

Lactobacillus-Fermented Probiotic Plant-Based Beverages: A Systematic Review and Comparative Analysis

Dimple*

Head of Microbiology Department at Kings Herbal Research Laboratories, India

Submission: January 20, 2026 Published: January 29, 2026

*Corresponding author: Dimple, Head of Microbiology Department at Kings Herbal Research Laboratories, Dalla, Bhogpur Jalandhar, Punjab, India, Email ID: dimplesharma.jal29@gmail.com

Structured Abstract

Background: A new generation of plant-based beverages fermented with *Lactobacillus* spp. has emerged in response to the rising need for alternatives to dairy-based probiotic delivery systems. Nutritional enhancement, probiotic survivability, and functional metabolites are just a few areas where experimental investigations have shown promise; nonetheless, synthesis across matrices and strains is still in its early stages of development.

Objective: To examine *Lactobacillus*-fermented plant-based drink studies, compare technical and functional outcomes across plant matrices (soy, oat, almond, rice, and others), and provide evidence-based research and product development suggestions.

Methods: Focusing on *Lactobacillus* fermentation of plant-based beverages, including species that have been reclassified as *Lactiplantibacillus* or *Lacticaseibacillus*, this literature review covers all the bases. Strain identification, matrix type, fermentation conditions, storage viability, simulated digestion, sensory results, nutritional/biochemical outcomes, and stated limitations were all parts of the extracted information. For this comparison, twenty-five scholarly publications from peer-reviewed journals were consulted.

Results: *Listeria plantarum*, *Listeria fermentum*, *Listeria rhamnosus*, and *Listeria casei* were found in common. Almond matrices often required fortification (with prebiotics or proteins) to achieve target probiotic levels and acceptable sensory quality. In contrast, soy and oat matrices provided the best growth support and protection during simulated digestion. Several studies have employed prebiotics or microencapsulation to achieve and maintain bacterial concentrations of 10^7 CFU/mL after fermentation and 10^6 - 10^7 CFU/mL during chilled storage periods ranging from 14 to 30 days. The antinutritional components, namely phytates, were much reduced during fermentation. Free phenolics and antioxidant capacity were raised, and protein digestibility was greatly improved. Depending on the strain and matrix, sensory findings range from acceptable fruitiness or acidic overtones in certain soy/oat formulations to off-tastes in others.

Conclusions: A good way to get probiotics into your system is to consume plant-based beverages fermented with *Lactobacillus*. The use of prebiotics or encapsulation to ensure shelf stability, sensory optimization, and strain-matrix matching is crucial to the success of a product. The absence of sensory validation and randomized clinical trials on an industrial scale is a major limitation.

Keywords: *Lactobacillus*; Plant-based Beverage; Non-dairy Probiotic; Soy; Oat; Almond; Fermentation; Probiotic viability; Comparative analysis

Introduction

As more people become interested in gut health and adopt plant-based diets, non-dairy probiotic beverages are gaining popularity. Many strains of *Lactobacillus* spp. and related reclassified taxa (such as *Lactiplantibacillus*) are GRAS-approved, and they have acidification capacity and health-relevant functional traits, making them ideal probiotic starters. Although plant matrices such as soy, oat, almond, and rice make attractive

carriers, they differ significantly in their macronutrient content, antinutritional components, and organoleptic properties. These factors influence the rate of fermentation, the survivability of probiotics, and the consumer's acceptance of the product [1]. To evaluate the technical, nutritional, and functional performance of plant-based beverages fermented with *Lactobacillus* and to highlight important research gaps, this study compiles up-to-date experimental data.

Methods

Search strategy and selection criteria

Lactobacillus fermentation in plant-based beverages (soy, oat, almond, rice, buckwheat, mixes): experimental synthesis and literature analysis. We have 25 scholarly publications that cover a wide range of topics in our core reference collection [2-5]. These include strain screening, matrix comparisons, storage and digesting studies, biochemical characterizations, sensory assessments, and limited human or ex vivo trials. Information retrieved included the following: strain(s), matrix composition, fermentation settings (inoculum, temperature, duration), cell counts (CFU/mL), GI test findings, sensory outcomes, nutritional and biochemical alterations (e.g., phytate reduction, phenolic liberation, antioxidant tests), and research limitations. Framework for comparing and synthesizing data. The results were organized by matrix type and then by outcome category (technological performance, probiotic viability, nutritional/functional modifications, sensory qualities). To facilitate cross-study comparison, qualitative summaries of quantitative data (e.g., viability and pH changes) were used to account for variations in measurement units and research design [6].

Results

Overview of included evidence

The selected literature emphasizes the repeated use of Lactobacillus strains with probiotic potential (e.g., *L. plantarum*, *L. fermentum*, *L. rhamnosus*, *L. casei*, *L. acidophilus*). It demonstrates the feasibility of producing plant-based probiotic beverages with significant viable counts and improved biochemical properties [7-13]. A few studies included human or ex vivo microbiome outcomes while the bulk were laboratory-scale fermentation and storage investigations.

Strain selection and functional traits

Strain selection is primarily influenced by: (1) acidification kinetics (to achieve product pH and safety), (2) ability to grow on low-protein/low-sugar substrates, (3) exopolysaccharide (EPS) production (improves mouthfeel and viscosity), and (4) probiotic properties (acid and bile tolerance, adhesion potential). EPS-producing *L. plantarum* strains and *L. fermentum* have been extensively studied for oat and soy matrices to enhance texture while maintaining CFU counts [14-16].

Matrix comparisons (technology and viability)

Soy drinks often provide sufficient nitrogen and other essential growth factors to support robust Lactobacillus growth, resulting in fermented products with high viable counts. Fermentation often increases the fraction of aglycone isoflavones while decreasing phytate concentration, which improves bioavailability and antioxidant activity [17]. Oat drinks, high in β -glucan and soluble carbohydrates, may improve texture and increase Lactobacilli development. Enzyme pretreatments or

EPS-producing strains can help manage viscosity and mouthfeel. Oat matrices often provide satisfactory probiotic viability during refrigerated storage. Almond beverages contain less protein and more unsaturated fat; however, probiotics may achieve their goal viability when a prebiotic (e.g., inulin) or pea/soy protein is added. Sensory acceptability requires precise improvements in taste and texture. Rice and other cereals/buckwheat: These matrices are viable carriers, but they often require the addition of carbohydrates or proteins and initial modification to achieve high cell numbers and consistent sensory profiles [18].

Probiotic survival: storage and simulated digestion

Fermentation typically yields $\geq 10^7$ CFU/mL, as reported in research. Storage life varies depending on the matrix and formulation [19]. Prebiotic addition, microencapsulation, or strain selection may increase retention to $\geq 10^6$ - 10^7 CFU/mL over chilled durations of two to four weeks. Simulated GI digestion models revealed strain-dependent declines in viable counts; soy matrices often provided better protection, potentially due to protein/fat buffering and improved nutrient availability.

Nutritional and functional outcomes

Lactobacillus fermentation consistently decreased anti-nutritional elements (e.g., phytates), enhanced free phenolics and antioxidant activity, and produced peptides with higher digestibility in protein-containing matrices [20-22]. Animal research suggests that fermented soy drinks may have antioxidant and metabolic advantages; however, human trials are limited.

Sensory outcomes and consumer acceptability

Sensory results were heavily strain- and matrix-dependent. Some Lactobacillus strains added attractive fruity or lactic notes to soy and oat drinks, but others produced off-flavors that necessitated flavor masking or mixing with fruit extracts [23-25].

Safety and regulatory considerations

Most confirmed Lactobacillus strains are safe for food consumption; however, claims of probiotic health benefits need well-designed human clinical studies. Industrial applications need confirmation of sanitary processes and starting strain traceability.

Discussion

Principal findings

According to the literature, Lactobacillus-fermented plant-based drinks are technically possible and can provide effective probiotic dosages under the right circumstances. Soy and oat matrices appear as the most forgiving carriers for growth support and digestive protection, respectively. Prebiotics, fortification with protein isolates, and the utilization of EPS-producing strains all increase shelf stability and sensory qualities.

Strengths and limitations of evidence

The evidence foundation is strong, with several controlled

fermentation studies, biochemical analysis of fermented products, and the development of microbiome/ex vivo research. Limitations include variety in experimental techniques (various strain nomenclature, fermentation settings, and viability tests), a scarcity of randomized controlled human trials, and insufficient industrial-scale shelf-life and sensory investigations.

Practical implications and recommendations

Regarding research and development, as well as product development, we propose:

- a) One must first do empirical strain screening for every objective matrix, including growth, acidification, EPS production, and flavor profile.
- b) To obtain and maintain acceptable CFU levels, consider utilizing matrix fortification (protein, carbohydrates) or prebiotics (inulin, oligosaccharides).
- c) If necessary, enhance shelf stability by packaging or microencapsulation.
- d) Prepare ahead of time for health claims to be made based on human clinical trials. Possible avenues for further study
- e) Randomized clinical trials of plant-based probiotic beverages, evaluations of sensory properties and shelf life, matrix-mediated protection in the gastrointestinal system, and standardized methods for determining and reporting viability are all topics of priority for future study.

Conclusion

Non-dairy probiotic options, such as plant-based beverages fermented with *lactobacillus*, show promise for providing nutritional and functional advantages. Proper strain-matrix matching, formulation optimization, and clinical proof of health claims are essential for a product's success.

References

1. Zamfir M, Angelescu IR, Voaides C, Cornea CP, Boiuscua O, et al. (2022) Non-Dairy Fermented Beverages Produced with Functional Lactic Acid Bacteria. *Microorganisms* 10(12): 2314.
2. Ruiz de la Bastida A (2023) Fermented soy beverages as vehicle of probiotic *lactobacilli* strains and source of bioactive isoflavones: A potential double functional effect. *Heliyon* 9(4).
3. Klajn VM (2021) Probiotic fermented oat dairy beverage: viability of *Lactobacillus casei*, fatty acid profile, phenolic compound content and acceptability. *J Food Sci Technol* 58(9): 3444-3452.
4. Chen L, Wu D, Schlundt J, Conway PL (2020) Development of a dairy-free fermented oat-based beverage with enhanced probiotic and bioactive properties. *Front Microbiol* 11: 609734.
5. Zahrani AJAL, Shori AB (2023) Viability of probiotics and antioxidant activity of soy and almond milk fermented with selected strains of probiotic *Lactobacillus spp.* *Lwt* 176: 114531.
6. D'Almeida AP, Neta AAI, De Andrade-Lima M, De Albuquerque TL (2024) Plant-based probiotic foods: current state and future trends. *Food Sci Biotechnol* 33(15): 3401-3422.
7. Deziderio MA, De Souza HF, Kamimura ES, Petrus RR (2023) Plant-based fermented beverages: Development and characterization. *Foods* 12(22): 4128.
8. Dioleitis E (2021) The fermented soy beverage Q-CAN® plus induces beneficial changes in the oral and intestinal microbiome. *BMC Nutr* 7(1): 6.
9. Pawlos M, Szajnar K, Znamirowska PA (2024) Probiotic Milk and Oat Beverages with Increased Protein Content: Survival of Probiotic Bacteria Under Simulated *In Vitro* Digestion Conditions. *Nutrients* 16(21): 3673.
10. Muncey L, Hekmat S (2021) Development of probiotic almond beverage using *Lacticaseibacillus rhamnosus* GR-1 fortified with short-chain and long-chain inulin fiber. *Fermentation* 7(2): 90.
11. Okur HH, Yıldırım HK, Yousefvand A, Saris PEJ (2025) Production of Fermented Soy and Soy/Cow Milk Products with Probiotic *Lacticaseibacillus rhamnosus* GG Strain. *Food Bioprocess Technol* 18(6): 5736-5748.
12. Abdelshafy AM, Mustafa MA, Hassan MA, Al-Asmari F (2024) Probiotic-fermentation of oat: Safety, strategies for improving quality, potential food applications and biological activities. *Trends Food Sci Technol* 151: 104640.
13. Al-Kharousi ZS (2025) Highlighting Lactic Acid Bacteria in Beverages: Diversity, Fermentation, Challenges, and Future Perspectives. *Foods* 14(12): 2043.
14. Zhou X (2021) Antioxidant effect of *Lactobacillus fermentum* CQPC04-fermented soy milk on D- galactose-induced oxidative aging mice. *Front Nutr* 8: 727467.
15. Da Silva Vale A (2023) Exploring microbial diversity of non-dairy fermented beverages with a focus on functional probiotic microorganisms. *Fermentation* 9(6): 496.
16. Lu J, Jiao Y, Zhu M, Sun Y, Kwok LY (2024) Fermented soy milk enhances survival and acid tolerance of *Lactiplantibacillus plantarum* LP-6 in an *in vitro* human stomach digestion system. *LWT* 208: 116689.
17. Maftei NM, Bogdan REG, Boev M, Marin DB, Ramos-Villarroel AY (2023) Innovative fermented soy drink with the sea buckthorn syrup and the probiotics co-culture of *Lactobacillus paracasei* ssp. *paracasei* (*L. Casei*® 431) and *Bifidobacterium animalis* ssp. *Lactis* (Bb-12®). *Fermentation* 9(9): 806.
18. Widayastuti Y, Febrisiantosa A, Tidona F (2021) Health-promoting properties of *lactobacilli* in fermented dairy products. *Front Microbiol* 12: 673890.
19. D'Alessandro M (2025) Impact of Fermented Soy Beverages Containing Selected Vaginal Probiotics on the *In Vitro* Fecal Microbiota of Post-Menopausal Women. *Foods* 14(6): 1022.
20. Angelov A, Gotcheva V, Kuncheva R, Hristozova T (2006) Development of a new oat-based probiotic drink. *Int J Food Microbiol* 112(1): 75-80.
21. Prado C, Parada JL, Pandey A, Soccol CR (2008) Trends in non-dairy probiotic beverages. *Food Res Int* 41(2): 111-123.
22. Min M, Bunt CR, Mason SL, Hussain MA (2019) Non-dairy probiotic food products: An emerging group of functional foods. *Crit Rev Food Sci Nutr* 59(16): 2626-2641.
23. Fabiano GA, De S Oliveira RP, Rodrigues S, Santos BN, Venema K (2025) Evidence of symbiotic potential of oat beverage enriched with inulin and fermented by *L. rhamnosus* LR B in a dynamic *in vitro* model of human colon. *Food Res Int* 211: 116489.

24. Wenlock RW, Buss DH, Derry BJ, Dixon EJ (1980) Household food wastage in Britain. *Br J Nutr* 43(1): 53-70.

25. Kumar S (2022) Trends in non-dairy-based probiotic food products: advances and challenges. *J Food Process Preserv* 46(9): e16578.

This work is licensed under Creative Commons Attribution 4.0 License
DOI: [10.19080/ARGH.2025.22.556082](https://doi.org/10.19080/ARGH.2025.22.556082)

**Your next submission with JuniperPublishers
will reach you the below assets**

- Quality Editorial service
- Swift Peer Review
- Reprints availability
- E-prints Service
- Manuscript Podcast for convenient understanding
- Global attainment for your research
- Manuscript accessibility in different formats
(Pdf, E-pub, Full Text, audio)
- Unceasing customer service

Track the below URL for one-step submission
<https://juniperpublishers.com/online-submission.php>