RF-based fracture detection approaches, other imaging 
modalities, and clinical standards are necessary, providing a solid 
base to evaluate their precision and efficacy. By focusing on these 
future directions and suggestions, researchers could facilitate 
breakthroughs in bone fracture detection, improving patient 
outcomes by providing accurate, timely diagnoses and monitoring.

Conclusion

In conclusion, this comprehensive review has examined the 
latest bone fracture detection methods advancements, specifically 
focusing on time-domain low-frequency and microwave radio 
frequency (RF) techniques. These innovative technologies have 
shown promise in improving diagnostic accuracy, efficiency, and 
safety, potentially enhancing patient outcomes. Our detailed 
analysis of RF techniques highlights their ability to precisely 
measure the dielectric properties of biological tissues, which could 
provide critical insights for detecting fractures. This represents a 
significant leap over traditional detection methods. Additionally, 
the integration of machine learning and artificial intelligence has 
proven crucial in identifying complex patterns and anomalies, 
enabling faster and more accurate fracture diagnosis, thus 
reducing the pressure on healthcare systems.

Microwave imaging techniques offer a more affordable 
and safer alternative to traditional methods, as they do not use 
ionising radiation, thereby benefiting healthcare facilities where 
X-ray usage could be more practical and encouraged. We also 
spotlighted the advantages of innovative hybrid techniques 
that merge low-frequency and microwave approaches, with the 
incorporation of time-domain analysis presenting an exciting 
opportunity to magnify diagnostic accuracy further. While we have 
navigated the challenges of utilising RF sensors for bone fracture 
detection, further research is encouraged to overcome these 
challenges and optimise the performance of these techniques. 
This review underscores the immense potential of new sensor 
technologies, improved signal processing techniques, integration 
with current medical imaging methods, and personalised fracture 
detection approaches. As we refine these techniques and broaden 
our understanding of their practical applications, we will likely 
see enhanced patient outcomes, eased burdens on healthcare 
systems, and improve overall healthcare delivery.
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